Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 17/2019

06-08-2019

Homostructured rutile TiO2 nanotree arrays thin film electrodes with nitrogen doping for enhanced photoelectrochemical performance

Authors: Xiangmei Ning, Jinliang Huang, Lihua Li, Yongjun Gu, Shuguo Jia, Ranfeng Qiu, Senlin Li, Bok H. Kim

Published in: Journal of Materials Science: Materials in Electronics | Issue 17/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Homostructured rutile TiO2 nanotree arrays thin films with nitrogen doping were synthesized on FTO glass substrates via a two-step hydrothermal method. The crystal structure and morphology of nanotree arrays thin films were characterized by means of X-ray diffractometer and field-emission scanning electron microscopy. Furthermore, the optical and photoelectrochemical performance of nitrogen doped TiO2 nanotree arrays thin films was analyzed respectively using diffuse reflectance spectroscopy, electrochemical impedance spectroscopy, linear sweep voltammetry, transient photocurrent and Mott–Schottky measurements. The results showed that nitrogen doping significantly affected the morphology of branched nanostructure, electron energy band structure, electron transportation and charge carrier recombination at the surface and interface of nanotrees. Optimized photoelectrochemical performance was achieved with relatively lower electron transport resistance and higher photocurrent density by the TiO2 nanotree arrays thin film with N/Ti molar ratio of 1, which can be mainly attributed to the formation of appropriate branched nanostructure to improve photoexcited electrons rate and new localized mid-gap states energy levels due to the nitrogen doping.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M.R. Mohammadi, R.R.M. Louca, D.J. Fray, M.E. Welland, Dye-sensitized solar cells based on a single layer deposition of TiO2 from a new formulation paste and their photovoltaic performance. Sol. Energy 86, 2654–2664 (2012)CrossRef M.R. Mohammadi, R.R.M. Louca, D.J. Fray, M.E. Welland, Dye-sensitized solar cells based on a single layer deposition of TiO2 from a new formulation paste and their photovoltaic performance. Sol. Energy 86, 2654–2664 (2012)CrossRef
2.
go back to reference T.B. Raju, J.V. Vaghasiya, M.A. Afroz, S.S. Soni, P.K. Iyer, Design, synthesis and DSSC performance of o-fluorine substituted phenylene spacer sensitizers: effect of TiO2 thickness variation. Phys. Chem. Chem. Phys. 18, 28485–28491 (2016)CrossRef T.B. Raju, J.V. Vaghasiya, M.A. Afroz, S.S. Soni, P.K. Iyer, Design, synthesis and DSSC performance of o-fluorine substituted phenylene spacer sensitizers: effect of TiO2 thickness variation. Phys. Chem. Chem. Phys. 18, 28485–28491 (2016)CrossRef
3.
go back to reference M.J. Yang, B. Ding, J.K. Lee, Surface electrochemical properties of niobium-doped titanium dioxide nanorods and their effect on carrier collection efficiency of dye sensitized solar cells. J. Power Sources 245, 301–307 (2014)CrossRef M.J. Yang, B. Ding, J.K. Lee, Surface electrochemical properties of niobium-doped titanium dioxide nanorods and their effect on carrier collection efficiency of dye sensitized solar cells. J. Power Sources 245, 301–307 (2014)CrossRef
4.
go back to reference K.S. Ikeda, N.A. Ludin, N.B. Ahmad Khairudin, B.V. Ghaffari, M.A. Mat-Teridi, M.A. Ibrahim, S. Sepeai, K. Sopian, A review of semiconductor materials as sensitizers for quantum dot-sensitized solar cells. Renew. Sustain. Energ. Rev. 37, 397–407 (2014)CrossRef K.S. Ikeda, N.A. Ludin, N.B. Ahmad Khairudin, B.V. Ghaffari, M.A. Mat-Teridi, M.A. Ibrahim, S. Sepeai, K. Sopian, A review of semiconductor materials as sensitizers for quantum dot-sensitized solar cells. Renew. Sustain. Energ. Rev. 37, 397–407 (2014)CrossRef
5.
go back to reference M.A. Basit, M.A. Abbas, E.S. Jung, I. Ali, D.W. Kim, J.H. Bang, T.J. Park, Enhanced PbS quantum dot loading on TiO2 photoanode using atomic-layer-deposited ZnS interfacial layer for quantum dot-sensitized solar cells. Mater. Chem. Phys. 220, 293–298 (2018)CrossRef M.A. Basit, M.A. Abbas, E.S. Jung, I. Ali, D.W. Kim, J.H. Bang, T.J. Park, Enhanced PbS quantum dot loading on TiO2 photoanode using atomic-layer-deposited ZnS interfacial layer for quantum dot-sensitized solar cells. Mater. Chem. Phys. 220, 293–298 (2018)CrossRef
6.
