Skip to main content
Top
Published in: Neural Computing and Applications 3/2018

29-11-2016 | Original Article

Human mimic color perception for segmentation of color images using a three-layered self-organizing map previously trained to classify color chromaticity

Authors: Farid García-Lamont, Jair Cervantes, Asdrúbal López-Chau

Published in: Neural Computing and Applications | Issue 3/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Most of the works addressing segmentation of color images use clustering-based methods; the drawback with such methods is that they require a priori knowledge of the amount of clusters, so the number of clusters is set depending on the nature of the scene so as not to lose color features of the scene. Other works that employ different unsupervised learning-based methods use the colors of the given image, but the classifying method employed is retrained again when a new image is given. Humans have the nature capability to: (1) recognize colors by using their previous knowledge, that is, they do not need to learn to identify colors every time they observe a new image and, (2) within a scene, humans can recognize regions or objects by their chromaticity features. Hence, in this paper we propose to emulate the human color perception for color image segmentation. We train a three-layered self-organizing map with chromaticity samples so that the neural network is able to segment color images by their chromaticity features. When training is finished, we use the same neural network to process several images, without training it again and without specifying, to some extent, the number of colors the image have. The hue component of colors is extracted by mapping the input image from the RGB space to the HSV space. We test our proposal using the Berkeley segmentation database and compare quantitatively our results with related works; according to the results comparison, we claim that our approach is competitive.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Lopez JJ, Cobos M, Aguilera E (2011) Computer-based detection and classification of flaws in citrus fruits. Neural Comput Appl 20(7):975–981CrossRef Lopez JJ, Cobos M, Aguilera E (2011) Computer-based detection and classification of flaws in citrus fruits. Neural Comput Appl 20(7):975–981CrossRef
3.
go back to reference Lepistö L, Kuntuu I, Visa A (2005) Rock image classification using color features in Gabor space. J Electron Imaging 14(4):1–3CrossRef Lepistö L, Kuntuu I, Visa A (2005) Rock image classification using color features in Gabor space. J Electron Imaging 14(4):1–3CrossRef
4.
go back to reference Ghoneim DM (2011) Optimizing automated characterization of liver fibrosis histological images by investigating color spaces at different resolutions. Theor Biol Med Model 8:25CrossRef Ghoneim DM (2011) Optimizing automated characterization of liver fibrosis histological images by investigating color spaces at different resolutions. Theor Biol Med Model 8:25CrossRef
5.
go back to reference Harrabi R, Braiek EB (2012) Color image segmentation using multi-level thresholding approach and data fusion techniques: application in the breast cancer cells images. EURASIP J Image Video Process 2012:11. doi:10.1186/1687-5281-2012-11 CrossRef Harrabi R, Braiek EB (2012) Color image segmentation using multi-level thresholding approach and data fusion techniques: application in the breast cancer cells images. EURASIP J Image Video Process 2012:11. doi:10.​1186/​1687-5281-2012-11 CrossRef
6.
