Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 6/2021

24-05-2021

How Strain-Rate Sensitivity Creates Two Forming-Limit Diagrams: Bragard-Type Versus Instability-Strain, Correlation-Coefficient-Based Temporal Curves

Authors: M. A. Bertinetti, A. Roatta, E. Nicoletti, M. Leonard, M. Stout, J. W. Signorelli

Published in: Journal of Materials Engineering and Performance | Issue 6/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

With digital-image correlation techniques, it is now possible to measure the forming-limit diagram, FLD, of metal sheet using both strains outside (Bragard-type analysis) and inside (temporal, correlation-coefficient calculation) of a necking instability. We performed these measurements using the Marciniak and Kuczynski, MK, specimen geometry on three metals having very different strain-rate sensitivities: Zn20, a Zn-Cu-Ti alloy; a cold-rolled steel; and an AA6061-T4 aluminum alloy. The relationship between the Bragard type and temporal FLDs was very different depending on the metal’s strain-rate sensitivity. For the highly strain-rate sensitive Zn20, m = 0.075, the temporal FLD was well above the Bragard type for all strain states, from uniaxial tension to balanced-biaxial deformation. In the case of the cold-rolled steel, m = 0.015, the two analyses were equivalent in balanced-biaxial deformation, but the temporal results were higher in plane-strain and uniaxial tension, by 25 and 40%, respectively. The two types of FLD curves were equivalent for all strain states for the AA6061-T4 aluminum alloy, m = zero. In addition, we found that the strain paths followed by the three metals were different for the same MK sample geometries. These differences were due to different shapes of the yield/flow loci, as confirmed based on visco-plastic self-consistent simulations. These results indicate that engineers should account for the different FLDs for positive strain-rate sensitive metals, possibly as upper and lower bounds. In addition, it appears that for metals with yield/flow loci like that of the AA6061-T4 aluminum alloy, certain strain paths between plane strain and balanced-biaxial deformation are difficult to attain when using the MK-type sample geometry.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference J. Blaber, B. Adair and A. Antoniou, Ncorr: Open-Source 2D Digital Image Correlation Matlab Software, Exp. Mech., 2015, 55, p 1105–1122.CrossRef J. Blaber, B. Adair and A. Antoniou, Ncorr: Open-Source 2D Digital Image Correlation Matlab Software, Exp. Mech., 2015, 55, p 1105–1122.CrossRef
2.
go back to reference A. Bragard, J.C. Baret and H. Bonnarens, A Simplified Technique to Determine the FLD at the Onset of Necking, Rapp. Centre Rech. Metall., 1972, 33, p 53–63. A. Bragard, J.C. Baret and H. Bonnarens, A Simplified Technique to Determine the FLD at the Onset of Necking, Rapp. Centre Rech. Metall., 1972, 33, p 53–63.
3.
go back to reference M. Brunet, S. Mguil and F. Morestin, Analytical and Experimental Studies of Necking in Sheet Metal Forming Processes, J. Mater. Process., 1998, 80–81, p 40–46.CrossRef M. Brunet, S. Mguil and F. Morestin, Analytical and Experimental Studies of Necking in Sheet Metal Forming Processes, J. Mater. Process., 1998, 80–81, p 40–46.CrossRef
4.
go back to reference G. Charca Ramos, M. Stout, R.E. Bolmaro, J.W. Signorelli and P. Turner, Study of a Drawing-Quality Sheet Steel. I: Stress/Strain Behaviors and Lankford Coefficients by Experiments and Micromechanical Simulations, Int. J. Solids Struct., 2010, 47, p 2285–2293.CrossRef G. Charca Ramos, M. Stout, R.E. Bolmaro, J.W. Signorelli and P. Turner, Study of a Drawing-Quality Sheet Steel. I: Stress/Strain Behaviors and Lankford Coefficients by Experiments and Micromechanical Simulations, Int. J. Solids Struct., 2010, 47, p 2285–2293.CrossRef
5.
