Skip to main content
Top
Published in: Rare Metals 5/2021

01-04-2020

Hot corrosion mechanism of yttria-stabilized zirconia powder in the presence of molten Na2SO4 + V2O5 salts

Authors: Jhonattan De la Roche, Juan Manuel Alvarado-Orozco, Alejandro Toro

Published in: Rare Metals | Issue 5/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The hot corrosion behavior of yttria-stabilized zirconia (YSZ) powder specimens exposed to Na2SO4/V2O5 salts mixtures at high temperature was evaluated. Initial tests were carried out at 1000 °C for 10 h, the salt concentrations varied from 0.1 wt% to 1.00 wt%, and the Na2SO4/V2O5 mass ratios were between 0.20 and 0.44 following a factorial design 22. X-ray diffraction (XRD) analyses of the tested samples showed with a confidence of 95% that the mixture composed of 32 wt% Na2SO4 + 68 wt% V2O5, and 1.00 wt% salt concentration led to high destabilization of the t′-YSZ phase and formation of YVO4 products. A second set of experiments were conducted to assess the influence of temperature on the hot corrosion response of the YSZ in the range between 490 and 1100 °C. Thermogravimetric analysis (TGA) experiments and Rietveld adjustments of XRD patterns showed that the mass loss of the samples varied with testing temperature and also that the major destabilization of tetragonal phase occurred at 900 °C.

