Skip to main content
Top

2024 | OriginalPaper | Chapter

Study on Dissociation Characteristics of Type II Hydrogen Hydrate with ECP, CP, THF and 1, 3-DIOX Promoter

Authors : Zhimin Wu, Yanhong Wang, Shuanshi Fan, Xuemei Lang, Gang Li

Published in: Proceedings of the Fifth International Technical Symposium on Deepwater Oil and Gas Engineering

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Solidified Hydrogen Storage is the cleanest hydrogen storage method, which has a unique advantage from other traditional hydrogen storage methods, and is a relatively ideal and promising hydrogen storage technology. Among them, the use of sII type hydrogen hydrate to store hydrogen is the focus of current research, but its dissociation process and stability law are still unclear. In order to reveal the stability rule of hydrogen hydrate under low pressure, low pressure dissociation experiments were conducted on four types of sIIhydrogen hydrate, THF, 1, 3-DIOX, ECP and CP. The dissociation rule of four types of sII hydrogen hydrate under different temperatures was studied mainly by direct depressurization method. The results show that when the temperature is 248K, the dissociation ratio of hydrogen hydrate is as follows: CP-H2 > 1,3-DIOX-H2 > ECP-H2 > THF-H2; when the temperature is 253K, the dissociation ratio of hydrogen hydrate is as follows:CP-H2 > ECP-H2 > 1,3-DIOX-H2 > THF-H2; when the temperature is 258K, the dissociation ratio of hydrogen hydrate is as follows: 1, 3-DIOX-H2 > CP-H2 > ECP-H2 > THF-H2; when the temperature is 264K, the dissociation ratio of hydrogen hydrate is as follows: THF-H2 > 1,3-DIOX-H2 > ECP-H2 > CP-H2;when the temperature is 268K, the dissociation ratio of hydrogen hydrate is as follows: CP-H2 > 1, 3-DIOX-H2 > ECP-H2 > THF-H2; when the temperature is 273K, the dissociation ratio of hydrogen hydrate is as follows: 1,3-DIOX-H2 > THF- H2 > ECP-H2 > CP-H2. It is also found that the abnormal dissociation temperature range of the four hydrogen hydrates is 248K-273K, and the dissociation ratio of 1,3-DIOX-H2 hydrate is the lowest at 258K, which is 49.23%. The lowest dissociation ratio of THF-H2 hydrate is 46.38% at 268K. At 273K, the decomposition rates of ECP-H2 and CP-H2 hydrate are the lowest, which are 42.3% and 40.45%, respectively. Hydrogen hydrate must be stored below 273K, but the lower temperature is not the better. The research results provide a theoretical basis for the stable storage and transportation of Solidified Hydrogen Storage under low pressure. Stable storage of hydrogen hydrate under low pressure without dissociation is feasible in principle. It is recommended that further systematic experiments be conducted to explore stable preservation at lower pressures.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Deng, Z., Fan, S., Wang, Y., et al.: High storage capacity and high formation rate of carbon dioxide hydrates via super-hydrophobic fluorinated graphenes. Energy 264, 126045 (2023)CrossRef Deng, Z., Fan, S., Wang, Y., et al.: High storage capacity and high formation rate of carbon dioxide hydrates via super-hydrophobic fluorinated graphenes. Energy 264, 126045 (2023)CrossRef
2.
go back to reference Seo, D., Lee, S., Moon, S., et al.: Investigating two synthetic routes for gas hydrate formation to control the trapping of methane from natural gas. Chem. Eng. J. 467, 143512 (2023)CrossRef Seo, D., Lee, S., Moon, S., et al.: Investigating two synthetic routes for gas hydrate formation to control the trapping of methane from natural gas. Chem. Eng. J. 467, 143512 (2023)CrossRef
3.
