Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 12/2015

20-08-2015 | Review

Hollow microspheres and nanoparticles MnFe2O4 as superior anode materials for lithium ion batteries

Authors: Wanli Zhang, Xianhua Hou, Zanrui Lin, Lingmin Yao, Xinyu Wang, Yumei Gao, Shejun Hu

Published in: Journal of Materials Science: Materials in Electronics | Issue 12/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The commercialized LIBs employing graphite as anodes currently suffer a series of problems from the safety problem, low theoretical capacity (372 mAh g−1) and bad rate capability. Herein, hollow microspheres MnFe2O4 (MFO) and nanoparticles MFO have been synthesized. Compared with the nanoparticles MFO, the hollow microspheres MFO as an anode material with novel structure demonstrate superior electrochemical performance, with large specific reversible capacity (1100 mAh g−1 at the specific current of 0.5 C after 100 cycles), high rate capability (more than 500 mAh g−1 even at 5.0 C) and good cyclability with little fading (1.4 % after 100 cycles). The excellent cycling performance is associated with the hollow microsphere structure with large specific surface areas, which can accommodate the severe mechanism strains and ensure more contact area between active material and electrolyte, thus good for diffusion of electrolyte and provide more reaction sites. This work presents a meaningful way for the preparation of MFO with different morphology as superior alternative anodes for lithium ion batteries.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M. Armand, J.M. Tarascon, Building better batteries. Nature 451, 652–657 (2008)CrossRef M. Armand, J.M. Tarascon, Building better batteries. Nature 451, 652–657 (2008)CrossRef
2.
go back to reference K. Amine, R. Kanno, Y. Tzeng, Rechargeable lithium batteries and beyond: progress, challenges, and future directions. MRS Bull. 39, 395–401 (2014)CrossRef K. Amine, R. Kanno, Y. Tzeng, Rechargeable lithium batteries and beyond: progress, challenges, and future directions. MRS Bull. 39, 395–401 (2014)CrossRef
3.
go back to reference Y.G. Guo, J.S. Hu, L.J. Wan, Nanostructured materials for electrochemical energy conversion and storage devices. Adv. Mater. 20, 2878–2887 (2008)CrossRef Y.G. Guo, J.S. Hu, L.J. Wan, Nanostructured materials for electrochemical energy conversion and storage devices. Adv. Mater. 20, 2878–2887 (2008)CrossRef
4.
go back to reference B. Dunn, H. Kamath, J.M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 344, 928–935 (2001) B. Dunn, H. Kamath, J.M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 344, 928–935 (2001)
5.
go back to reference J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001)CrossRef J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001)CrossRef
6.
go back to reference P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon, Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407, 496–499 (2000)CrossRef P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon, Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407, 496–499 (2000)CrossRef
7.
go back to reference J. Liu, W. Li, A. Manthiram, Dense core–shell structured SnO2/C composites as high performance anodes for lithium ion batteries. Chem. Commun. 46, 1437–1439 (2010)CrossRef J. Liu, W. Li, A. Manthiram, Dense core–shell structured SnO2/C composites as high performance anodes for lithium ion batteries. Chem. Commun. 46, 1437–1439 (2010)CrossRef
8.
go back to reference P. Meduri, C. Pendyala, V. Kumar, G.U. Sumanasekera, M.K. Sunkara, Hybrid tin oxide nanowires as stable and high capacity anodes for Li-ion batteries. Nano Lett. 9, 612–616 (2009)CrossRef P. Meduri, C. Pendyala, V. Kumar, G.U. Sumanasekera, M.K. Sunkara, Hybrid tin oxide nanowires as stable and high capacity anodes for Li-ion batteries. Nano Lett. 9, 612–616 (2009)CrossRef
9.
go back to reference D. Pasero, N. Reeves, A.R. West, Short communication Co-doped Mn3O4: a possible anode material for lithium batteries. J. Power Sources 141, 156–158 (2005)CrossRef D. Pasero, N. Reeves, A.R. West, Short communication Co-doped Mn3O4: a possible anode material for lithium batteries. J. Power Sources 141, 156–158 (2005)CrossRef
10.
