Skip to main content
Top

2024 | OriginalPaper | Chapter

Hydrate-Based Hydrogen Storage and Transportation System: Energy, Exergy, Economic Analysis

Authors : Haofeng Lin, Yanhong Wang, Xuemei Lang, Gang Li, Erkai Lu, Wenlong Tian, Shuanshi Fan

Published in: Proceedings of the Fifth International Technical Symposium on Deepwater Oil and Gas Engineering

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

With the rapid depletion of non-renewable fossil fuels that produce greenhouse gas, hydrogen is poised to emerge as a leading clean energy source in the future energy structure. However, a significant challenge in establishing a hydrogen economy for countries with uneven energy distribution is the development of efficient and low-cost hydrogen storage technologies. Therefore, current study proposes the technology of hydrated hydrogen storage and conducts a comprehensive study of the entire system composed of hydrogen hydrate production, transportation and regasification by 3E analysis (energy, exergy, and economic). The results indicate that the specified power consumption (SPC) of the entire system is 7.46 kWh/kg H2, with the SPC of the hydrogen storage process being 4.02 kWh/kg H2. The exergy loss of the system is mainly in hydrogen storage process, with exergy efficiency of 35.65%. Additionally, at a capacity of 1TPD (tons per day), the estimated levelized cost of hydrogen (LCOH) is 28.12 CNY/kg H2. Sensitivity analysis is incorporated to assess how the scale, distance, and electricity cost influence the LCOH eventually. It can be seen that scale and distance are the main factors affecting the cost, so the technology is suitable for medium-scale and short-distance hydrogen transportation. The miniaturization and low energy consumption of hydrated hydrogen storage technology lay the foundation for its industrial development, and the entire system is theoretically feasible. It is recommended that numerical simulation studies be conducted on hydrate formation unit in the future to accelerate the industrialization process of hydrate storage technology.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Paris Agreement: United Nations Framework Convention on Climate Change. Paris: UN (2015) Paris Agreement: United Nations Framework Convention on Climate Change. Paris: UN (2015)
2.
go back to reference International Energy Agency. The Future of Hydrogen. Japan: IEA (2019) International Energy Agency. The Future of Hydrogen. Japan: IEA (2019)
3.
go back to reference Florusse, L.J., Peters, C.J., Schoonman, J., et al.: Stable low-pressure hydrogen clusters stored in a binary clathrate hydrate. Science 306(5695), 469–471 (2004)CrossRef Florusse, L.J., Peters, C.J., Schoonman, J., et al.: Stable low-pressure hydrogen clusters stored in a binary clathrate hydrate. Science 306(5695), 469–471 (2004)CrossRef
4.
go back to reference Komatsu, H., Yoshioka, H., Ota, M., et al.: Phase equilibrium measurements of hydrogen-tetrahydrofuran and hydrogen-cyclopentane binary clathrate hydrate systems. J. Chem. Eng. Data 55(6), 2214–2218 (2010)CrossRef Komatsu, H., Yoshioka, H., Ota, M., et al.: Phase equilibrium measurements of hydrogen-tetrahydrofuran and hydrogen-cyclopentane binary clathrate hydrate systems. J. Chem. Eng. Data 55(6), 2214–2218 (2010)CrossRef
5.
go back to reference Trueba, A.T., Rovetto, L.J., Florusse, L.J., et al.: Phase equilibrium measurements of structure II clathrate hydrates of hydrogen with various promoters. Fluid Phase Equilib. 307(1), 6–10 (2011)CrossRef Trueba, A.T., Rovetto, L.J., Florusse, L.J., et al.: Phase equilibrium measurements of structure II clathrate hydrates of hydrogen with various promoters. Fluid Phase Equilib. 307(1), 6–10 (2011)CrossRef
6.
go back to reference Davoodabadi, A., Mahmoudi, A., Ghasemi, H.: The potential of hydrogen hydrate as a future hydrogen storage medium. Iscience 24(1), 35 (2021)CrossRef Davoodabadi, A., Mahmoudi, A., Ghasemi, H.: The potential of hydrogen hydrate as a future hydrogen storage medium. Iscience 24(1), 35 (2021)CrossRef
7.
go back to reference Yang, H.J., Fan, S.S., Lang, X.M., et al.: Process analysis of hydrogen storage in the hydrate form by utilization of liquefied natural gas cold energy. In: Proceedings of the International Conference on Materials Science and Information Technology (MSIT 2011), Singapore, SINGAPORE, F Sep 16–18, 2011. Trans Tech Publications Ltd: DURNTEN-ZURICH (2012) Yang, H.J., Fan, S.S., Lang, X.M., et al.: Process analysis of hydrogen storage in the hydrate form by utilization of liquefied natural gas cold energy. In: Proceedings of the International Conference on Materials Science and Information Technology (MSIT 2011), Singapore, SINGAPORE, F Sep 16–18, 2011. Trans Tech Publications Ltd: DURNTEN-ZURICH (2012)
8.
go back to reference Pan, J., Li, M.F., Li, R., et al.: Design and analysis of LNG cold energy cascade utilization system integrating light hydrocarbon separation, organic Rankine cycle and direct cooling. Appl. Therm. Eng. 213, 13 (2022)CrossRef Pan, J., Li, M.F., Li, R., et al.: Design and analysis of LNG cold energy cascade utilization system integrating light hydrocarbon separation, organic Rankine cycle and direct cooling. Appl. Therm. Eng. 213, 13 (2022)CrossRef