Graphic abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
[1]
go back to reference Clarke DR, Oechsner M, Padture NP. Thermal-barrier coatings for more efficient gas-turbine engines. MRS Bull. 2012;37(10):891.CrossRef Clarke DR, Oechsner M, Padture NP. Thermal-barrier coatings for more efficient gas-turbine engines. MRS Bull. 2012;37(10):891.CrossRef
[2]
go back to reference Darolia R. Thermal barrier coatings technology: critical review, progress update, remaining challenges and prospects. Int Mater Rev. 2013;58(6):315.CrossRef Darolia R. Thermal barrier coatings technology: critical review, progress update, remaining challenges and prospects. Int Mater Rev. 2013;58(6):315.CrossRef
[3]
go back to reference Padture NP, Gell M, Jordan EH. Thermal barrier coatings for gas-turbine engine applications. Science. 2002;296:280.CrossRef Padture NP, Gell M, Jordan EH. Thermal barrier coatings for gas-turbine engine applications. Science. 2002;296:280.CrossRef
[4]
go back to reference Chen LB. Yttria-stabilized zirconia thermal barrier coatings: a review. Surf Rev Lett. 2006;13:535.CrossRef Chen LB. Yttria-stabilized zirconia thermal barrier coatings: a review. Surf Rev Lett. 2006;13:535.CrossRef
[5]
go back to reference Loganathan A, Gandhi AS. Toughness evolution in Gd- and Y-stabilized zirconia thermal barrier materials upon high-temperature exposure. J Mater Sci. 2017;52(12):7199.CrossRef Loganathan A, Gandhi AS. Toughness evolution in Gd- and Y-stabilized zirconia thermal barrier materials upon high-temperature exposure. J Mater Sci. 2017;52(12):7199.CrossRef
[6]
go back to reference Evans AG, Clarke DR, Levi CG. The influence of oxides on the performance of advanced gas turbines. J Eur Ceram Soc. 2008;28:1405.CrossRef Evans AG, Clarke DR, Levi CG. The influence of oxides on the performance of advanced gas turbines. J Eur Ceram Soc. 2008;28:1405.CrossRef
[7]
go back to reference Cao XQ, Vassen R, Stoever D. Ceramic materials for thermal barrier coatings. J Eur Ceram Soc. 2004;24(1):1.CrossRef Cao XQ, Vassen R, Stoever D. Ceramic materials for thermal barrier coatings. J Eur Ceram Soc. 2004;24(1):1.CrossRef
[8]
go back to reference Witz G, Shklover V, Steurer W. Phase evolution in yttria-stabilized zirconia thermal barrier coatings studied by rietveld refinement of X-ray powder diffraction patterns. J Am Ceram Soc. 2007;90:2935.CrossRef Witz G, Shklover V, Steurer W. Phase evolution in yttria-stabilized zirconia thermal barrier coatings studied by rietveld refinement of X-ray powder diffraction patterns. J Am Ceram Soc. 2007;90:2935.CrossRef
[9]
go back to reference Katamura J, Sakuma T. Computer simulation of the microstructural evolution during the diffusionless cubic-to-tetragonal transition in the system ZrO2–Y2O3. Acta Mater. 1998;46:1569.CrossRef Katamura J, Sakuma T. Computer simulation of the microstructural evolution during the diffusionless cubic-to-tetragonal transition in the system ZrO2–Y2O3. Acta Mater. 1998;46:1569.CrossRef
[10]
go back to reference Qureshi IN, Shahid M, Nusair Khan A. Hot corrosion of yttria-stabilized zirconia coating, in a mixture of sodium sulfate and vanadium oxide at 950 °C. J Therm Spray Technol. 2016;25(3):567.CrossRef Qureshi IN, Shahid M, Nusair Khan A. Hot corrosion of yttria-stabilized zirconia coating, in a mixture of sodium sulfate and vanadium oxide at 950 °C. J Therm Spray Technol. 2016;25(3):567.CrossRef
[11]
go back to reference Reddy N, Gandhi AS. Molten salt attack on t′ yttria-stabilized zirconia by dissolution and precipitation. J Eur Ceram Soc. 2013;33(10):1867.CrossRef Reddy N, Gandhi AS. Molten salt attack on t′ yttria-stabilized zirconia by dissolution and precipitation. J Eur Ceram Soc. 2013;33(10):1867.CrossRef
[12]
go back to reference Daroonparvar M, Yajid MAM, Yusof NM, Bakhsheshi-Rad HR, Hamzah E, Nazoktabar M. Investigation of three steps of hot corrosion process in Y2O3 stabilized ZrO2 coatings including nano zones. J Rare Earths. 2014;32(10):989.CrossRef Daroonparvar M, Yajid MAM, Yusof NM, Bakhsheshi-Rad HR, Hamzah E, Nazoktabar M. Investigation of three steps of hot corrosion process in Y2O3 stabilized ZrO2 coatings including nano zones. J Rare Earths. 2014;32(10):989.CrossRef
[13]
go back to reference Jones RL. Some aspects of the hot corrosion of thermal barrier coatings. J Therm Spray Technol. 1997;6(1):77.CrossRef Jones RL. Some aspects of the hot corrosion of thermal barrier coatings. J Therm Spray Technol. 1997;6(1):77.CrossRef
[14]