go back to reference J.F. Li, B.J. Xi, Y.C. Zhu, Q.W. Li, Y. Yan, Y.T. Qian, A precursor route to synthesize mesoporous γ-MnO2 microcrystals and their applications in lithium battery and water treatment. J. Alloys Compd. 509, 9542–9548 (2011)CrossRef J.F. Li, B.J. Xi, Y.C. Zhu, Q.W. Li, Y. Yan, Y.T. Qian, A precursor route to synthesize mesoporous γ-MnO2 microcrystals and their applications in lithium battery and water treatment. J. Alloys Compd. 509, 9542–9548 (2011)CrossRef
11.
go back to reference J.J. Zhang, Y. Yao, T. Huang, A.S. Yu, Uniform hollow Fe3O4 spheres prepared by template-free solvothermal method as anode material for lithium-ion batteries. Electrochim. Acta 78, 502–507 (2012)CrossRef J.J. Zhang, Y. Yao, T. Huang, A.S. Yu, Uniform hollow Fe3O4 spheres prepared by template-free solvothermal method as anode material for lithium-ion batteries. Electrochim. Acta 78, 502–507 (2012)CrossRef
12.
go back to reference H.S. Lima, B.Y. Jung, Y.K. Sun, K.D. Suh, Hollow Fe3O4 microspheres as anode materials for lithium-ion batteries. Electrochim. Acta 75, 123–130 (2012)CrossRef H.S. Lima, B.Y. Jung, Y.K. Sun, K.D. Suh, Hollow Fe3O4 microspheres as anode materials for lithium-ion batteries. Electrochim. Acta 75, 123–130 (2012)CrossRef
13.
go back to reference N. Yan, L. Hu, Y. Li, Y. Wang, H. Zhong, X.Y. Hu, X.K. Kong, Q.W. Chen, Co3O4 nanocages for high-performance anode material in lithium-ion batteries. J. Phys. Chem. C 116, 7227–7235 (2012)CrossRef N. Yan, L. Hu, Y. Li, Y. Wang, H. Zhong, X.Y. Hu, X.K. Kong, Q.W. Chen, Co3O4 nanocages for high-performance anode material in lithium-ion batteries. J. Phys. Chem. C 116, 7227–7235 (2012)CrossRef
14.
go back to reference B. Guo, C.S. Li, Z.Y. Yuan, Nanostructure Co3O4 materials: synthesis, characterization, and electrochemical behaviors as anode reactants in rechargeable lithium ion batteries. J. Phys. Chem. C 114, 12805–12817 (2010)CrossRef B. Guo, C.S. Li, Z.Y. Yuan, Nanostructure Co3O4 materials: synthesis, characterization, and electrochemical behaviors as anode reactants in rechargeable lithium ion batteries. J. Phys. Chem. C 114, 12805–12817 (2010)CrossRef
15.
go back to reference C.Z. Yuan, H.B. Wu, Y. Xie, X.W. Lou, Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew. Chem. Int. Ed. 53, 1488–1504 (2014)CrossRef C.Z. Yuan, H.B. Wu, Y. Xie, X.W. Lou, Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew. Chem. Int. Ed. 53, 1488–1504 (2014)CrossRef
16.
go back to reference Y. Pan, Y. Zhang, X.P. Wei, C.G. Yuan, J.L. Yin, D.X. Cao, G.L. Wang, MgFe2O4 nanoparticles as anode materials for lithium-ion batteries. Electrochim. Acta 109, 89–94 (2013)CrossRef Y. Pan, Y. Zhang, X.P. Wei, C.G. Yuan, J.L. Yin, D.X. Cao, G.L. Wang, MgFe2O4 nanoparticles as anode materials for lithium-ion batteries. Electrochim. Acta 109, 89–94 (2013)CrossRef
17.