go back to reference D. Sharma, R. Jha, S. Kumar, Quantum dot sensitized solar cell: recent advances and future perspectives in photoanode. Sol. Energy Mater. Sol. Cells 155, 294–322 (2016)CrossRef D. Sharma, R. Jha, S. Kumar, Quantum dot sensitized solar cell: recent advances and future perspectives in photoanode. Sol. Energy Mater. Sol. Cells 155, 294–322 (2016)CrossRef
7.
go back to reference Y. Zhang, X.L. Zhong, D.G. Zhang, W.J. Duan, X.L. Lia, S.Z. Zheng, J.B. Wang, TiO2 nanorod arrays/ZnO nanosheets heterostructured photoanode for quantum-dot-sensitized solar cells. Sol. Energy 166, 371–378 (2018)CrossRef Y. Zhang, X.L. Zhong, D.G. Zhang, W.J. Duan, X.L. Lia, S.Z. Zheng, J.B. Wang, TiO2 nanorod arrays/ZnO nanosheets heterostructured photoanode for quantum-dot-sensitized solar cells. Sol. Energy 166, 371–378 (2018)CrossRef
8.
go back to reference N.J. Jeon, H. Na, E.H. Jung, T.Y. Yang, Y.G. Lee, G. Kim, H.W. Shin, S.I. Seok, J. Lee, J. Seo, A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nat. Energy 3, 682–689 (2018)CrossRef N.J. Jeon, H. Na, E.H. Jung, T.Y. Yang, Y.G. Lee, G. Kim, H.W. Shin, S.I. Seok, J. Lee, J. Seo, A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nat. Energy 3, 682–689 (2018)CrossRef
9.
go back to reference H.S. Kim, C.R. Lee, J.H. Im, K.B. Lee, T. Moehl, A. Marchioro, S.J. Moon, R. Humphry-Baker, J.H. Yum, J.E. Moser, M. Gratzel, N.G. Park, Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012)CrossRef H.S. Kim, C.R. Lee, J.H. Im, K.B. Lee, T. Moehl, A. Marchioro, S.J. Moon, R. Humphry-Baker, J.H. Yum, J.E. Moser, M. Gratzel, N.G. Park, Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012)CrossRef
10.
go back to reference W. Chen, Y.Z. Wu, Y.F. Yue, J. Liu, W.J. Zhang, X.D. Yang, H. Chen, E.B. Bi, I. Ashraful, M. Gratzel, L.Y. Han, Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 350, 944–948 (2015)CrossRef W. Chen, Y.Z. Wu, Y.F. Yue, J. Liu, W.J. Zhang, X.D. Yang, H. Chen, E.B. Bi, I. Ashraful, M. Gratzel, L.Y. Han, Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 350, 944–948 (2015)CrossRef
11.
go back to reference W.S. Yang, B.W. Park, E.H. Jung, N.J. Jeon, Y.C. Kim, D.U. Lee, S.S. Shin, J. Seo, E.K. Kim, J.H. Noh, S.I. Seok, Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 356, 1376–1379 (2017)CrossRef W.S. Yang, B.W. Park, E.H. Jung, N.J. Jeon, Y.C. Kim, D.U. Lee, S.S. Shin, J. Seo, E.K. Kim, J.H. Noh, S.I. Seok, Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 356, 1376–1379 (2017)CrossRef
12.
go back to reference N. Liu, X.Y. Chen, J.I. Zhang, J.W. Schwank, A review on TiO2-based nanotubes synthesized via hydrothermal method: formation mechanism, structure modification, and photocatalytic applications. Catal. Today 225, 34–51 (2014)CrossRef N. Liu, X.Y. Chen, J.I. Zhang, J.W. Schwank, A review on TiO2-based nanotubes synthesized via hydrothermal method: formation mechanism, structure modification, and photocatalytic applications. Catal. Today 225, 34–51 (2014)CrossRef
13.
go back to reference H. Ali, N. Ismail, M.S. Amin, M. Mekewi, Efficient photoelectrodes from anatase TiO2 nanotube arrays decorated with particles/rods/3D microflower rutile crystals for photoelectrochemical water splitting. J. Solid State Electrochem. 21, 1605–1613 (2017)CrossRef H. Ali, N. Ismail, M.S. Amin, M. Mekewi, Efficient photoelectrodes from anatase TiO2 nanotube arrays decorated with particles/rods/3D microflower rutile crystals for photoelectrochemical water splitting. J. Solid State Electrochem. 21, 1605–1613 (2017)CrossRef
14.
go back to reference Z. Lan, W.X. Wu, S. Zhang, L.F. Que, J.H. Wu, An efficient method to prepare high-performance dye-sensitized photoelectrodes using ordered TiO2 nanotube arrays and TiO2 quantum dot blocking layers. J. Solid State Electrochem. 20, 2643–2650 (2016)CrossRef Z. Lan, W.X. Wu, S. Zhang, L.F. Que, J.H. Wu, An efficient method to prepare high-performance dye-sensitized photoelectrodes using ordered TiO2 nanotube arrays and TiO2 quantum dot blocking layers. J. Solid State Electrochem. 20, 2643–2650 (2016)CrossRef
15.