go back to reference Lingala M, Stanley RJ, Rader RK, Hagerty J, Rabinovitz HS, Oliveiro M, Choudhry I, Stoecker WV (2014) Fuzzy logic color detection: blue areas in melanoma dermoscopy images. Comput Med Imaging Graph 38(5):403–410CrossRef Lingala M, Stanley RJ, Rader RK, Hagerty J, Rabinovitz HS, Oliveiro M, Choudhry I, Stoecker WV (2014) Fuzzy logic color detection: blue areas in melanoma dermoscopy images. Comput Med Imaging Graph 38(5):403–410CrossRef
7.
go back to reference Wang F, Man L, Wang B, Xiao Y, Pan W, Lu X (2008) Fuzzy-based algorithm for color recognition of license plates. Pattern Recognit Lett 29(7):1007–1020CrossRef Wang F, Man L, Wang B, Xiao Y, Pan W, Lu X (2008) Fuzzy-based algorithm for color recognition of license plates. Pattern Recognit Lett 29(7):1007–1020CrossRef
8.
go back to reference del Fresno M, Macchi A, Marti Z, Dick A, Clausse A (2006) Application of color image segmentation to estrusc detection. J Vis 9(2):171–178CrossRef del Fresno M, Macchi A, Marti Z, Dick A, Clausse A (2006) Application of color image segmentation to estrusc detection. J Vis 9(2):171–178CrossRef
9.
go back to reference Rotaru C, Graf T, Zhang J (2008) Color image segmentation in HSI space for automotive applications. J Real Time Image Process 3(4):311–322CrossRef Rotaru C, Graf T, Zhang J (2008) Color image segmentation in HSI space for automotive applications. J Real Time Image Process 3(4):311–322CrossRef
10.
go back to reference Bianconi F, Fernández A, González E, Saetta SA (2013) Performance analysis of colour descriptors for parquet sorting. Expert Syst Appl 40(5):1636–1644CrossRef Bianconi F, Fernández A, González E, Saetta SA (2013) Performance analysis of colour descriptors for parquet sorting. Expert Syst Appl 40(5):1636–1644CrossRef
11.
go back to reference Aghbarii ZA, Haj RA (2006) Hill-manipulation: an effective algorithm for color image segmentation. Image Vis Comput 24(8):498–903CrossRef Aghbarii ZA, Haj RA (2006) Hill-manipulation: an effective algorithm for color image segmentation. Image Vis Comput 24(8):498–903CrossRef
12.
go back to reference Mignotte M (2014) A non-stationary MRF model for image segmentation from a soft boundary map. Pattern Anal Appl 17(1):129–139MathSciNetCrossRef Mignotte M (2014) A non-stationary MRF model for image segmentation from a soft boundary map. Pattern Anal Appl 17(1):129–139MathSciNetCrossRef
13.
go back to reference Liu Z, Song YQ, Chen JM, Xie CH, Zhu F (2012) Color image segmentation using nonparametric mixture models with multivariate orthogonal polynomials. Neural Comput Appl 21(4):801–811CrossRef Liu Z, Song YQ, Chen JM, Xie CH, Zhu F (2012) Color image segmentation using nonparametric mixture models with multivariate orthogonal polynomials. Neural Comput Appl 21(4):801–811CrossRef
14.
go back to reference Mousavi BS, Soleymani F, Razmjooy N (2013) Color image segmentation using neuro-fuzzy system in a novel optimized color space. Neural Comput Appl 23(5):1513–1520CrossRef Mousavi BS, Soleymani F, Razmjooy N (2013) Color image segmentation using neuro-fuzzy system in a novel optimized color space. Neural Comput Appl 23(5):1513–1520CrossRef
15.
go back to reference Ong S, Yeo N, Lee K, Venkatesh Y, Cao D (2002) Segmentation of color images using a two-stage self-organizing network. Image Vis Comput 20(4):279–289CrossRef Ong S, Yeo N, Lee K, Venkatesh Y, Cao D (2002) Segmentation of color images using a two-stage self-organizing network. Image Vis Comput 20(4):279–289CrossRef
16.
go back to reference Jiang Y, Zhou ZH (2004) SOM ensemble-based image segmentation. Neural Process Lett 20(3):171–178CrossRef Jiang Y, Zhou ZH (2004) SOM ensemble-based image segmentation. Neural Process Lett 20(3):171–178CrossRef
17.