go back to reference Z.L. Zhang, Y.H. Wang, Q.Q. Tan, Z.Y. Zhong, F.B. Su, Facile solvothermal synthesis of mesoporous manganese ferrite (MnFe2O4) microspheres as anode materials for lithium-ion batteries. J. Colloid Interface Sci. 398, 185–192 (2013)CrossRef Z.L. Zhang, Y.H. Wang, Q.Q. Tan, Z.Y. Zhong, F.B. Su, Facile solvothermal synthesis of mesoporous manganese ferrite (MnFe2O4) microspheres as anode materials for lithium-ion batteries. J. Colloid Interface Sci. 398, 185–192 (2013)CrossRef
18.
go back to reference L.M. Yao, X.H. Hou, S.J. Hu, Q. Ru, X.Q. Tang, L.Z. Zhao, D.W. Sun, A facile bubble-assisted synthesis of porous Zn ferrite hollow microsphere and their excellent performance as an anode in lithium ion battery. J. Solid State Electrochem. 17, 2055–2060 (2013)CrossRef L.M. Yao, X.H. Hou, S.J. Hu, Q. Ru, X.Q. Tang, L.Z. Zhao, D.W. Sun, A facile bubble-assisted synthesis of porous Zn ferrite hollow microsphere and their excellent performance as an anode in lithium ion battery. J. Solid State Electrochem. 17, 2055–2060 (2013)CrossRef
19.
go back to reference X.H. Hou, X.Y. Wang, L.M. Yao, S.J. Hu, Y.P. Wu, X. Liu, Facile synthesis of ZnFe2O4 with inflorescence spicate architecture as anode materials for lithium-ion batteries with outstanding performance. N. J. Chem. 39, 1943–1952 (2015)CrossRef X.H. Hou, X.Y. Wang, L.M. Yao, S.J. Hu, Y.P. Wu, X. Liu, Facile synthesis of ZnFe2O4 with inflorescence spicate architecture as anode materials for lithium-ion batteries with outstanding performance. N. J. Chem. 39, 1943–1952 (2015)CrossRef
20.
go back to reference X.N. Fu, D. Chen, M. Wang, Y.S. Yang, Q.Z. Wu, J.M. Ma, X.S. Zhao, Synthesis of porous CoFe2O4 octahedral structures and studies on electrochemical Li storage behavior. Electrochim. Acta 116, 164–169 (2014)CrossRef X.N. Fu, D. Chen, M. Wang, Y.S. Yang, Q.Z. Wu, J.M. Ma, X.S. Zhao, Synthesis of porous CoFe2O4 octahedral structures and studies on electrochemical Li storage behavior. Electrochim. Acta 116, 164–169 (2014)CrossRef
21.
go back to reference L. Hu, Q.W. Chen, Hollow/porous nanostructures derived from nanoscale metal–organic frameworks towards high performance anodes for lithium-ion batteries. Nanoscale 6, 1236–1257 (2014)CrossRef L. Hu, Q.W. Chen, Hollow/porous nanostructures derived from nanoscale metal–organic frameworks towards high performance anodes for lithium-ion batteries. Nanoscale 6, 1236–1257 (2014)CrossRef
22.
go back to reference B.H. Qu, L.L. Hu, Q.H. Li, Y.G. Wang, L.B. Chen, T.H. Wang, High-performance lithium-ion battery anode by direct growth of hierarchical ZnCo2O4 nanostructures on current collectors. Appl. Mater. Interfaces 6, 731–736 (2014)CrossRef B.H. Qu, L.L. Hu, Q.H. Li, Y.G. Wang, L.B. Chen, T.H. Wang, High-performance lithium-ion battery anode by direct growth of hierarchical ZnCo2O4 nanostructures on current collectors. Appl. Mater. Interfaces 6, 731–736 (2014)CrossRef
23.
go back to reference R.B. Wu, X.K. Qian, K. Zhou, J. Wei, J. Lou, P.M. Ajayan, Porous spinel Zn x Co3−x O4 hollow polyhedra templated for high-rate lithium-ion batteries. NANO 8, 6297–6303 (2014) R.B. Wu, X.K. Qian, K. Zhou, J. Wei, J. Lou, P.M. Ajayan, Porous spinel Zn x Co3−x O4 hollow polyhedra templated for high-rate lithium-ion batteries. NANO 8, 6297–6303 (2014)
24.