go back to reference A.I. Durán, J.W. Signorelli, D.J. Celentano, M.A. Cruchaga and M. François, Experimental and Numerical Analysis on the Formability of a Heat-Treated AA1100 Aluminum Alloy Sheet, J. Mater. Eng. Perform., 2015, 24, p 4156–4170.CrossRef A.I. Durán, J.W. Signorelli, D.J. Celentano, M.A. Cruchaga and M. François, Experimental and Numerical Analysis on the Formability of a Heat-Treated AA1100 Aluminum Alloy Sheet, J. Mater. Eng. Perform., 2015, 24, p 4156–4170.CrossRef
6.
go back to reference A.K. Ghosh and S. Hecker, Failure in Thin Sheets Stretched Over Rigid Punches, Metall. Mater. Trans. A, 1975, 6A, p 1065–1074.CrossRef A.K. Ghosh and S. Hecker, Failure in Thin Sheets Stretched Over Rigid Punches, Metall. Mater. Trans. A, 1975, 6A, p 1065–1074.CrossRef
7.
go back to reference A.K. Ghosh, The Infuence of Strain Hardening and Strain-Rate Sensitivity on Sheet Metal Forming, Trans. ASME J. Eng. Mater. Technol., 1977, 99(3), p 264–274.CrossRef A.K. Ghosh, The Infuence of Strain Hardening and Strain-Rate Sensitivity on Sheet Metal Forming, Trans. ASME J. Eng. Mater. Technol., 1977, 99(3), p 264–274.CrossRef
9.
go back to reference W. Hotz, M. Merklein, A. Kuppert, H. Friebe and M. Klein, Time Dependent FLC Determination: Comparison of Different Algorithms to Detect the Onset of Unstable Necking Before Fracture, Key Eng. Mater., 2013, 549, p 397–404.CrossRef W. Hotz, M. Merklein, A. Kuppert, H. Friebe and M. Klein, Time Dependent FLC Determination: Comparison of Different Algorithms to Detect the Onset of Unstable Necking Before Fracture, Key Eng. Mater., 2013, 549, p 397–404.CrossRef
10.
go back to reference International Standard ISO 12004-2:2008, Metallic Materials—Sheet and Strip: Determination of Forming-Limit Curves. Part 2—Determination of Forming-Limit Curves in the Laboratory, International Organization for Standardization, Geneva, 2008. International Standard ISO 12004-2:2008, Metallic Materials—Sheet and Strip: Determination of Forming-Limit Curves. Part 2—Determination of Forming-Limit Curves in the Laboratory, International Organization for Standardization, Geneva, 2008.
11.
go back to reference R.A. Lebensohn, P. Ponte Castaneda, R. Brenner and O. Castelnau, Full-Field vs. Homogenization Methods to Predict Microstructure-Property Relationships of Polycrystalline Materials, Computational Methods for Microstructure-Property Relationships. S. Ghos, D.S. Dimiduk Ed., Springer, Berlin, 2011, p 393–441CrossRef R.A. Lebensohn, P. Ponte Castaneda, R. Brenner and O. Castelnau, Full-Field vs. Homogenization Methods to Predict Microstructure-Property Relationships of Polycrystalline Materials, Computational Methods for Microstructure-Property Relationships. S. Ghos, D.S. Dimiduk Ed., Springer, Berlin, 2011, p 393–441CrossRef
12.
go back to reference R.A. Lebensohn and C.N. Tomé, A Self-Consistent Anisotropic Approach for the Simulation of Plastic Deformation and Texture Development of Polycrystals: Application to Zirconium Alloys, Acta Metall. Mater., 1993, 41, p 2611–2624.CrossRef R.A. Lebensohn and C.N. Tomé, A Self-Consistent Anisotropic Approach for the Simulation of Plastic Deformation and Texture Development of Polycrystals: Application to Zirconium Alloys, Acta Metall. Mater., 1993, 41, p 2611–2624.CrossRef
13.
go back to reference M. Leonard, C. Moussa, A. Roatta, A. Seret and J.W. Signorelli, Continuous Dynamic Recrystallization in a Zn-Cu-Ti Sheet Subjected to Bilinear Tensile Strain, Mater. Sci. Eng. A, 2020, 789, p 1–11.CrossRef M. Leonard, C. Moussa, A. Roatta, A. Seret and J.W. Signorelli, Continuous Dynamic Recrystallization in a Zn-Cu-Ti Sheet Subjected to Bilinear Tensile Strain, Mater. Sci. Eng. A, 2020, 789, p 1–11.CrossRef
14.
go back to reference M.E. Leonard, F. Ugo, M. Stout and J.W. Signorelli, A Miniaturized Device for the Measurement of Sheet Metal Formability Using Digital Image Correlation, Rev. Sci. Instrum., 2018, 085114, p 89–95. M.E. Leonard, F. Ugo, M. Stout and J.W. Signorelli, A Miniaturized Device for the Measurement of Sheet Metal Formability Using Digital Image Correlation, Rev. Sci. Instrum., 2018, 085114, p 89–95.