9.
go back to reference Tian, Z., Qi, Z.X., Gan, W.L., et al.: A novel negative carbon-emission, cooling, and power generation system based on combined LNG regasification and waste heat recovery: Energy, exergy, economic, environmental (4E) evaluations. Energy 257, 18 (2022)CrossRef Tian, Z., Qi, Z.X., Gan, W.L., et al.: A novel negative carbon-emission, cooling, and power generation system based on combined LNG regasification and waste heat recovery: Energy, exergy, economic, environmental (4E) evaluations. Energy 257, 18 (2022)CrossRef
10.
go back to reference Veluswamy, H.P., Linga, P.: Macroscopic kinetics of hydrate formation of mixed hydrates of hydrogen/tetrahydrofuran for hydrogen storage. Int. J. Hydrogen Energy 38(11), 4587–4596 (2013)CrossRef Veluswamy, H.P., Linga, P.: Macroscopic kinetics of hydrate formation of mixed hydrates of hydrogen/tetrahydrofuran for hydrogen storage. Int. J. Hydrogen Energy 38(11), 4587–4596 (2013)CrossRef
11.
go back to reference Lang, X.M., Zheng, C.J., Fan, S.S., et al.: ``Similar self-preservation” and decomposition kinetics of tetrahydrofuran-hydrogen hydrate particles. Int. J. Hydrogen Energy 47(13), 8457–8466 (2022)CrossRef Lang, X.M., Zheng, C.J., Fan, S.S., et al.: ``Similar self-preservation” and decomposition kinetics of tetrahydrofuran-hydrogen hydrate particles. Int. J. Hydrogen Energy 47(13), 8457–8466 (2022)CrossRef
12.
go back to reference SMITH R. Chemical Process Design and Integration[M]. John Wiley & Sons Ltd, 2005 SMITH R. Chemical Process Design and Integration[M]. John Wiley & Sons Ltd, 2005
13.
go back to reference Luyben, W.L.: Capital cost of compressors for conceptual design. Chem. Eng. Proc.-Process Intensification 126, 206–209 (2018)CrossRef Luyben, W.L.: Capital cost of compressors for conceptual design. Chem. Eng. Proc.-Process Intensification 126, 206–209 (2018)CrossRef
14.
go back to reference Towler, G., Sinnott, R.K.: Chemical Engineering Design Principles, Practice and Economics of Plant and Process Design. 2nd ed. Elsevier (2013) Towler, G., Sinnott, R.K.: Chemical Engineering Design Principles, Practice and Economics of Plant and Process Design. 2nd ed. Elsevier (2013)
15.
go back to reference LIANG Z B, CHEN S Z. Chemical Engineering Design[M]. Chemical Industry Press, 2015 LIANG Z B, CHEN S Z. Chemical Engineering Design[M]. Chemical Industry Press, 2015
16.
go back to reference Anderson, R., Chapoy, A., Tohidi, B.: Phase relations and binary clathrate hydrate formation in the system H2-THF-H2O. Langmuir 23(6), 3440–3444 (2007)CrossRef Anderson, R., Chapoy, A., Tohidi, B.: Phase relations and binary clathrate hydrate formation in the system H2-THF-H2O. Langmuir 23(6), 3440–3444 (2007)CrossRef
17.
go back to reference Hashimoto, S., Sugahara, T., Sato, H., et al.: Thermodynamic stability of H2 + tetrahydrofuran mixed gas hydrate in nonstoichiometric aqueous solutions. J. Chem. Eng. Data 52(2), 517–520 (2007)CrossRef Hashimoto, S., Sugahara, T., Sato, H., et al.: Thermodynamic stability of H2 + tetrahydrofuran mixed gas hydrate in nonstoichiometric aqueous solutions. J. Chem. Eng. Data 52(2), 517–520 (2007)CrossRef
18.
go back to reference Lee, H., Haider, J., Qyyum, M.A., et al.: An innovative high energy efficiency-based process enhancement of hydrogen liquefaction: energy, exergy, and economic perspectives. Fuel 320, 14 (2022)CrossRef Lee, H., Haider, J., Qyyum, M.A., et al.: An innovative high energy efficiency-based process enhancement of hydrogen liquefaction: energy, exergy, and economic perspectives. Fuel 320, 14 (2022)CrossRef
19.
go back to reference Niermann, M., Timmerberg, S., Drünert, S., et al.: Liquid organic hydrogen carriers and alternatives for international transport of renewable hydrogen. Renew. Sustain. Energy Rev. 135, 15 (2021) Niermann, M., Timmerberg, S., Drünert, S., et al.: Liquid organic hydrogen carriers and alternatives for international transport of renewable hydrogen. Renew. Sustain. Energy Rev. 135, 15 (2021)
20.
go back to reference Nordio, M., Wassie, S.A., Annaland, M.V., et al.: Techno-economic evaluation on a hybrid technology for low hydrogen concentration separation and purification from natural gas grid. Int. J. Hydrogen Energy 46(45), 23417–23435 (2021)CrossRef Nordio, M., Wassie, S.A., Annaland, M.V., et al.: Techno-economic evaluation on a hybrid technology for low hydrogen concentration separation and purification from natural gas grid. Int. J. Hydrogen Energy 46(45), 23417–23435 (2021)CrossRef
21.
go back to reference You, S.J.: Research on optimization of hydrogen supply mode for Xiongan New Area by CNPC. China University of Petroleum (Beijing), Beijing (2022) You, S.J.: Research on optimization of hydrogen supply mode for Xiongan New Area by CNPC. China University of Petroleum (Beijing), Beijing (2022)
Metadata
Title
Hydrate-Based Hydrogen Storage and Transportation System: Energy, Exergy, Economic Analysis
Authors
Haofeng Lin
Yanhong Wang
Xuemei Lang
Gang Li
Erkai Lu
Wenlong Tian
Shuanshi Fan
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-1309-7_36