go back to reference C.N. He, S. Wu, N.Q. Zhao, C.S. Shi, E.Z. Liu, J.J. Li, Carbon-encapsulated Fe3O4 nanoparticles as a high-rate lithium ion battery anode material. NANO 7, 4459–4469 (2013) C.N. He, S. Wu, N.Q. Zhao, C.S. Shi, E.Z. Liu, J.J. Li, Carbon-encapsulated Fe3O4 nanoparticles as a high-rate lithium ion battery anode material. NANO 7, 4459–4469 (2013)
25.
go back to reference H. Jiang, Y.J. Hu, S.J. Guo, C.Y. Yan, P.S. Lee, C.Z. Li, Rational design of MnO/carbon nanopeapods with internal void space for high-rate and long-life Li-ion batteries. NANO 8, 6038–6046 (2014) H. Jiang, Y.J. Hu, S.J. Guo, C.Y. Yan, P.S. Lee, C.Z. Li, Rational design of MnO/carbon nanopeapods with internal void space for high-rate and long-life Li-ion batteries. NANO 8, 6038–6046 (2014)
26.
go back to reference X. Song, Q. Ru, Y.D. Mo, L.Y. Guo, S.J. Hu, B.N. An, A novel porous coral-like Zn0.5Ni0.5Co2O4 as an anode material for lithium ion batteries with excellent rate performance. J. Power Sour. 269, 795–803 (2014)CrossRef X. Song, Q. Ru, Y.D. Mo, L.Y. Guo, S.J. Hu, B.N. An, A novel porous coral-like Zn0.5Ni0.5Co2O4 as an anode material for lithium ion batteries with excellent rate performance. J. Power Sour. 269, 795–803 (2014)CrossRef
27.
go back to reference N. Jayaprakash, W.D. Jones, S.S. Moganty, L.A. Archer, Composite lithium battery anodes based on carbon@Co3O4 nanostructures: synthesis and characterization. J. Power Sour. 200, 53–58 (2012)CrossRef N. Jayaprakash, W.D. Jones, S.S. Moganty, L.A. Archer, Composite lithium battery anodes based on carbon@Co3O4 nanostructures: synthesis and characterization. J. Power Sour. 200, 53–58 (2012)CrossRef
28.
go back to reference S.Y. Liu, J. Xie, Q.M. Su, G.H. Du, S.C. Zhang, G.S. Cao, T.J. Zhu, X.B. Zhao, Understanding Li-storage mechanism and performance of MnFe2O4 by in situ TEM observation on its electrochemical process in nano lithium battery. Nano Energy 8, 84–94 (2014)CrossRef S.Y. Liu, J. Xie, Q.M. Su, G.H. Du, S.C. Zhang, G.S. Cao, T.J. Zhu, X.B. Zhao, Understanding Li-storage mechanism and performance of MnFe2O4 by in situ TEM observation on its electrochemical process in nano lithium battery. Nano Energy 8, 84–94 (2014)CrossRef
29.
go back to reference P. Hu, L.J. Yu, A.H. Zuo, C.Y. Guo, F.L. Yuan, Fabrication of monodisperse magnetite hollow spheres. J. Phys. Chem. C 113, 900–906 (2009)CrossRef P. Hu, L.J. Yu, A.H. Zuo, C.Y. Guo, F.L. Yuan, Fabrication of monodisperse magnetite hollow spheres. J. Phys. Chem. C 113, 900–906 (2009)CrossRef
30.
go back to reference L.M. Yao, X.H. Hou, S.J. Hu, J. Wang, M. Li, C. Su, M.O. Tadec, Z.P. Shao, X. Liu, Green synthesis of mesoporous ZnFe2O4/C composite microspheres as superior anode materials for lithium-ion batteries. J. Power Sour. 258, 305–313 (2014)CrossRef L.M. Yao, X.H. Hou, S.J. Hu, J. Wang, M. Li, C. Su, M.O. Tadec, Z.P. Shao, X. Liu, Green synthesis of mesoporous ZnFe2O4/C composite microspheres as superior anode materials for lithium-ion batteries. J. Power Sour. 258, 305–313 (2014)CrossRef
31.