15.
go back to reference Z. Marciniak and K. Kuczynski, Limit Strains in the Processes of Stretch-Forming Sheet Metal, Int. J. Mech. Sci., 1967, 9, p 609–620.CrossRef Z. Marciniak and K. Kuczynski, Limit Strains in the Processes of Stretch-Forming Sheet Metal, Int. J. Mech. Sci., 1967, 9, p 609–620.CrossRef
16.
go back to reference A.J. Martínez-Donaire, F.J. García-Lomas and C. Vallellano, New Approaches to Detect the Onset of Localised Necking in Sheets under through-Thickness Strain Gradients, Mater. Des., 2014, 57, p 135–145.CrossRef A.J. Martínez-Donaire, F.J. García-Lomas and C. Vallellano, New Approaches to Detect the Onset of Localised Necking in Sheets under through-Thickness Strain Gradients, Mater. Des., 2014, 57, p 135–145.CrossRef
17.
go back to reference M. Merklein, A. Kuppert and M. Geiger, Time Dependent Determination of Forming Limit Diagrams, CIRP Ann. Manuf. Technol., 2010, 59, p 295–298.CrossRef M. Merklein, A. Kuppert and M. Geiger, Time Dependent Determination of Forming Limit Diagrams, CIRP Ann. Manuf. Technol., 2010, 59, p 295–298.CrossRef
18.
go back to reference J. Min, T.B. Stoughton, J.E. Carsley and J. Lin, Coµµrison of DIC Methods of Determining Forming Limit Strains, in International Conference on Sustainable Materials Processing and Manufacturing, SMPM 2017. Procedia Manufacturing, vol. 7 (2017), pp. 668–674 J. Min, T.B. Stoughton, J.E. Carsley and J. Lin, Coµµrison of DIC Methods of Determining Forming Limit Strains, in International Conference on Sustainable Materials Processing and Manufacturing, SMPM 2017. Procedia Manufacturing, vol. 7 (2017), pp. 668–674
19.
go back to reference K. Nakazima, T. Kikuma and K. Hasuka, Study on the Formability of Steel Sheets, Yawata Technical Report, No. 264, 1968, p 8517–8530 K. Nakazima, T. Kikuma and K. Hasuka, Study on the Formability of Steel Sheets, Yawata Technical Report, No. 264, 1968, p 8517–8530
20.
go back to reference A. Roatta, M. Leonard, E. Nicoletti and J.W. Signorelli, Modeling Texture Evolution During Monotonic Loading of Zn-Cu-Ti Alloy Sheet Using Viscoplastic Self-Consistent Polycrystal Model, Int. J. Solids Struct., 2020, 860, p 158425. A. Roatta, M. Leonard, E. Nicoletti and J.W. Signorelli, Modeling Texture Evolution During Monotonic Loading of Zn-Cu-Ti Alloy Sheet Using Viscoplastic Self-Consistent Polycrystal Model, Int. J. Solids Struct., 2020, 860, p 158425.
21.
go back to reference A. Roatta, M. Stout and J.W. Signorelli, Determination of the Forming-Limit Diagram from Deformations within the Necking Instability, a New Approach, J. Mater. Eng. Perform., 2020, 29, p 4018–4031.CrossRef A. Roatta, M. Stout and J.W. Signorelli, Determination of the Forming-Limit Diagram from Deformations within the Necking Instability, a New Approach, J. Mater. Eng. Perform., 2020, 29, p 4018–4031.CrossRef
22.
go back to reference F. Schlosser, J.W. Signorelli, M.E. Leonard, A. Roatta, M. Milesic and N. Bozzolo, Influence of the Strain Path Changes on the Formability of a Zinc Sheet, J. Mater. Process., 2019, 271, p 101–110.CrossRef F. Schlosser, J.W. Signorelli, M.E. Leonard, A. Roatta, M. Milesic and N. Bozzolo, Influence of the Strain Path Changes on the Formability of a Zinc Sheet, J. Mater. Process., 2019, 271, p 101–110.CrossRef
23.
go back to reference F. Schlosser, Desarrollo de la Modelización Multiescala en Agregados Policristalinos HCP Bajo Solicitación Mecánica Inducida en Curso de Procesos de Conformado. Validación Experimental en Chapas de Zinc Texturado, Ph.D. thesis, Universidad Nacional del Sur, Bahía Blanca, Argentina, 2018 F. Schlosser, Desarrollo de la Modelización Multiescala en Agregados Policristalinos HCP Bajo Solicitación Mecánica Inducida en Curso de Procesos de Conformado. Validación Experimental en Chapas de Zinc Texturado, Ph.D. thesis, Universidad Nacional del Sur, Bahía Blanca, Argentina, 2018