go back to reference Khan A, Jaffar MA (2015) Genetic algorithm and self organizing map based fuzzy hybrid intelligent method for color image segmentation. Appl Soft Comput 32:300–310CrossRef Khan A, Jaffar MA (2015) Genetic algorithm and self organizing map based fuzzy hybrid intelligent method for color image segmentation. Appl Soft Comput 32:300–310CrossRef
18.
go back to reference Araujo A, Costa DC (2009) Local adaptive receptive field self-organizing map for image color segmentation. Image Vis Comput 27(9):1229–1239MathSciNetCrossRef Araujo A, Costa DC (2009) Local adaptive receptive field self-organizing map for image color segmentation. Image Vis Comput 27(9):1229–1239MathSciNetCrossRef
19.
go back to reference Stephanakis IM, Anastassopoulos GC, Iliadis LS (2010) Color segmentation using self-organizing feature maps (SOFMs) defined upon color and spatial image space. In: Artificial neural networks—ICANN 2010, lecture notes on computer science (LNCS), vol 6352, pp 500–510 Stephanakis IM, Anastassopoulos GC, Iliadis LS (2010) Color segmentation using self-organizing feature maps (SOFMs) defined upon color and spatial image space. In: Artificial neural networks—ICANN 2010, lecture notes on computer science (LNCS), vol 6352, pp 500–510
20.
go back to reference Khan A, Ullah J, Jaffar MA, Choi TS (2014) Color image segmentation: a novel spatial fuzzy genetic algorithm. Signal Image Video Process 8(7):1233–1243CrossRef Khan A, Ullah J, Jaffar MA, Choi TS (2014) Color image segmentation: a novel spatial fuzzy genetic algorithm. Signal Image Video Process 8(7):1233–1243CrossRef
21.
go back to reference Khan A, Jaffar MA, Choi TS (2013) SOM and fuzzy based color image segmentation. Multimed Tools Appl 64(2):331–344CrossRef Khan A, Jaffar MA, Choi TS (2013) SOM and fuzzy based color image segmentation. Multimed Tools Appl 64(2):331–344CrossRef
22.
go back to reference Wang L, Dong M (2012) Multi-level low-rank approximation-based spectral clustering for image segmentation. Pattern Recognit Lett 33(16):2206–2215CrossRef Wang L, Dong M (2012) Multi-level low-rank approximation-based spectral clustering for image segmentation. Pattern Recognit Lett 33(16):2206–2215CrossRef
23.
go back to reference Mújica-Vargas D, Gallegos-Funes FJ, Rosales-Silva AJ (2013) A fuzzy clustering algorithm with spatial robust estimation constraint for noisy color image segmentation. Pattern Recognit Lett 34(4):400–413CrossRef Mújica-Vargas D, Gallegos-Funes FJ, Rosales-Silva AJ (2013) A fuzzy clustering algorithm with spatial robust estimation constraint for noisy color image segmentation. Pattern Recognit Lett 34(4):400–413CrossRef
24.
go back to reference Huang R, Sang N, Luo D, Tang Q (2011) Image segmentation via coherent clustering in L*a*b* color space. Pattern Recognit Lett 32(7):891–902CrossRef Huang R, Sang N, Luo D, Tang Q (2011) Image segmentation via coherent clustering in L*a*b* color space. Pattern Recognit Lett 32(7):891–902CrossRef
25.
go back to reference Nadernejad E, Sharifzadeh S (2013) A new method for image segmentation based on fuzzy c-means algorithm on pixonal images formed by bilateral filtering. Signal Image Video Process 7(5):855–863CrossRef Nadernejad E, Sharifzadeh S (2013) A new method for image segmentation based on fuzzy c-means algorithm on pixonal images formed by bilateral filtering. Signal Image Video Process 7(5):855–863CrossRef
26.
go back to reference Guo Y, Sengur A (2013) A novel color image segmentation approach based on neutrosophic set and modified fuzzy c-means. Circuits Syst Signal Process 32(4):1699–1723MathSciNetCrossRef Guo Y, Sengur A (2013) A novel color image segmentation approach based on neutrosophic set and modified fuzzy c-means. Circuits Syst Signal Process 32(4):1699–1723MathSciNetCrossRef
27.