go back to reference J. Israelachvili, H. Wennerström, Role of hydration and water structure in biological and colloidal interactions. Nature 379, 219–225 (1996)CrossRef J. Israelachvili, H. Wennerström, Role of hydration and water structure in biological and colloidal interactions. Nature 379, 219–225 (1996)CrossRef
32.
go back to reference E. Matijevic, Preparation and properties of uniform size colloids. Chem. Mater. 5, 412–426 (1993)CrossRef E. Matijevic, Preparation and properties of uniform size colloids. Chem. Mater. 5, 412–426 (1993)CrossRef
33.
go back to reference E. Matijevic, Monodipersed colloid-art and scicence. Langmuir 10, 8–16 (1994)CrossRef E. Matijevic, Monodipersed colloid-art and scicence. Langmuir 10, 8–16 (1994)CrossRef
34.
go back to reference J.F. Li, J.Z. Wang, X. Liang, Z.J. Zhang, H.K. Liu, Y.T. Qian, S.L. Xiong, Hollow MnCo2O4 submicrospheres with multilevel interiors: from mesoporous spheres to yolk-in-double-shell structures. Appl. Mater. Interfaces 6, 24–30 (2014)CrossRef J.F. Li, J.Z. Wang, X. Liang, Z.J. Zhang, H.K. Liu, Y.T. Qian, S.L. Xiong, Hollow MnCo2O4 submicrospheres with multilevel interiors: from mesoporous spheres to yolk-in-double-shell structures. Appl. Mater. Interfaces 6, 24–30 (2014)CrossRef
35.
go back to reference A. Vu, Y.Q. Qian, A. Stein, Porous electrode materials for lithium-ion batteries-how to prepare them and what makes them special. Adv. Energy Mater. 2, 1056–1085 (2012)CrossRef A. Vu, Y.Q. Qian, A. Stein, Porous electrode materials for lithium-ion batteries-how to prepare them and what makes them special. Adv. Energy Mater. 2, 1056–1085 (2012)CrossRef
36.
go back to reference H. Tang, P.B. Gao, A. Xing, S. Tian, Z.H. Bao, One-pot low-temperature synthesis of a MnFe2O4–graphene composite for lithium ion battery applications. RSC Adv. 4, 28421–28425 (2014)CrossRef H. Tang, P.B. Gao, A. Xing, S. Tian, Z.H. Bao, One-pot low-temperature synthesis of a MnFe2O4–graphene composite for lithium ion battery applications. RSC Adv. 4, 28421–28425 (2014)CrossRef
37.
go back to reference L.F. Duan, Y.X. Wang, L.N. Wang, F.F. Zhang, L.M. Wang, Mesoporous MFe2O4 (M = Mn Co, and Ni) for anode materials of lithium-ion batteries: synthesis and electrochemical properties. Mater. Res. Bull. 61, 195–200 (2015)CrossRef L.F. Duan, Y.X. Wang, L.N. Wang, F.F. Zhang, L.M. Wang, Mesoporous MFe2O4 (M = Mn Co, and Ni) for anode materials of lithium-ion batteries: synthesis and electrochemical properties. Mater. Res. Bull. 61, 195–200 (2015)CrossRef
38.
go back to reference C.B. Wang, L.W. Yin, D. Xiang, Y.X. Qi, Uniform carbon layer coated Mn3O4 nanorod anodes with improved reversible capacity and cyclic stability for lithium ion batteries. Appl. Mater. Interfaces 4, 1636–1642 (2012)CrossRef C.B. Wang, L.W. Yin, D. Xiang, Y.X. Qi, Uniform carbon layer coated Mn3O4 nanorod anodes with improved reversible capacity and cyclic stability for lithium ion batteries. Appl. Mater. Interfaces 4, 1636–1642 (2012)CrossRef
39.