go back to reference A.Q.D. Faisal, Synthesis and characteristics study of TiO2 nanowires and nanoflowers on FTO/glass and glass substrates via hydrothermal technique. J. Mater. Sci. 26, 317–321 (2015) A.Q.D. Faisal, Synthesis and characteristics study of TiO2 nanowires and nanoflowers on FTO/glass and glass substrates via hydrothermal technique. J. Mater. Sci. 26, 317–321 (2015)
16.
go back to reference P.A. Sedach, T.J. Gordon, S.Y. Sayed, T. Furstenhaupt, R.H. Sui, T. Baumgartner, C.P. Berlinguette, Solution growth of anatase TiO2 nanowires from transparent conducting glass substrates. J. Mater. Chem. 20, 5063–5069 (2010)CrossRef P.A. Sedach, T.J. Gordon, S.Y. Sayed, T. Furstenhaupt, R.H. Sui, T. Baumgartner, C.P. Berlinguette, Solution growth of anatase TiO2 nanowires from transparent conducting glass substrates. J. Mater. Chem. 20, 5063–5069 (2010)CrossRef
17.
go back to reference L.T. Tseng, X. Luo, N. Bao, J. Ding, S. Li, J.B. Yi, Structures and properties of transition-metal-doped TiO2 nanorods. Mater. Lett. 170, 142–146 (2016)CrossRef L.T. Tseng, X. Luo, N. Bao, J. Ding, S. Li, J.B. Yi, Structures and properties of transition-metal-doped TiO2 nanorods. Mater. Lett. 170, 142–146 (2016)CrossRef
18.
go back to reference W. Liu, L. Chu, R.Y. Hu, R. Zhang, Y.H. Ma, Y. Pu, J. Zhang, J.P. Yang, X.A. Li, W. Huang, Diameter engineering on TiO2 nanorod arrays for improved hole-conductor free perovskite solar cells. Sol. Energy 166, 42–49 (2018)CrossRef W. Liu, L. Chu, R.Y. Hu, R. Zhang, Y.H. Ma, Y. Pu, J. Zhang, J.P. Yang, X.A. Li, W. Huang, Diameter engineering on TiO2 nanorod arrays for improved hole-conductor free perovskite solar cells. Sol. Energy 166, 42–49 (2018)CrossRef
19.
go back to reference M. Yu, Y.Z. Long, B. Sun, Z.Y. Fan, Recent advances in solar cells based on one-dimensional nanostructure arrays. Nanoscale 4, 2783–2796 (2012)CrossRef M. Yu, Y.Z. Long, B. Sun, Z.Y. Fan, Recent advances in solar cells based on one-dimensional nanostructure arrays. Nanoscale 4, 2783–2796 (2012)CrossRef
20.
go back to reference H.S. Kim, J.W. Lee, N. Yantara, P.P. Boix, S.A. Kulkarni, S. Mhaisalkar, M. Gratzel, N.G. Park, High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer. Nano Lett. 13, 2412–2417 (2013)CrossRef H.S. Kim, J.W. Lee, N. Yantara, P.P. Boix, S.A. Kulkarni, S. Mhaisalkar, M. Gratzel, N.G. Park, High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer. Nano Lett. 13, 2412–2417 (2013)CrossRef
21.
go back to reference H. Wang, Y.S. Bai, Q. Wu, W. Zhou, H. Zhang, J.H. Li, L. Guo, Rutile TiO2 nano-branched arrays on FTO for dye-sensitized solar cells. Phys. Chem. Chem. Phys. 13, 7008–7013 (2011)CrossRef H. Wang, Y.S. Bai, Q. Wu, W. Zhou, H. Zhang, J.H. Li, L. Guo, Rutile TiO2 nano-branched arrays on FTO for dye-sensitized solar cells. Phys. Chem. Chem. Phys. 13, 7008–7013 (2011)CrossRef
22.
go back to reference L.L. Fang, X.Z. Wang, Z. Wang, Z.Z. Gong, L.P. Jin, J. Li, M. Zhang, G. He, X.S. Jiang, Z.Q. Sun, Heterostructured TiO2 nanotree arrays with silver quantum dots loading for enhanced photoelectrochemical properties. J. Alloys Compd. 730, 110–118 (2018)CrossRef L.L. Fang, X.Z. Wang, Z. Wang, Z.Z. Gong, L.P. Jin, J. Li, M. Zhang, G. He, X.S. Jiang, Z.Q. Sun, Heterostructured TiO2 nanotree arrays with silver quantum dots loading for enhanced photoelectrochemical properties. J. Alloys Compd. 730, 110–118 (2018)CrossRef
23.
