Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

27-01-2020 | Methodologies and Application | Issue 16/2020

Soft Computing 16/2020

Hourly day-ahead wind power forecasting with the EEMD-CSO-LSTM-EFG deep learning technique

Journal:
Soft Computing > Issue 16/2020
Authors:
A. Shobana Devi, G. Maragatham, K. Boopathi, A. G. Rangaraj
Important notes
Communicated by V. Loia.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Wind power forecasting has gained significant attention due to advances in wind energy generation in power frameworks and the uncertain nature of wind. In this manner, to maintain an affordable, reliable, economical, and dependable power supply, accurately predicting wind power is important. In recent years, several investigations and studies have been conducted in this field. Unfortunately, these examinations disregarded the significance of data preprocessing and the impact of various missing values, thereby resulting in poor performance in forecasting. However, long short-term memory (LSTM) network, a kind of recurrent neural network (RNN), can predict and process the time-series data at moderately long intervals and time delays, thereby producing good forecasting results using time-series data. This article recommends a hybrid forecasting model for forecasting wind power to improve the performance of the prediction. An improved long short-term memory network-enhanced forget-gate network (LSTM-EFG) model, whose appropriate parameters are optimized using cuckoo search optimization algorithm (CSO), is used to forecast the subseries data that is extracted using ensemble empirical mode decomposition (EEMD). The experimental results show that the proposed forecasting model overcomes the limitations of traditional forecasting models and efficiently improves forecasting accuracy. Furthermore, it serves as an operational tool for wind power plants management.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 16/2020

Soft Computing 16/2020 Go to the issue

Premium Partner

    Image Credits