go back to reference Jonnalagadda K, Eriksson R, Peng R, Johansson S. Factors affecting the performance of thermal barrier coatings in the presence of V2O5 and Na2SO4. J Ceram Sci Technol. 2016;7(4):409. Jonnalagadda K, Eriksson R, Peng R, Johansson S. Factors affecting the performance of thermal barrier coatings in the presence of V2O5 and Na2SO4. J Ceram Sci Technol. 2016;7(4):409.
[15]
go back to reference Zhang YS, Rapp RA. Solubilities of CeO2, HfO2 and Y2O3 in fused Na2SO4-30 mol% NaVO3 and CeO2 in pure Na2SO4 at 900 °C. Corrosion. 1987;43(6):348.CrossRef Zhang YS, Rapp RA. Solubilities of CeO2, HfO2 and Y2O3 in fused Na2SO4-30 mol% NaVO3 and CeO2 in pure Na2SO4 at 900 °C. Corrosion. 1987;43(6):348.CrossRef
[16]
go back to reference Liu HF, Xiong X, Li XB, Wang YL. Hot corrosion behavior of Sc2O3–Y2O3–ZrO2 thermal barrier coatings in presence of Na2SO4 + V2O5 molten salt. Corros Sci. 2014;85:87.CrossRef Liu HF, Xiong X, Li XB, Wang YL. Hot corrosion behavior of Sc2O3–Y2O3–ZrO2 thermal barrier coatings in presence of Na2SO4 + V2O5 molten salt. Corros Sci. 2014;85:87.CrossRef
[17]
go back to reference Clarke DR, Levi CG. Materials design for the next generation thermal barrier coatings. Annu Rev Mater Res. 2003;33(1):383.CrossRef Clarke DR, Levi CG. Materials design for the next generation thermal barrier coatings. Annu Rev Mater Res. 2003;33(1):383.CrossRef
[18]
go back to reference Qureshi IN, Shahid M, Nusair Khan A, Durrani YA. Evaluation of titanium nitride-modified bond coat system used in thermal barrier coating in corrosive salts environment at high temperature. J Therm Spray Technol. 2015;24(8):1520.CrossRef Qureshi IN, Shahid M, Nusair Khan A, Durrani YA. Evaluation of titanium nitride-modified bond coat system used in thermal barrier coating in corrosive salts environment at high temperature. J Therm Spray Technol. 2015;24(8):1520.CrossRef
[19]
go back to reference Tsai PC, Lee JH, Hsu CS. Hot corrosion behavior of laser-glazed plasma-sprayed yttria-stabilized zirconia thermal barrier coatings in the presence of V2O5. Surf Coatings Technol. 2007;201(9):5143.CrossRef Tsai PC, Lee JH, Hsu CS. Hot corrosion behavior of laser-glazed plasma-sprayed yttria-stabilized zirconia thermal barrier coatings in the presence of V2O5. Surf Coatings Technol. 2007;201(9):5143.CrossRef
[20]
go back to reference Keyvani A. Microstructural stability oxidation and hot corrosion resistance of nanostructured Al2O3/YSZ composite compared to conventional YSZ TBC coatings. J Alloys Compd. 2015;623:229.CrossRef Keyvani A. Microstructural stability oxidation and hot corrosion resistance of nanostructured Al2O3/YSZ composite compared to conventional YSZ TBC coatings. J Alloys Compd. 2015;623:229.CrossRef
[21]
go back to reference Zaplatynsky I. Performance of laser-glazed zirconia thermal barrier coatings in cyclic oxidation and corrosion burner rig tests. Thin Solid Films. 1982;95(3):275.CrossRef Zaplatynsky I. Performance of laser-glazed zirconia thermal barrier coatings in cyclic oxidation and corrosion burner rig tests. Thin Solid Films. 1982;95(3):275.CrossRef
[22]
go back to reference Simms NJ, Kilgallon PJ, Roach C, Oakey JE. Development of oxides at TBC: bond coat interfaces in burner rig exposures. Mater High Temp. 2003;20(4):519. Simms NJ, Kilgallon PJ, Roach C, Oakey JE. Development of oxides at TBC: bond coat interfaces in burner rig exposures. Mater High Temp. 2003;20(4):519.
[23]
go back to reference Saremi M, Vale Z, Abaeian N. Hot corrosion, high temperature oxidation and thermal shock behavior of nanoagglomerated YSZ: alumina composite coatings produced by plasma spray method. Surf Coatings Technol. 2013;221:133.CrossRef Saremi M, Vale Z, Abaeian N. Hot corrosion, high temperature oxidation and thermal shock behavior of nanoagglomerated YSZ: alumina composite coatings produced by plasma spray method. Surf Coatings Technol. 2013;221:133.CrossRef
[24]
go back to reference Keyvani A, Saremi M, Heydarzadeh Sohi M. Microstructural stability of zirconia-alumina composite coatings during hot corrosion test at 1050 °C. J Alloys Compd. 2010;506(1):103.CrossRef Keyvani A, Saremi M, Heydarzadeh Sohi M. Microstructural stability of zirconia-alumina composite coatings during hot corrosion test at 1050 °C. J Alloys Compd. 2010;506(1):103.CrossRef
[25]