go back to reference A. Hu, J.Y. Wang, S.H. Qu, Z.C. Zhong, S. Wang, G.J. Liang, Hydrothermal growth of branched hierarchical TiO2 nanorod arrays for application in dye-sensitized solar cells. J. Mater. Sci. 28, 3415–3422 (2017) A. Hu, J.Y. Wang, S.H. Qu, Z.C. Zhong, S. Wang, G.J. Liang, Hydrothermal growth of branched hierarchical TiO2 nanorod arrays for application in dye-sensitized solar cells. J. Mater. Sci. 28, 3415–3422 (2017)
24.
go back to reference X. Sheng, D.Q. He, J. Yang, K. Zhu, X.J. Feng, Oriented assembled TiO2 hierarchical nanowire arrays with fast electron transport properties. Nano Lett. 14, 1848–1852 (2014)CrossRef X. Sheng, D.Q. He, J. Yang, K. Zhu, X.J. Feng, Oriented assembled TiO2 hierarchical nanowire arrays with fast electron transport properties. Nano Lett. 14, 1848–1852 (2014)CrossRef
25.
go back to reference S.J. Kwon, H.B. Im, J.E. Nam, J.K. Kang, T.S. Hwang, K.B. Yi, Hydrothermal synthesis of rutile-anatase TiO2 nanobranched arrays for efficient dye-sensitized solar cells. Appl. Surf. Sci. 320, 487–493 (2014)CrossRef S.J. Kwon, H.B. Im, J.E. Nam, J.K. Kang, T.S. Hwang, K.B. Yi, Hydrothermal synthesis of rutile-anatase TiO2 nanobranched arrays for efficient dye-sensitized solar cells. Appl. Surf. Sci. 320, 487–493 (2014)CrossRef
26.
go back to reference W.Q. Wu, H.L. Feng, H.Y. Chen, D.B. Kuang, C.Y. Su, Recent advances in hierarchically three-dimensional titanium dioxide nanotree arrays for high-performance solar cells. J. Mater. Chem. A 5, 12699–12717 (2017)CrossRef W.Q. Wu, H.L. Feng, H.Y. Chen, D.B. Kuang, C.Y. Su, Recent advances in hierarchically three-dimensional titanium dioxide nanotree arrays for high-performance solar cells. J. Mater. Chem. A 5, 12699–12717 (2017)CrossRef
27.
go back to reference M.J. Yang, R. Guo, K. Kadel, Y.Y. Liu, K. O’Shea, R. Bone, X.W. Wang, J. He, W.Z. Li, Improved charge transport of Nb-doped TiO2 nanorods in methylammonium lead iodide bromide perovskite solar cell. J. Mater. Chem. A 2, 19616–19622 (2014)CrossRef M.J. Yang, R. Guo, K. Kadel, Y.Y. Liu, K. O’Shea, R. Bone, X.W. Wang, J. He, W.Z. Li, Improved charge transport of Nb-doped TiO2 nanorods in methylammonium lead iodide bromide perovskite solar cell. J. Mater. Chem. A 2, 19616–19622 (2014)CrossRef
28.
go back to reference S.K. Pathak, A. Abate, P. Ruckdeschel, B. Roose, K.C. Gödel, Y. Vaynzof, A. Santhala, S.I. Watanabe, D.J. Hollman, N. Noel, A. Sepe, U. Wiesner, R. Friend, H.J. Snaith, U. Steiner, Performance and stability enhancement of dye-sensitized and perovskite solar cells by Al doping of TiO2. Adv. Funct. Mater. 24, 6046–6055 (2014)CrossRef S.K. Pathak, A. Abate, P. Ruckdeschel, B. Roose, K.C. Gödel, Y. Vaynzof, A. Santhala, S.I. Watanabe, D.J. Hollman, N. Noel, A. Sepe, U. Wiesner, R. Friend, H.J. Snaith, U. Steiner, Performance and stability enhancement of dye-sensitized and perovskite solar cells by Al doping of TiO2. Adv. Funct. Mater. 24, 6046–6055 (2014)CrossRef
29.
go back to reference Q.P. Liu, Photovoltaic performance improvement of dye-sensitized solar cells based on Mg-doped TiO2 thin films. Electrochim. Acta 129, 459–462 (2014)CrossRef Q.P. Liu, Photovoltaic performance improvement of dye-sensitized solar cells based on Mg-doped TiO2 thin films. Electrochim. Acta 129, 459–462 (2014)CrossRef
30.
go back to reference J. Song, S.P. Li, Y.L. Zhao, J. Yuan, Y. Zhu, Y. Fang, L. Zhu, X.Q. Gu, Y.H. Qiang, Performance enhancement of perovskite solar cells by doping TiO2 blocking layer with group VB elements. J. Alloys Compd. 694, 1232–1238 (2017)CrossRef J. Song, S.P. Li, Y.L. Zhao, J. Yuan, Y. Zhu, Y. Fang, L. Zhu, X.Q. Gu, Y.H. Qiang, Performance enhancement of perovskite solar cells by doping TiO2 blocking layer with group VB elements. J. Alloys Compd. 694, 1232–1238 (2017)CrossRef
31.