go back to reference L. Wang, Y.L. Zheng, X.H. Wang, S.H. Chen, F.G. Xu, L. Zuo, J.F. Wu, L.L. Sun, Z. Li, H.Q. Hou, Y.H. Song, Nitrogen-doped porous carbon/Co3O4 nanocomposites as anode materials for lithium-ion batteries. Appl. Mater. Interfaces 6, 7117–7125 (2014)CrossRef L. Wang, Y.L. Zheng, X.H. Wang, S.H. Chen, F.G. Xu, L. Zuo, J.F. Wu, L.L. Sun, Z. Li, H.Q. Hou, Y.H. Song, Nitrogen-doped porous carbon/Co3O4 nanocomposites as anode materials for lithium-ion batteries. Appl. Mater. Interfaces 6, 7117–7125 (2014)CrossRef
40.
go back to reference C.T. Cherian, J. Sundaramurthy, M.V. Reddy, P.S. Kumar, K. Mani, D. Pliszka, C.H. Sow, S. Ramakrishna, B.V.R. Chowdari, Morphologically robust NiFe2O4 nanofibers as high capacity Li-ion battery anode material. Appl. Mater. Interfaces 5, 9957–9963 (2013)CrossRef C.T. Cherian, J. Sundaramurthy, M.V. Reddy, P.S. Kumar, K. Mani, D. Pliszka, C.H. Sow, S. Ramakrishna, B.V.R. Chowdari, Morphologically robust NiFe2O4 nanofibers as high capacity Li-ion battery anode material. Appl. Mater. Interfaces 5, 9957–9963 (2013)CrossRef
41.
go back to reference X.M. Lin, X. Lv, L.M. Wang, F.F. Zhang, L.F. Duan, Preparation and characterization of MnFe2O4 in the solvothermal process: their magnetism and electrochemical properties. Mater. Res. Bull. 48, 2511–2516 (2013)CrossRef X.M. Lin, X. Lv, L.M. Wang, F.F. Zhang, L.F. Duan, Preparation and characterization of MnFe2O4 in the solvothermal process: their magnetism and electrochemical properties. Mater. Res. Bull. 48, 2511–2516 (2013)CrossRef
42.
go back to reference J.F. Li, S.L. Xiong, Y.R. Liu, Z.C. Ju, Y.T. Qian, High electrochemical performance of monodisperse NiCo2O4 mesoporous microspheres as an anode material for Li-ion batteries. Appl. Mater. Interfaces 5, 981–988 (2013)CrossRef J.F. Li, S.L. Xiong, Y.R. Liu, Z.C. Ju, Y.T. Qian, High electrochemical performance of monodisperse NiCo2O4 mesoporous microspheres as an anode material for Li-ion batteries. Appl. Mater. Interfaces 5, 981–988 (2013)CrossRef
43.
go back to reference A.K. Rai, J. Gim, T.V. Thi, D. Ahn, S.J. Cho, J. Kim, High rate capability and long cycle stability of Co3O4/CoFe2O4 nanocomposite as an anode material for high-performance secondary lithium ion batteries. J. Phys. Chem. C 118, 11234–11243 (2014)CrossRef A.K. Rai, J. Gim, T.V. Thi, D. Ahn, S.J. Cho, J. Kim, High rate capability and long cycle stability of Co3O4/CoFe2O4 nanocomposite as an anode material for high-performance secondary lithium ion batteries. J. Phys. Chem. C 118, 11234–11243 (2014)CrossRef
44.
go back to reference Y. Ding, Y.F. Yang, H.X. Shao, High capacity ZnFe2O4 anode material for lithium ion batteries. Electrochim. Acta 56, 9433–9438 (2011)CrossRef Y. Ding, Y.F. Yang, H.X. Shao, High capacity ZnFe2O4 anode material for lithium ion batteries. Electrochim. Acta 56, 9433–9438 (2011)CrossRef
45.