24.
go back to reference C.D. Schwindt, M.A. Bertinetti, L. Iurman, C.A. Rossit and J.W. Signorelli, Numerical Study of the Effect of Martensite Plasticity on the Forming Limits of a Dual-Phase Steel Sheet, Int. J. Mater. Forming, 2016, 9, p 499–517.CrossRef C.D. Schwindt, M.A. Bertinetti, L. Iurman, C.A. Rossit and J.W. Signorelli, Numerical Study of the Effect of Martensite Plasticity on the Forming Limits of a Dual-Phase Steel Sheet, Int. J. Mater. Forming, 2016, 9, p 499–517.CrossRef
25.
go back to reference C. Schwindt, F. Schlosser, M.A. Bertinetti, M. Stout and J.W. Signorelli, Experimental and Visco-Plastic Self-Consistent Evaluation of Forming Limit Diagrams for Anisotropic Sheet Metals: An Efficient and Robust Implementation of the M-K Model, Int. J. Plast., 2015, 73, p 62–99.CrossRef C. Schwindt, F. Schlosser, M.A. Bertinetti, M. Stout and J.W. Signorelli, Experimental and Visco-Plastic Self-Consistent Evaluation of Forming Limit Diagrams for Anisotropic Sheet Metals: An Efficient and Robust Implementation of the M-K Model, Int. J. Plast., 2015, 73, p 62–99.CrossRef
26.
go back to reference M.J. Serenelli, M.A. Bertinetti and J.W. Signorelli, Investigation of the Dislocation Slip Assumption on Formability of BCC Sheet Metals, Int J Mech. Sci., 2010, 52, p 1723–1734.CrossRef M.J. Serenelli, M.A. Bertinetti and J.W. Signorelli, Investigation of the Dislocation Slip Assumption on Formability of BCC Sheet Metals, Int J Mech. Sci., 2010, 52, p 1723–1734.CrossRef
27.
go back to reference M.A. Sutton, J.-J. Orteu and H.W. Schreier, Image Correlation for Shape, Motion and Deformation Measurements, Springer, New York, 2009. M.A. Sutton, J.-J. Orteu and H.W. Schreier, Image Correlation for Shape, Motion and Deformation Measurements, Springer, New York, 2009.
28.
go back to reference C.N. Tome, R.A. Lebensohn and U.F. Kocks, A Model for Texture Development Dominated by Deformation Twinning: Application to Zirconium Alloys, Acta Metall. Mater., 1991, 39, p 2667–2680.CrossRef C.N. Tome, R.A. Lebensohn and U.F. Kocks, A Model for Texture Development Dominated by Deformation Twinning: Application to Zirconium Alloys, Acta Metall. Mater., 1991, 39, p 2667–2680.CrossRef
29.
go back to reference P. Vacher, A. Haddad and R. Arrieux, Determination of the Forming Limit Diagrams Using Image Analysis by the Correlation Method, CIRP Ann. Manuf. Technol., 1999, 48, p 227–230.CrossRef P. Vacher, A. Haddad and R. Arrieux, Determination of the Forming Limit Diagrams Using Image Analysis by the Correlation Method, CIRP Ann. Manuf. Technol., 1999, 48, p 227–230.CrossRef
30.
go back to reference D. Vysochinskiy, T. Coudert, O.S. Hopperstad and O. Lademo, Experimental Detection of Forming Limit Strains on Samples with Multiple Necks, J. Mater. Process., 2016, 227, p 216–226.CrossRef D. Vysochinskiy, T. Coudert, O.S. Hopperstad and O. Lademo, Experimental Detection of Forming Limit Strains on Samples with Multiple Necks, J. Mater. Process., 2016, 227, p 216–226.CrossRef
31.
go back to reference K. Wang, J.E. Carsley, B. He, J. Li and L. Zhang, Measuring Forming Limit Strains with Digital Image Correlation Analysis, J. Mater. Process. Technol., 2014, 214, p 1120–1130.CrossRef K. Wang, J.E. Carsley, B. He, J. Li and L. Zhang, Measuring Forming Limit Strains with Digital Image Correlation Analysis, J. Mater. Process. Technol., 2014, 214, p 1120–1130.CrossRef
Metadata
Title
How Strain-Rate Sensitivity Creates Two Forming-Limit Diagrams: Bragard-Type Versus Instability-Strain, Correlation-Coefficient-Based Temporal Curves
Authors
M. A. Bertinetti
A. Roatta
E. Nicoletti
M. Leonard
M. Stout
J. W. Signorelli
Publication date
24-05-2021
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 6/2021
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-05745-w

Other articles of this Issue 6/2021

Journal of Materials Engineering and Performance 6/2021 Go to the issue

Premium Partners