go back to reference X.Q. Zhang, Y.P. Wu, Y. Huang, Z.H. Zhou, S. Shen, Reduction of oxygen vacancy and enhanced efficiency of perovskite solar cell by doping fluorine into TiO2. J. Alloys Compd. 681, 191–196 (2016)CrossRef X.Q. Zhang, Y.P. Wu, Y. Huang, Z.H. Zhou, S. Shen, Reduction of oxygen vacancy and enhanced efficiency of perovskite solar cell by doping fluorine into TiO2. J. Alloys Compd. 681, 191–196 (2016)CrossRef
32.
go back to reference Q. Sun, Y. Hong, Q.H. Liu, M. Zhang, L.Y. Yu, L.F. Dong, Growth of nitrogen-doped rutile TiO2 nanorod arrays and their improved performance in all-solid-state solar cells. Mater. Res. Express 4, 075023 (2017)CrossRef Q. Sun, Y. Hong, Q.H. Liu, M. Zhang, L.Y. Yu, L.F. Dong, Growth of nitrogen-doped rutile TiO2 nanorod arrays and their improved performance in all-solid-state solar cells. Mater. Res. Express 4, 075023 (2017)CrossRef
33.
go back to reference W. Guo, Y.H. Shen, L.Q. Wu, Y.R. Gao, T.L. Ma, Effect of N dopant amount on the performance of dye-sensitized solar cells based on N-doped TiO2 electrodes. J. Phys. Chem. C 115, 21494–21499 (2011)CrossRef W. Guo, Y.H. Shen, L.Q. Wu, Y.R. Gao, T.L. Ma, Effect of N dopant amount on the performance of dye-sensitized solar cells based on N-doped TiO2 electrodes. J. Phys. Chem. C 115, 21494–21499 (2011)CrossRef
34.
go back to reference H.J. Tian, L.H. Hu, W.X. Li, J. Sheng, S.Y. Xua, S.Y. Dai, A facile synthesis of anatase N, B codoped TiO2 anodes for improved-performance dye-sensitized solar cells. J. Mater. Chem. 21, 7074–7077 (2011)CrossRef H.J. Tian, L.H. Hu, W.X. Li, J. Sheng, S.Y. Xua, S.Y. Dai, A facile synthesis of anatase N, B codoped TiO2 anodes for improved-performance dye-sensitized solar cells. J. Mater. Chem. 21, 7074–7077 (2011)CrossRef
35.
go back to reference R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269–271 (2001)CrossRef R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269–271 (2001)CrossRef
36.
go back to reference T. Ma, M. Akiyama, E. Abe, I. Imai, High-efficiency dye-sensitized solar cell based on a nitrogen-doped nanostructured titania electrode. Nano Lett. 5, 2543–2547 (2005)CrossRef T. Ma, M. Akiyama, E. Abe, I. Imai, High-efficiency dye-sensitized solar cell based on a nitrogen-doped nanostructured titania electrode. Nano Lett. 5, 2543–2547 (2005)CrossRef
37.
go back to reference H.J. Tian, L.H. Hu, C.N. Zhang, W.Q. Liu, Y. Huang, L. Mo, L. Guo, J. Sheng, S.Y. Dai, Retarded charge recombination in dye-sensitized nitrogen-doped TiO2 solar cells. J. Phys. Chem. C 114, 1627–1632 (2010)CrossRef H.J. Tian, L.H. Hu, C.N. Zhang, W.Q. Liu, Y. Huang, L. Mo, L. Guo, J. Sheng, S.Y. Dai, Retarded charge recombination in dye-sensitized nitrogen-doped TiO2 solar cells. J. Phys. Chem. C 114, 1627–1632 (2010)CrossRef
38.
go back to reference J. Zhang, Q. Sun, J. Zheng, X. Zhang, Y. Cui, P. Wang, W. Li, Y. Zhu, The characterization of nitrogen doped TiO2 photoanodes and its application in the dye sensitized solar cells. J. Renew. Sustain. Energy 3, 033108 (2011)CrossRef J. Zhang, Q. Sun, J. Zheng, X. Zhang, Y. Cui, P. Wang, W. Li, Y. Zhu, The characterization of nitrogen doped TiO2 photoanodes and its application in the dye sensitized solar cells. J. Renew. Sustain. Energy 3, 033108 (2011)CrossRef
39.
