Skip to main content
Erschienen in: Mathematical Models and Computer Simulations 6/2022

01.12.2022

Hybrid Model of a Stationary Plasma Thruster Taking into Account the Finite Electron Mass

verfasst von: M. B. Gavrikov, A. A. Taiurskii

Erschienen in: Mathematical Models and Computer Simulations | Ausgabe 6/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A mathematical model is proposed for studying the processes in a stationary plasma thruster (SPT), taking into account the ionization of the working substance, xenon, based on the hybrid equations of electromagnetic hydrodynamics (EMHD) of the plasma, which fully take into account the inertia of electrons. The choice of an EMHD model for studying plasma processes is predetermined by their small scale and low concentration of plasma particles in an SPT. The 1D2V case of plane symmetry is considered in detail, for which a numerical algorithm for studying solutions of hybrid equations of EMHD equations based on the method of macroparticles is constructed. A number of fundamental questions are solved: calculation of average values, interpolation, construction of the initial distribution of macroparticles, the choice of boundary conditions for the electric field, etc. The results of calculations with and without allowance for induction fields in a plasma thruster are presented. The effect of induction fields generated by plasma currents on processes in an SPT and the role of electron inertia have not been studied before, and the results obtained are original. In particular, a new nontraditional scheme for calculating the electric field based on the generalized Ohm’s law is proposed, which in EMHD is reduced to a boundary value problem for an elliptic system of equations for the components of the electric field and, among other things, requires setting boundary conditions. The need for the spatial and temporal averaging of electromagnetic fields when calculating the acceleration of the thruster plasma, taking into account the induction field, is an important result.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat K. N. Kozubskii, V. M. Murashko, Yu. P. Rylov, Yu. V. Trifonov, V. P. Khodnenko, V. Kim, G. A. Popov, and V. A. Obukhov, “Stationary plasma thrusters operate in space,” Plasma Phys. Rep. 29 (3), 251–266 (2003). https://doi.org/10.1134/1.1561120CrossRef K. N. Kozubskii, V. M. Murashko, Yu. P. Rylov, Yu. V. Trifonov, V. P. Khodnenko, V. Kim, G. A. Popov, and V. A. Obukhov, “Stationary plasma thrusters operate in space,” Plasma Phys. Rep. 29 (3), 251–266 (2003). https://​doi.​org/​10.​1134/​1.​1561120CrossRef
2.
Zurück zum Zitat V. Kim, K. N. Kozubsky, V. M. Murashko, and A. V. Semenkin, “History of the Hall Thrusters development in USSR,” in 30th International Electric Propulsion Conference, Florence, Italy, September 17–20, 2007, Paper IEPC-2007-142. V. Kim, K. N. Kozubsky, V. M. Murashko, and A. V. Semenkin, “History of the Hall Thrusters development in USSR,” in 30th International Electric Propulsion Conference, Florence, Italy, September 17–20, 2007, Paper IEPC-2007-142.
3.
Zurück zum Zitat V. P. Kim, A. V. Semenkin, and S. A. Khartov, Design and Physical Features of Engines with Closed Electron Drift (Mosk. Aviats. Inst., Moscow, 2016) [in Russian]. V. P. Kim, A. V. Semenkin, and S. A. Khartov, Design and Physical Features of Engines with Closed Electron Drift (Mosk. Aviats. Inst., Moscow, 2016) [in Russian].
4.
Zurück zum Zitat A. I. Morozov, Introduction to Plasmadynamics (Fizmatlit, Moscow, 2006) [in Russian]. A. I. Morozov, Introduction to Plasmadynamics (Fizmatlit, Moscow, 2006) [in Russian].
5.
Zurück zum Zitat O. A. Mitrofanova, R. Yu. Gnizdor, V. M. Murashko, A. I. Koryakin, and A.N. Nesterenko, “New Generation of SPT-100,” in 32nd International Electric Propulsion Conference, Wiesbaden, Germany, September 11–15, 2011, Paper IEPC-2011-041. O. A. Mitrofanova, R. Yu. Gnizdor, V. M. Murashko, A. I. Koryakin, and A.N. Nesterenko, “New Generation of SPT-100,” in 32nd International Electric Propulsion Conference, Wiesbaden, Germany, September 11–15, 2011, Paper IEPC-2011-041.
7.
Zurück zum Zitat A. A. Bykov, V. Yu. Popov, A. G. Sveshnikov, and S. A. Yakunin, “Inner transitional layers for potential in a strongly magnetized plasma,” Mat. Model. 1 (6), 33–47 (1989).MathSciNetMATH A. A. Bykov, V. Yu. Popov, A. G. Sveshnikov, and S. A. Yakunin, “Inner transitional layers for potential in a strongly magnetized plasma,” Mat. Model. 1 (6), 33–47 (1989).MathSciNetMATH
9.