go back to reference L.Y. Wang, L.H. Zhuo, C. Zhang, F.Y. Zhao, Embedding NiCo2O4 nanoparticles into a 3DHPC assisted by CO2-expanded ethanol: a potential lithium-ion battery anode with high performance. Appl. Mater. Interfaces 6, 10813–10820 (2014)CrossRef L.Y. Wang, L.H. Zhuo, C. Zhang, F.Y. Zhao, Embedding NiCo2O4 nanoparticles into a 3DHPC assisted by CO2-expanded ethanol: a potential lithium-ion battery anode with high performance. Appl. Mater. Interfaces 6, 10813–10820 (2014)CrossRef
46.
go back to reference Y.L. Xiao, J.T. Zai, L.Q. Tao, B. Li, Q.Y. Han, C. Yu, X.F. Qian, MnFe2O4–graphene nanocomposites with enhanced performances as anode materials for Li-ion batteries. Phys. Chem. Chem. Phys. 15, 3939–3945 (2013)CrossRef Y.L. Xiao, J.T. Zai, L.Q. Tao, B. Li, Q.Y. Han, C. Yu, X.F. Qian, MnFe2O4–graphene nanocomposites with enhanced performances as anode materials for Li-ion batteries. Phys. Chem. Chem. Phys. 15, 3939–3945 (2013)CrossRef
47.
go back to reference W.H. Xu, L. Wang, J. Wang, G.P. Sheng, J.H. Liu, H.Q. Yu, X.J. Huang, Superparamagnetic mesoporous ferrite nanocrystal clusters for efficient removal of arsenite from water. CrystEngComm 15, 7895–7903 (2013)CrossRef W.H. Xu, L. Wang, J. Wang, G.P. Sheng, J.H. Liu, H.Q. Yu, X.J. Huang, Superparamagnetic mesoporous ferrite nanocrystal clusters for efficient removal of arsenite from water. CrystEngComm 15, 7895–7903 (2013)CrossRef
48.
go back to reference C.C. Fu, G.S. Li, D. Luo, X.S. Huang, J. Zheng, L.P. Li, One-step calcination-free synthesis of multicomponent spinel assembled microspheres for high-performance anodes of Li-ion batteries: a case study of MnCo2O4. Appl. Mater. Interfaces 6, 2439–2449 (2014)CrossRef C.C. Fu, G.S. Li, D. Luo, X.S. Huang, J. Zheng, L.P. Li, One-step calcination-free synthesis of multicomponent spinel assembled microspheres for high-performance anodes of Li-ion batteries: a case study of MnCo2O4. Appl. Mater. Interfaces 6, 2439–2449 (2014)CrossRef
49.
go back to reference Q.Q. Xiong, J.P. Tu, Y. Lu, J. Chen, Y.X. Yu, Y.Q. Qiao, X.L. Wang, C.D. Gu, Synthesis of hierarchical hollow-structured single-crystalline magnetite (Fe3O4) microspheres: the highly powerful storage versus lithium as an anode for lithium ion batteries. J. Phys. Chem. C 116, 6495–6502 (2012)CrossRef Q.Q. Xiong, J.P. Tu, Y. Lu, J. Chen, Y.X. Yu, Y.Q. Qiao, X.L. Wang, C.D. Gu, Synthesis of hierarchical hollow-structured single-crystalline magnetite (Fe3O4) microspheres: the highly powerful storage versus lithium as an anode for lithium ion batteries. J. Phys. Chem. C 116, 6495–6502 (2012)CrossRef
50.
go back to reference L. Hu, H. Zhong, X.R. Zheng, Y.M. Huang, P. Zhang, Q.W. Chen, CoMn2O4 spinel hierarchical microspheres assembled with porous nanosheets as stable anodes for lithium-ion batteries. Sci. Rep. 2, 986–994 (2012) L. Hu, H. Zhong, X.R. Zheng, Y.M. Huang, P. Zhang, Q.W. Chen, CoMn2O4 spinel hierarchical microspheres assembled with porous nanosheets as stable anodes for lithium-ion batteries. Sci. Rep. 2, 986–994 (2012)
51.