go back to reference Y.N. Xie, N. Huang, Y.M. Liu, W.W. Sun, H.F. Mehnane, S.J. You, L.Y. Wang, W. Liu, S.S. Guo, X.Z. Zhao, Photoelectrodes modification by N doping for dye sensitized solar cells. Electrochim. Acta 93, 202–206 (2013)CrossRef Y.N. Xie, N. Huang, Y.M. Liu, W.W. Sun, H.F. Mehnane, S.J. You, L.Y. Wang, W. Liu, S.S. Guo, X.Z. Zhao, Photoelectrodes modification by N doping for dye sensitized solar cells. Electrochim. Acta 93, 202–206 (2013)CrossRef
40.
go back to reference M. Motlak, M.S. Akhtar, N.A.M. Barakat, A.M. Hamza, O.B. Yang, H.Y. Kim, High-efficiency electrode based on nitrogen-doped TiO2 nanofibers for dye-sensitized solar cells. Electrochim. Acta 115, 493–498 (2014)CrossRef M. Motlak, M.S. Akhtar, N.A.M. Barakat, A.M. Hamza, O.B. Yang, H.Y. Kim, High-efficiency electrode based on nitrogen-doped TiO2 nanofibers for dye-sensitized solar cells. Electrochim. Acta 115, 493–498 (2014)CrossRef
41.
go back to reference S. Shiva, M. Raheleh, I. Azam, T. Nima, A new strategy on utilizing nitrogen doped TiO2 in nanostructured solar cells: embedded multifunctional N-TiO2 scattering particles in mesoporous photoanode. Mater. Res. Bull. 72, 64–69 (2015)CrossRef S. Shiva, M. Raheleh, I. Azam, T. Nima, A new strategy on utilizing nitrogen doped TiO2 in nanostructured solar cells: embedded multifunctional N-TiO2 scattering particles in mesoporous photoanode. Mater. Res. Bull. 72, 64–69 (2015)CrossRef
42.
go back to reference R. Kushwaha, R. Chauhan, P. Srivastava, L. Bahadur, Synthesis and characterization of nitrogen-doped TiO2 samples and their application as thin film electrodes in dye-sensitized solar cells. J. Solid State Electrochem. 19, 507–517 (2015)CrossRef R. Kushwaha, R. Chauhan, P. Srivastava, L. Bahadur, Synthesis and characterization of nitrogen-doped TiO2 samples and their application as thin film electrodes in dye-sensitized solar cells. J. Solid State Electrochem. 19, 507–517 (2015)CrossRef
43.
go back to reference Z.L. Zhang, J.F. Li, X.L. Wang, J.Q. Qin, W.J. Shi, Y.F. Liu, H.P. Gao, Y.L. Mao, Enhancement of perovskite solar cells efficiency using N-doped TiO2 nanorod arrays as electron transfer layer. Nanoscale Res. Lett. 12, 43–48 (2017)CrossRef Z.L. Zhang, J.F. Li, X.L. Wang, J.Q. Qin, W.J. Shi, Y.F. Liu, H.P. Gao, Y.L. Mao, Enhancement of perovskite solar cells efficiency using N-doped TiO2 nanorod arrays as electron transfer layer. Nanoscale Res. Lett. 12, 43–48 (2017)CrossRef
44.
go back to reference V. Jordan, U. Javornik, J. Plavec, A. Podgornik, A. Rečnik, Self-assembly of multilevel branched rutile-type TiO2 structures via oriented lateral and twin attachment. Sci. Rep. 6, 24216 (2016)CrossRef V. Jordan, U. Javornik, J. Plavec, A. Podgornik, A. Rečnik, Self-assembly of multilevel branched rutile-type TiO2 structures via oriented lateral and twin attachment. Sci. Rep. 6, 24216 (2016)CrossRef
45.
go back to reference D.S. Li, F. Soberanis, J. Fu, W.T. Hou, J.Z. Wu, D. Kisailus, Growth mechanism of highly branched titanium dioxide nanowires via oriented attachment. Cryst. Growth Des. 13, 422–428 (2013)CrossRef D.S. Li, F. Soberanis, J. Fu, W.T. Hou, J.Z. Wu, D. Kisailus, Growth mechanism of highly branched titanium dioxide nanowires via oriented attachment. Cryst. Growth Des. 13, 422–428 (2013)CrossRef
46.
go back to reference Y. Cong, J.L. Zhang, F. Chen, M. Anpo, Synthesis and characterization of nitrogen-doped TiO2 nanophotocatalyst with high visible light activity. J. Phys. Chem. C 111, 6976–6982 (2007)CrossRef Y. Cong, J.L. Zhang, F. Chen, M. Anpo, Synthesis and characterization of nitrogen-doped TiO2 nanophotocatalyst with high visible light activity. J. Phys. Chem. C 111, 6976–6982 (2007)CrossRef
47.
go back to reference D.H. Wang, L. Jia, X.L. Wu, L.Q. Lu, A.W. Xu, One-step hydrothermal synthesis of N-doped TiO2/C nanocomposites with high visible light photocatalytic activity. Nanoscale 4, 576–584 (2012)CrossRef D.H. Wang, L. Jia, X.L. Wu, L.Q. Lu, A.W. Xu, One-step hydrothermal synthesis of N-doped TiO2/C nanocomposites with high visible light photocatalytic activity. Nanoscale 4, 576–584 (2012)CrossRef
48.
