Skip to main content
Top
Published in: Mathematical Models and Computer Simulations 6/2022

01-12-2022

Hybrid Model of a Stationary Plasma Thruster Taking into Account the Finite Electron Mass

Authors: M. B. Gavrikov, A. A. Taiurskii

Published in: Mathematical Models and Computer Simulations | Issue 6/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A mathematical model is proposed for studying the processes in a stationary plasma thruster (SPT), taking into account the ionization of the working substance, xenon, based on the hybrid equations of electromagnetic hydrodynamics (EMHD) of the plasma, which fully take into account the inertia of electrons. The choice of an EMHD model for studying plasma processes is predetermined by their small scale and low concentration of plasma particles in an SPT. The 1D2V case of plane symmetry is considered in detail, for which a numerical algorithm for studying solutions of hybrid equations of EMHD equations based on the method of macroparticles is constructed. A number of fundamental questions are solved: calculation of average values, interpolation, construction of the initial distribution of macroparticles, the choice of boundary conditions for the electric field, etc. The results of calculations with and without allowance for induction fields in a plasma thruster are presented. The effect of induction fields generated by plasma currents on processes in an SPT and the role of electron inertia have not been studied before, and the results obtained are original. In particular, a new nontraditional scheme for calculating the electric field based on the generalized Ohm’s law is proposed, which in EMHD is reduced to a boundary value problem for an elliptic system of equations for the components of the electric field and, among other things, requires setting boundary conditions. The need for the spatial and temporal averaging of electromagnetic fields when calculating the acceleration of the thruster plasma, taking into account the induction field, is an important result.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference K. N. Kozubskii, V. M. Murashko, Yu. P. Rylov, Yu. V. Trifonov, V. P. Khodnenko, V. Kim, G. A. Popov, and V. A. Obukhov, “Stationary plasma thrusters operate in space,” Plasma Phys. Rep. 29 (3), 251–266 (2003). https://doi.org/10.1134/1.1561120CrossRef K. N. Kozubskii, V. M. Murashko, Yu. P. Rylov, Yu. V. Trifonov, V. P. Khodnenko, V. Kim, G. A. Popov, and V. A. Obukhov, “Stationary plasma thrusters operate in space,” Plasma Phys. Rep. 29 (3), 251–266 (2003). https://​doi.​org/​10.​1134/​1.​1561120CrossRef
2.
go back to reference V. Kim, K. N. Kozubsky, V. M. Murashko, and A. V. Semenkin, “History of the Hall Thrusters development in USSR,” in 30th International Electric Propulsion Conference, Florence, Italy, September 17–20, 2007, Paper IEPC-2007-142. V. Kim, K. N. Kozubsky, V. M. Murashko, and A. V. Semenkin, “History of the Hall Thrusters development in USSR,” in 30th International Electric Propulsion Conference, Florence, Italy, September 17–20, 2007, Paper IEPC-2007-142.
3.
go back to reference V. P. Kim, A. V. Semenkin, and S. A. Khartov, Design and Physical Features of Engines with Closed Electron Drift (Mosk. Aviats. Inst., Moscow, 2016) [in Russian]. V. P. Kim, A. V. Semenkin, and S. A. Khartov, Design and Physical Features of Engines with Closed Electron Drift (Mosk. Aviats. Inst., Moscow, 2016) [in Russian].
4.
go back to reference A. I. Morozov, Introduction to Plasmadynamics (Fizmatlit, Moscow, 2006) [in Russian]. A. I. Morozov, Introduction to Plasmadynamics (Fizmatlit, Moscow, 2006) [in Russian].
5.
go back to reference O. A. Mitrofanova, R. Yu. Gnizdor, V. M. Murashko, A. I. Koryakin, and A.N. Nesterenko, “New Generation of SPT-100,” in 32nd International Electric Propulsion Conference, Wiesbaden, Germany, September 11–15, 2011, Paper IEPC-2011-041. O. A. Mitrofanova, R. Yu. Gnizdor, V. M. Murashko, A. I. Koryakin, and A.N. Nesterenko, “New Generation of SPT-100,” in 32nd International Electric Propulsion Conference, Wiesbaden, Germany, September 11–15, 2011, Paper IEPC-2011-041.
7.
go back to reference A. A. Bykov, V. Yu. Popov, A. G. Sveshnikov, and S. A. Yakunin, “Inner transitional layers for potential in a strongly magnetized plasma,” Mat. Model. 1 (6), 33–47 (1989).MathSciNetMATH A. A. Bykov, V. Yu. Popov, A. G. Sveshnikov, and S. A. Yakunin, “Inner transitional layers for potential in a strongly magnetized plasma,” Mat. Model. 1 (6), 33–47 (1989).MathSciNetMATH
9.