go back to reference J. Li, Q. Ru, S.J. Hu, D.W. Sun, B.B. Zhang, X.H. Hou, Spherical nano-SnSb/MCMB/carbon core–shell composite for high stability lithium ion battery anodes. Electrochim. Acta 113, 505–513 (2013)CrossRef J. Li, Q. Ru, S.J. Hu, D.W. Sun, B.B. Zhang, X.H. Hou, Spherical nano-SnSb/MCMB/carbon core–shell composite for high stability lithium ion battery anodes. Electrochim. Acta 113, 505–513 (2013)CrossRef
52.
go back to reference L.M. Yao, X.H. Hou, S.J. Hu, X.Q. Tang, X. Liu, Q. Ru, An excellent performance anode of ZnFe2O4/flake graphite composite for lithium ion battery. J. Alloys Compd. 585, 398–403 (2014)CrossRef L.M. Yao, X.H. Hou, S.J. Hu, X.Q. Tang, X. Liu, Q. Ru, An excellent performance anode of ZnFe2O4/flake graphite composite for lithium ion battery. J. Alloys Compd. 585, 398–403 (2014)CrossRef
53.
go back to reference X.Q. Tang, X.H. Hou, L.M. Yao, S.J. Hu, X. Liu, L.Z. Xiang, Mn-doped ZnFe2O4 nanoparticles with enhanced performances as anode materials for lithium ion batteries. Mater. Res. Bull. 57, 127–134 (2014)CrossRef X.Q. Tang, X.H. Hou, L.M. Yao, S.J. Hu, X. Liu, L.Z. Xiang, Mn-doped ZnFe2O4 nanoparticles with enhanced performances as anode materials for lithium ion batteries. Mater. Res. Bull. 57, 127–134 (2014)CrossRef
54.
go back to reference T. Şimşek, S. Akansel, S. Özcan, A. Ceylan, Synthesis of MnFe2O4 nanocrystals by wet-milling under atmospheric conditions. Ceram. Int. 40, 7953–7956 (2014)CrossRef T. Şimşek, S. Akansel, S. Özcan, A. Ceylan, Synthesis of MnFe2O4 nanocrystals by wet-milling under atmospheric conditions. Ceram. Int. 40, 7953–7956 (2014)CrossRef
55.
go back to reference X.L. Liu, E.S.G. Choo, A.S. Ahmed, L.Y. Zhao, Y. Yang, R.V. Ramanujan, J.M. Xue, D.D. Fan, H.M. Fan, J. Ding, Magnetic nanoparticle-loaded polymer nanospheres as magnetic hyperthermia agents. J. Mater. Chem. B 2, 120–128 (2014)CrossRef X.L. Liu, E.S.G. Choo, A.S. Ahmed, L.Y. Zhao, Y. Yang, R.V. Ramanujan, J.M. Xue, D.D. Fan, H.M. Fan, J. Ding, Magnetic nanoparticle-loaded polymer nanospheres as magnetic hyperthermia agents. J. Mater. Chem. B 2, 120–128 (2014)CrossRef
56.
go back to reference R. Chen, M.G. Christiansen, P. Anikeev, Maximizing hysteretic losses in magnetic ferrite nanoparticles via model-driven synthesis and materials optimization. NANO 7, 8990–9000 (2013) R. Chen, M.G. Christiansen, P. Anikeev, Maximizing hysteretic losses in magnetic ferrite nanoparticles via model-driven synthesis and materials optimization. NANO 7, 8990–9000 (2013)
Metadata
Title
Hollow microspheres and nanoparticles MnFe2O4 as superior anode materials for lithium ion batteries
Authors
Wanli Zhang
Xianhua Hou
Zanrui Lin
Lingmin Yao
Xinyu Wang
Yumei Gao
Shejun Hu
Publication date
20-08-2015
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 12/2015
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-015-3616-9

Other articles of this Issue 12/2015

Journal of Materials Science: Materials in Electronics 12/2015 Go to the issue