go back to reference X.S. Zhou, F. Peng, H.J. Wang, H. Yu, Boron and nitrogen-codoped TiO2 nanorods: synthesis, characterization, and photoelectrochemical properties. J. Solid State Chem. 184, 3002–3007 (2011)CrossRef X.S. Zhou, F. Peng, H.J. Wang, H. Yu, Boron and nitrogen-codoped TiO2 nanorods: synthesis, characterization, and photoelectrochemical properties. J. Solid State Chem. 184, 3002–3007 (2011)CrossRef
49.
go back to reference S. Singh, V. Sharma, D. Saini, S. Shekhawat, K. Asokan, K. Sachdev, Influence of 100 keV Ar+ implantation on electrical and optical properties of TiO2/Ag/TiO2 multilayer films. Mater. Sci. Semicond. Process. 75, 18–25 (2018)CrossRef S. Singh, V. Sharma, D. Saini, S. Shekhawat, K. Asokan, K. Sachdev, Influence of 100 keV Ar+ implantation on electrical and optical properties of TiO2/Ag/TiO2 multilayer films. Mater. Sci. Semicond. Process. 75, 18–25 (2018)CrossRef
50.
go back to reference M. Pelaeza, P. Falarasb, V. Likodimosb, A.G. Kontosb, A.A. de la Cruzc, K. O’shead, D.D. Dionysiou, Synthesis, structural characterization and evaluation of sol-gel-based NF-TiO2 films with visible light-photoactivation for the removal of microcystin-LR. Appl. Catal. B 99, 378–387 (2010)CrossRef M. Pelaeza, P. Falarasb, V. Likodimosb, A.G. Kontosb, A.A. de la Cruzc, K. O’shead, D.D. Dionysiou, Synthesis, structural characterization and evaluation of sol-gel-based NF-TiO2 films with visible light-photoactivation for the removal of microcystin-LR. Appl. Catal. B 99, 378–387 (2010)CrossRef
51.
go back to reference L.S. Yoong, F.K. Chong, B.K. Dutta, Development of copper-doped TiO2 photocatalyst for hydrogen production under visible light. Energy 34, 1652–1661 (2009)CrossRef L.S. Yoong, F.K. Chong, B.K. Dutta, Development of copper-doped TiO2 photocatalyst for hydrogen production under visible light. Energy 34, 1652–1661 (2009)CrossRef
52.
go back to reference G.D. Yang, Z. Jiang, H.H. Shi, T.C. Xiao, Z.F. Yan, Preparation of highly visible-light active N-doped TiO2 photocatalyst. J. Mater. Chem. 20, 5301–5309 (2010)CrossRef G.D. Yang, Z. Jiang, H.H. Shi, T.C. Xiao, Z.F. Yan, Preparation of highly visible-light active N-doped TiO2 photocatalyst. J. Mater. Chem. 20, 5301–5309 (2010)CrossRef
53.
go back to reference D. Guerrero-Araque, P. Acevedo-Peña, D. Ramírez-Ortega, H.A. Calderon, R. Gómez, Charge transfer processes involved in photocatalytic hydrogen production over CuO/ZrO2-TiO2 materials. Int. J. Hydrogen Energy 42, 9744–9753 (2017)CrossRef D. Guerrero-Araque, P. Acevedo-Peña, D. Ramírez-Ortega, H.A. Calderon, R. Gómez, Charge transfer processes involved in photocatalytic hydrogen production over CuO/ZrO2-TiO2 materials. Int. J. Hydrogen Energy 42, 9744–9753 (2017)CrossRef
54.
go back to reference C. Fàbrega, T. Andreu, A. Tarancón, C. Flox, A. Morata, L. Calvo-Barriob, J.R. Morante, Optimization of surface charge transfer processes on rutile TiO2 nanorods photoanodes for water splitting. Int. J. Hydrogen Energy 38, 2979–2985 (2013)CrossRef C. Fàbrega, T. Andreu, A. Tarancón, C. Flox, A. Morata, L. Calvo-Barriob, J.R. Morante, Optimization of surface charge transfer processes on rutile TiO2 nanorods photoanodes for water splitting. Int. J. Hydrogen Energy 38, 2979–2985 (2013)CrossRef
55.
go back to reference C. Pablos, J. Marugán, R. van Grieken, P.S.M. Dunlop, J.W.J. Hamilton, D.D. Dionysiou, J.A. Byrne, Electrochemical enhancement of photocatalytic disinfection on aligned TiO2 and nitrogen doped TiO2 nanotubes. Molecules 22, 704 (2017)CrossRef C. Pablos, J. Marugán, R. van Grieken, P.S.M. Dunlop, J.W.J. Hamilton, D.D. Dionysiou, J.A. Byrne, Electrochemical enhancement of photocatalytic disinfection on aligned TiO2 and nitrogen doped TiO2 nanotubes. Molecules 22, 704 (2017)CrossRef
56.