go back to reference B. I. Volkov and S. A. Yakunin, Mathematical Problems of Plasma Optics, Nov. Zhizni, Nauke, Tekh., Ser.: Mat., Kibern., No. 11 (Znanie, Moscow, 1982). B. I. Volkov and S. A. Yakunin, Mathematical Problems of Plasma Optics, Nov. Zhizni, Nauke, Tekh., Ser.: Mat., Kibern., No. 11 (Znanie, Moscow, 1982).
10.
go back to reference G. I. Budker, Collection of Works (Nauka, Moscow, 1982) [in Russian]. G. I. Budker, Collection of Works (Nauka, Moscow, 1982) [in Russian].
12.
go back to reference M. B. Gavrikov, Two-Fluid Electromagnetic Hydrodynamics (KRASAND, Moscow, 2018) [in Russian]. M. B. Gavrikov, Two-Fluid Electromagnetic Hydrodynamics (KRASAND, Moscow, 2018) [in Russian].
13.
go back to reference V. A. Vshivkov, G. I. Dudnikova, Yu. P. Zakharov, and A. M. Orishich, Generation of Plasma Perturbations under Collisionless Interaction of Plasma Flows (Inst. Teor. Prikl. Mekh., Sib. Otd., Akad. Nauk SSSR, Novosibirsk, 1987), preprint No. 20-87 [in Russian]. V. A. Vshivkov, G. I. Dudnikova, Yu. P. Zakharov, and A. M. Orishich, Generation of Plasma Perturbations under Collisionless Interaction of Plasma Flows (Inst. Teor. Prikl. Mekh., Sib. Otd., Akad. Nauk SSSR, Novosibirsk, 1987), preprint No. 20-87 [in Russian].
15.
go back to reference L. Spitzer, Physics of Fully Ionized Gases, 2nd ed. (Interscience, New York, 1962, Mir, Moscow, 1965). L. Spitzer, Physics of Fully Ionized Gases, 2nd ed. (Interscience, New York, 1962, Mir, Moscow, 1965).
16.
go back to reference V. S. Imshennik, “On the thermal conductivity of plasma,” Sov. Astron. 5 (4), 495–497 (1962). V. S. Imshennik, “On the thermal conductivity of plasma,” Sov. Astron. 5 (4), 495–497 (1962).
17.
go back to reference S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases (Cambridge University Press, Cambridge, 1952; Inostr. Lit., Moscow, 1960). S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases (Cambridge University Press, Cambridge, 1952; Inostr. Lit., Moscow, 1960).
18.
go back to reference L. D. Landau, “The kinetic equation in the case of Coulomb interaction,” Zh. Eksp. Teor. Fiz. 7 (2), 203–209 (1937).MATH L. D. Landau, “The kinetic equation in the case of Coulomb interaction,” Zh. Eksp. Teor. Fiz. 7 (2), 203–209 (1937).MATH
20.
go back to reference A. I. Morozov, “Wall conduction in a highly magnetized plasma,” J. Appl. Mech. Tech. Phys. 9 (3), 249–251 (1968).CrossRef A. I. Morozov, “Wall conduction in a highly magnetized plasma,” J. Appl. Mech. Tech. Phys. 9 (3), 249–251 (1968).CrossRef
21.
go back to reference Yu. S. Sigov, Computational Experiment: A Bridge between the Past and the Future of Plasma Physics. Selected Works, Compiled by G. I. Zmievskaia and V. D. Levchenko (Fizmatlit, Moscow, 2001 [in Russian]. Yu. S. Sigov, Computational Experiment: A Bridge between the Past and the Future of Plasma Physics. Selected Works, Compiled by G. I. Zmievskaia and V. D. Levchenko (Fizmatlit, Moscow, 2001 [in Russian].
22.
go back to reference Yu. A. Berezin and V. A. Vshivkov, Particle Method in Rarefied Plasma Dynamics (Nauka, Novosibirsk, 1980) [in Russian]. Yu. A. Berezin and V. A. Vshivkov, Particle Method in Rarefied Plasma Dynamics (Nauka, Novosibirsk, 1980) [in Russian].
23.
go back to reference R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles (McGraw-Hill, New York, 1981; Mir, Moscow, 1987). R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles (McGraw-Hill, New York, 1981; Mir, Moscow, 1987).
24.
go back to reference C. K. Birdsall and A. B. Langdon, Plasma Physics via Computer Simulation (McGraw-Hill, New York, 1985; E-nergoatomizdat, Moscow, 1989). C. K. Birdsall and A. B. Langdon, Plasma Physics via Computer Simulation (McGraw-Hill, New York, 1985; E-nergoatomizdat, Moscow, 1989).
25.
go back to reference A. A. Arsen’ev, Lectures on Kinetic Equations (Nauka, Moscow, 1992) [in Russian].MATH A. A. Arsen’ev, Lectures on Kinetic Equations (Nauka, Moscow, 1992) [in Russian].MATH
27.
go back to reference H. A. Lorentz, De Theorie van Maxwell (1900–1902) (Brill, Leiden, 1925); Electromagnetic Field Theory (ONTI, Moscow, 1933) [in Russian]. H. A. Lorentz, De Theorie van Maxwell (1900–1902) (Brill, Leiden, 1925); Electromagnetic Field Theory (ONTI, Moscow, 1933) [in Russian].
Metadata
Title
Hybrid Model of a Stationary Plasma Thruster Taking into Account the Finite Electron Mass
Authors
M. B. Gavrikov
A. A. Taiurskii
Publication date
01-12-2022
Publisher
Pleiades Publishing
Published in
Mathematical Models and Computer Simulations / Issue 6/2022
Print ISSN: 2070-0482
Electronic ISSN: 2070-0490
DOI
https://doi.org/10.1134/S2070048222060060

Other articles of this Issue 6/2022

Mathematical Models and Computer Simulations 6/2022 Go to the issue

Premium Partner