go back to reference Xu Z, He L, Mu R, He S, Huang G, Cao X. Hot corrosion behavior of rare earth zirconates and yttria partially stabilized zirconia thermal barrier coatings. Surf Coatings Technol. 2010;204(21–22):3652.CrossRef Xu Z, He L, Mu R, He S, Huang G, Cao X. Hot corrosion behavior of rare earth zirconates and yttria partially stabilized zirconia thermal barrier coatings. Surf Coatings Technol. 2010;204(21–22):3652.CrossRef
[26]
go back to reference Chen Z, Speakman S, Howe J, Wang H, Porter W, Trice R. Investigation of reactions between vanadium oxide and plasma-sprayed yttria-stabilized zirconia coatings. J Eur Ceram Soc. 2009;29(8):1403.CrossRef Chen Z, Speakman S, Howe J, Wang H, Porter W, Trice R. Investigation of reactions between vanadium oxide and plasma-sprayed yttria-stabilized zirconia coatings. J Eur Ceram Soc. 2009;29(8):1403.CrossRef
[27]
go back to reference Jones RL, Williams CE, Jones SR. Reaction of vanadium compounds with ceramic oxides. J Electrochem Soc. 1986;133(1):227.CrossRef Jones RL, Williams CE, Jones SR. Reaction of vanadium compounds with ceramic oxides. J Electrochem Soc. 1986;133(1):227.CrossRef
[28]
go back to reference Yugeswaran S, Kobayashi A, Ananthapadmanabhan PV. Hot corrosion behaviors of gas tunnel type plasma sprayed La2Zr2O7 thermal barrier coatings. J Eur Ceram Soc. 2012;32(4):823.CrossRef Yugeswaran S, Kobayashi A, Ananthapadmanabhan PV. Hot corrosion behaviors of gas tunnel type plasma sprayed La2Zr2O7 thermal barrier coatings. J Eur Ceram Soc. 2012;32(4):823.CrossRef
[29]
go back to reference Leoni M, Jones R, Scardi P. Phase stability of scandia–yttria-stabilized zirconia TBCs. Surf Coatings Technol. 1998;108–109:107.CrossRef Leoni M, Jones R, Scardi P. Phase stability of scandia–yttria-stabilized zirconia TBCs. Surf Coatings Technol. 1998;108–109:107.CrossRef
[30]
go back to reference Wu J, Guo H, Zhou L, Wang L, Gong S. Microstructure and thermal properties of plasma sprayed thermal barrier coatings from nanostructured YSZ. J Therm Spray Technol. 2010;19(6):1186.CrossRef Wu J, Guo H, Zhou L, Wang L, Gong S. Microstructure and thermal properties of plasma sprayed thermal barrier coatings from nanostructured YSZ. J Therm Spray Technol. 2010;19(6):1186.CrossRef
[31]
go back to reference Lughi V, Clarke DR. Transformation of electron-beam physical vapor-deposited 8 wt% yttria-stabilized zirconia thermal barrier coatings. J Am Ceram Soc. 2005;88(9):2552.CrossRef Lughi V, Clarke DR. Transformation of electron-beam physical vapor-deposited 8 wt% yttria-stabilized zirconia thermal barrier coatings. J Am Ceram Soc. 2005;88(9):2552.CrossRef
[32]
go back to reference Rapp RA. Chemistry and electrochemistry of hot corrosion of metals. Mater Sci Eng. 1987;87(C):319.CrossRef Rapp RA. Chemistry and electrochemistry of hot corrosion of metals. Mater Sci Eng. 1987;87(C):319.CrossRef
[33]
go back to reference Ozgurluk Y, Doleker KM, Karaoglanli AC. Hot corrosion behavior of YSZ, Gd2Zr2O7 and YSZ/Gd2Zr2O7 thermal barrier coatings exposed to molten sulfate and vanadate salt. Appl Surf Sci. 2018;438:96.CrossRef Ozgurluk Y, Doleker KM, Karaoglanli AC. Hot corrosion behavior of YSZ, Gd2Zr2O7 and YSZ/Gd2Zr2O7 thermal barrier coatings exposed to molten sulfate and vanadate salt. Appl Surf Sci. 2018;438:96.CrossRef
[34]
go back to reference Seiersten M, Kofstad P. The effect of SO3 on vanadate-induced hot corrosion. High Temp Technol. 1987;5(3):115.CrossRef Seiersten M, Kofstad P. The effect of SO3 on vanadate-induced hot corrosion. High Temp Technol. 1987;5(3):115.CrossRef
[35]
go back to reference Nagelberg AS. Destabilization of yttria-stabilized zirconia induced by molten sodium vanadate-sodium sulfate melts. J Electrochem Soc. 1985;132(10):2502.CrossRef Nagelberg AS. Destabilization of yttria-stabilized zirconia induced by molten sodium vanadate-sodium sulfate melts. J Electrochem Soc. 1985;132(10):2502.CrossRef
[36]
go back to reference Erdei S, Ainger FW. Crystal growth of YVO4 using the LHPG technique. J Cryst Growth. 1993;128(1–4):1025.CrossRef Erdei S, Ainger FW. Crystal growth of YVO4 using the LHPG technique. J Cryst Growth. 1993;128(1–4):1025.CrossRef
Metadata
Title
Hot corrosion mechanism of yttria-stabilized zirconia powder in the presence of molten Na2SO4 + V2O5 salts
Authors
Jhonattan De la Roche
Juan Manuel Alvarado-Orozco
Alejandro Toro
Publication date
01-04-2020
Publisher
Nonferrous Metals Society of China
Published in
Rare Metals / Issue 5/2021
Print ISSN: 1001-0521
Electronic ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-020-01388-3

Other articles of this Issue 5/2021

Rare Metals 5/2021 Go to the issue

Premium Partners