Zurück zum Zitat B. I. Volkov and S. A. Yakunin, Mathematical Problems of Plasma Optics, Nov. Zhizni, Nauke, Tekh., Ser.: Mat., Kibern., No. 11 (Znanie, Moscow, 1982). B. I. Volkov and S. A. Yakunin, Mathematical Problems of Plasma Optics, Nov. Zhizni, Nauke, Tekh., Ser.: Mat., Kibern., No. 11 (Znanie, Moscow, 1982).
10.
Zurück zum Zitat G. I. Budker, Collection of Works (Nauka, Moscow, 1982) [in Russian]. G. I. Budker, Collection of Works (Nauka, Moscow, 1982) [in Russian].
11.
12.
Zurück zum Zitat M. B. Gavrikov, Two-Fluid Electromagnetic Hydrodynamics (KRASAND, Moscow, 2018) [in Russian]. M. B. Gavrikov, Two-Fluid Electromagnetic Hydrodynamics (KRASAND, Moscow, 2018) [in Russian].
13.
Zurück zum Zitat V. A. Vshivkov, G. I. Dudnikova, Yu. P. Zakharov, and A. M. Orishich, Generation of Plasma Perturbations under Collisionless Interaction of Plasma Flows (Inst. Teor. Prikl. Mekh., Sib. Otd., Akad. Nauk SSSR, Novosibirsk, 1987), preprint No. 20-87 [in Russian]. V. A. Vshivkov, G. I. Dudnikova, Yu. P. Zakharov, and A. M. Orishich, Generation of Plasma Perturbations under Collisionless Interaction of Plasma Flows (Inst. Teor. Prikl. Mekh., Sib. Otd., Akad. Nauk SSSR, Novosibirsk, 1987), preprint No. 20-87 [in Russian].
15.
Zurück zum Zitat L. Spitzer, Physics of Fully Ionized Gases, 2nd ed. (Interscience, New York, 1962, Mir, Moscow, 1965). L. Spitzer, Physics of Fully Ionized Gases, 2nd ed. (Interscience, New York, 1962, Mir, Moscow, 1965).
16.
Zurück zum Zitat V. S. Imshennik, “On the thermal conductivity of plasma,” Sov. Astron. 5 (4), 495–497 (1962). V. S. Imshennik, “On the thermal conductivity of plasma,” Sov. Astron. 5 (4), 495–497 (1962).
17.
Zurück zum Zitat S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases (Cambridge University Press, Cambridge, 1952; Inostr. Lit., Moscow, 1960). S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases (Cambridge University Press, Cambridge, 1952; Inostr. Lit., Moscow, 1960).
18.
Zurück zum Zitat L. D. Landau, “The kinetic equation in the case of Coulomb interaction,” Zh. Eksp. Teor. Fiz. 7 (2), 203–209 (1937).MATH L. D. Landau, “The kinetic equation in the case of Coulomb interaction,” Zh. Eksp. Teor. Fiz. 7 (2), 203–209 (1937).MATH
20.
Zurück zum Zitat A. I. Morozov, “Wall conduction in a highly magnetized plasma,” J. Appl. Mech. Tech. Phys. 9 (3), 249–251 (1968).CrossRef A. I. Morozov, “Wall conduction in a highly magnetized plasma,” J. Appl. Mech. Tech. Phys. 9 (3), 249–251 (1968).CrossRef
21.
Zurück zum Zitat Yu. S. Sigov, Computational Experiment: A Bridge between the Past and the Future of Plasma Physics. Selected Works, Compiled by G. I. Zmievskaia and V. D. Levchenko (Fizmatlit, Moscow, 2001 [in Russian]. Yu. S. Sigov, Computational Experiment: A Bridge between the Past and the Future of Plasma Physics. Selected Works, Compiled by G. I. Zmievskaia and V. D. Levchenko (Fizmatlit, Moscow, 2001 [in Russian].
22.
Zurück zum Zitat Yu. A. Berezin and V. A. Vshivkov, Particle Method in Rarefied Plasma Dynamics (Nauka, Novosibirsk, 1980) [in Russian]. Yu. A. Berezin and V. A. Vshivkov, Particle Method in Rarefied Plasma Dynamics (Nauka, Novosibirsk, 1980) [in Russian].
23.
Zurück zum Zitat R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles (McGraw-Hill, New York, 1981; Mir, Moscow, 1987). R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles (McGraw-Hill, New York, 1981; Mir, Moscow, 1987).
24.
Zurück zum Zitat C. K. Birdsall and A. B. Langdon, Plasma Physics via Computer Simulation (McGraw-Hill, New York, 1985; E-nergoatomizdat, Moscow, 1989). C. K. Birdsall and A. B. Langdon, Plasma Physics via Computer Simulation (McGraw-Hill, New York, 1985; E-nergoatomizdat, Moscow, 1989).
25.
Zurück zum Zitat A. A. Arsen’ev, Lectures on Kinetic Equations (Nauka, Moscow, 1992) [in Russian].MATH A. A. Arsen’ev, Lectures on Kinetic Equations (Nauka, Moscow, 1992) [in Russian].MATH
27.
Zurück zum Zitat H. A. Lorentz, De Theorie van Maxwell (1900–1902) (Brill, Leiden, 1925); Electromagnetic Field Theory (ONTI, Moscow, 1933) [in Russian]. H. A. Lorentz, De Theorie van Maxwell (1900–1902) (Brill, Leiden, 1925); Electromagnetic Field Theory (ONTI, Moscow, 1933) [in Russian].
Metadaten
Titel
Hybrid Model of a Stationary Plasma Thruster Taking into Account the Finite Electron Mass
verfasst von
M. B. Gavrikov
A. A. Taiurskii
Publikationsdatum
01.12.2022
Verlag
Pleiades Publishing
Erschienen in
Mathematical Models and Computer Simulations / Ausgabe 6/2022
Print ISSN: 2070-0482
Elektronische ISSN: 2070-0490
DOI
https://doi.org/10.1134/S2070048222060060

Weitere Artikel der Ausgabe 6/2022

Mathematical Models and Computer Simulations 6/2022 Zur Ausgabe

Premium Partner