go back to reference Kim JY (2014) Segmentation of lip region in color images by fuzzy clustering. Int J Control Autom Syst 12(3):652–661CrossRef Kim JY (2014) Segmentation of lip region in color images by fuzzy clustering. Int J Control Autom Syst 12(3):652–661CrossRef
28.
go back to reference Ito S, Yoshioka M, Omatu S, Kita K, Kugo K (2006) An image segmentation method using histograms and the human characteristics of HSI color space for a scene image. Artif Life Robot 10(1):6–10CrossRef Ito S, Yoshioka M, Omatu S, Kita K, Kugo K (2006) An image segmentation method using histograms and the human characteristics of HSI color space for a scene image. Artif Life Robot 10(1):6–10CrossRef
30.
go back to reference Rashedi E, Nezamabadi-pour H (2013) A stochastic gravitational approach to feature based color. Eng Appl Artif Intell 26(4):1322–1332CrossRef Rashedi E, Nezamabadi-pour H (2013) A stochastic gravitational approach to feature based color. Eng Appl Artif Intell 26(4):1322–1332CrossRef
31.
go back to reference Mignotte M, Hélou C (2014) A precision–recall criterion based consensus model for fusing multiple segmentations. Int J Signal Process Image Process Pattern Recognit 7(3):61–82 Mignotte M, Hélou C (2014) A precision–recall criterion based consensus model for fusing multiple segmentations. Int J Signal Process Image Process Pattern Recognit 7(3):61–82
32.
go back to reference Xue A, Jia C (2009) A new method of color map segmentation based on the self-organizing neural network. In: Emerging intelligent computing technology and applications. With aspects of artificial intelligence, lecture notes on artificial intelligence (LNAI), vol 5755, pp 417–423 Xue A, Jia C (2009) A new method of color map segmentation based on the self-organizing neural network. In: Emerging intelligent computing technology and applications. With aspects of artificial intelligence, lecture notes on artificial intelligence (LNAI), vol 5755, pp 417–423
33.
go back to reference Halder A, Dalmiya S, Sadhu T (2014) Color image segmentation using semi-supervised self-organizing feature map. Adv Signal Process Intell Recognit Syst 264:591–598CrossRef Halder A, Dalmiya S, Sadhu T (2014) Color image segmentation using semi-supervised self-organizing feature map. Adv Signal Process Intell Recognit Syst 264:591–598CrossRef
35.
go back to reference Gonzalez RC, Woods RE (2002) Digital image processing, 2nd edn. Prentice Hall, Englewood Cliffs Gonzalez RC, Woods RE (2002) Digital image processing, 2nd edn. Prentice Hall, Englewood Cliffs
36.
go back to reference Kohonen T (1990) The self-organizing map. Proc IEEE 78(9):1464–1480 Kohonen T (1990) The self-organizing map. Proc IEEE 78(9):1464–1480
37.
go back to reference Zhang H, Fritts JE, Goldman SA (2008) Image segmentation evaluation: a survey of unsupervised methods. Comput Vis Image Underst 110(2):260–280CrossRef Zhang H, Fritts JE, Goldman SA (2008) Image segmentation evaluation: a survey of unsupervised methods. Comput Vis Image Underst 110(2):260–280CrossRef
38.
go back to reference Estrada FJ, Jepson AD (2009) Benchmarking image segmentation algorithms. Int J Comput Vis 85(2):167–181CrossRef Estrada FJ, Jepson AD (2009) Benchmarking image segmentation algorithms. Int J Comput Vis 85(2):167–181CrossRef
Metadata
Title
Human mimic color perception for segmentation of color images using a three-layered self-organizing map previously trained to classify color chromaticity
Authors
Farid García-Lamont
Jair Cervantes
Asdrúbal López-Chau
Publication date
29-11-2016
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 3/2018
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-016-2714-9

Other articles of this Issue 3/2018

Neural Computing and Applications 3/2018 Go to the issue

Premium Partner