go back to reference Y.Q. Dai, Y.B. Sun, J. Yao, D.D. Ling, Y.M. Wang, H. Long, X.T. Wang, B.P. Lin, T.Y.H. Zeng, Y.M. Sun, Graphene-wrapped TiO2 nanofibers with effective interfacial coupling as ultrafast electron transfer bridges in novel photoanodes. J. Mater. Chem. A 2, 1060–1067 (2014)CrossRef Y.Q. Dai, Y.B. Sun, J. Yao, D.D. Ling, Y.M. Wang, H. Long, X.T. Wang, B.P. Lin, T.Y.H. Zeng, Y.M. Sun, Graphene-wrapped TiO2 nanofibers with effective interfacial coupling as ultrafast electron transfer bridges in novel photoanodes. J. Mater. Chem. A 2, 1060–1067 (2014)CrossRef
57.
go back to reference J.A. Byrne, B.R. Eggins, Photoelectrochemistry of oxalate on particulate TiO2 electrodes. J. Electroanal. Chem. 457, 61–72 (1998)CrossRef J.A. Byrne, B.R. Eggins, Photoelectrochemistry of oxalate on particulate TiO2 electrodes. J. Electroanal. Chem. 457, 61–72 (1998)CrossRef
58.
go back to reference M.M. Han, J.H. Jia, 3D Bi2S3/TiO2 cross-linked heterostructure: an efficient strategy to improve charge transport and separation for high photoelectrochemical performance. J. Power Sources 329, 23–30 (2016)CrossRef M.M. Han, J.H. Jia, 3D Bi2S3/TiO2 cross-linked heterostructure: an efficient strategy to improve charge transport and separation for high photoelectrochemical performance. J. Power Sources 329, 23–30 (2016)CrossRef
59.
go back to reference M. Radecka, M. Rekas, A. Trenczek-Zajac, K. Zakrzewska, Importance of the band gap energy and flat band potential for application of modified TiO2 photoanodes in water photolysis. J. Power Sources 181, 46–55 (2008)CrossRef M. Radecka, M. Rekas, A. Trenczek-Zajac, K. Zakrzewska, Importance of the band gap energy and flat band potential for application of modified TiO2 photoanodes in water photolysis. J. Power Sources 181, 46–55 (2008)CrossRef
60.
go back to reference H. Irie, S. Washizuka, Y. Watanabe, T. Kako, K. Hashimoto, Photoinduced hydrophilic and electrochemical properties of nitrogen-doped TiO2 films. J. Electrochem. Soc. 152, E351–E356 (2005)CrossRef H. Irie, S. Washizuka, Y. Watanabe, T. Kako, K. Hashimoto, Photoinduced hydrophilic and electrochemical properties of nitrogen-doped TiO2 films. J. Electrochem. Soc. 152, E351–E356 (2005)CrossRef
61.
go back to reference Y.D. Duan, N.Q. Fu, Q.P. Liu, Y.Y. Fang, X.W. Zhou, J.B. Zhang, Y. Lin, Sn-doped TiO2 photoanode for dye-sensitized solar cells. J. Phys. Chem. C 116, 8888–8893 (2012)CrossRef Y.D. Duan, N.Q. Fu, Q.P. Liu, Y.Y. Fang, X.W. Zhou, J.B. Zhang, Y. Lin, Sn-doped TiO2 photoanode for dye-sensitized solar cells. J. Phys. Chem. C 116, 8888–8893 (2012)CrossRef
62.
go back to reference E.L. Castellanos-Leal, P. Acevedo-Peña, V.R. Güiza-Argüello, E.M. Córdoba-Tuta, N and F codoped TiO2 thin films on stainless steel for photoelectrocatalytic removal of cyanide ions in aqueous solutions. Mater. Res. 20, 487–495 (2017)CrossRef E.L. Castellanos-Leal, P. Acevedo-Peña, V.R. Güiza-Argüello, E.M. Córdoba-Tuta, N and F codoped TiO2 thin films on stainless steel for photoelectrocatalytic removal of cyanide ions in aqueous solutions. Mater. Res. 20, 487–495 (2017)CrossRef
Metadata
Title
Homostructured rutile TiO2 nanotree arrays thin film electrodes with nitrogen doping for enhanced photoelectrochemical performance
Authors
Xiangmei Ning
Jinliang Huang
Lihua Li
Yongjun Gu
Shuguo Jia
Ranfeng Qiu
Senlin Li
Bok H. Kim
Publication date
06-08-2019
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 17/2019
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-019-01973-y

Other articles of this Issue 17/2019

Journal of Materials Science: Materials in Electronics 17/2019 Go to the issue