go back to reference Farhadian, A., Mirzakimov, U.Z., Semenov, M.E., et al.: Solidified methane storage using an efficient class of anionic surfactants under dynamic and static conditions: an experimental and computational investigation. ACS Appl. Energy Mater. 6(8), 4119–4132 (2023)CrossRef Farhadian, A., Mirzakimov, U.Z., Semenov, M.E., et al.: Solidified methane storage using an efficient class of anionic surfactants under dynamic and static conditions: an experimental and computational investigation. ACS Appl. Energy Mater. 6(8), 4119–4132 (2023)CrossRef
4.
go back to reference Kim, K., Truong-Lam, H.S., Lee, J.D., et al.: Facilitating clathrate hydrates with extremely rapid and high gas uptake for chemical-free carbon capture and methane storage. Energy 270, 126902 (2023)CrossRef Kim, K., Truong-Lam, H.S., Lee, J.D., et al.: Facilitating clathrate hydrates with extremely rapid and high gas uptake for chemical-free carbon capture and methane storage. Energy 270, 126902 (2023)CrossRef
5.
go back to reference Kvamme, B., Vasilev, A.: Black Sea gas hydrates: safe long terms storage of CO2 with environmentally friendly energy production. Sustain. Energy Fuels 7(6), 1466–1493 (2023)CrossRef Kvamme, B., Vasilev, A.: Black Sea gas hydrates: safe long terms storage of CO2 with environmentally friendly energy production. Sustain. Energy Fuels 7(6), 1466–1493 (2023)CrossRef
6.
go back to reference Zhao, Q., Chen, Z.-Y., Li, X.-S., et al.: Experimental study of CO2 hydrate formation under an electrostatic field. Energy 272, 127119 (2023)CrossRef Zhao, Q., Chen, Z.-Y., Li, X.-S., et al.: Experimental study of CO2 hydrate formation under an electrostatic field. Energy 272, 127119 (2023)CrossRef
7.
go back to reference Chen, S., Wang, Y., Lang, X., et al.: Rapid and high hydrogen storage in epoxycyclopentane hydrate at moderate pressure. Energy 268, 126638 (2023)CrossRef Chen, S., Wang, Y., Lang, X., et al.: Rapid and high hydrogen storage in epoxycyclopentane hydrate at moderate pressure. Energy 268, 126638 (2023)CrossRef
8.
go back to reference Liu, S., Zhang, W., Wu, H., et al.: Molecular hydrogen storage in binary H2-CH4 clathrate hydrates. J. Molec. Liquids 376, 121496 (2023)CrossRef Liu, S., Zhang, W., Wu, H., et al.: Molecular hydrogen storage in binary H2-CH4 clathrate hydrates. J. Molec. Liquids 376, 121496 (2023)CrossRef
9.
go back to reference Nguyen, N.N.: Prospect and challenges of hydrate-based hydrogen storage in the low-carbon future. Energy Fuels 37(14), 9771–9789 (2023)CrossRef Nguyen, N.N.: Prospect and challenges of hydrate-based hydrogen storage in the low-carbon future. Energy Fuels 37(14), 9771–9789 (2023)CrossRef
10.
go back to reference Zhang, J., Li, Y., Yin, Z., et al.: Coupling amino acid L-Val with THF for superior hydrogen hydrate kinetics: Implication for hydrate-based hydrogen storage. Chem. Eng. J. 467, 143459 (2023)CrossRef Zhang, J., Li, Y., Yin, Z., et al.: Coupling amino acid L-Val with THF for superior hydrogen hydrate kinetics: Implication for hydrate-based hydrogen storage. Chem. Eng. J. 467, 143459 (2023)CrossRef
11.
go back to reference Matizakurima, F., Babaee, S., Hashemi, H., et al.: Separation of xenon from noble gas mixtures of argon, krypton, and xenon using gas hydrate technology. Ind. Eng. Chem. Res. 62(36), 14484–14496 (2023)CrossRef Matizakurima, F., Babaee, S., Hashemi, H., et al.: Separation of xenon from noble gas mixtures of argon, krypton, and xenon using gas hydrate technology. Ind. Eng. Chem. Res. 62(36), 14484–14496 (2023)CrossRef
12.
go back to reference Xue, Q., Liu, F., Li, Z., et al.: Hydrate-based multistage biogas separation using a novel jet impingement stream reactor. Energy Fuels 37(15), 11142–11151 (2023)CrossRef Xue, Q., Liu, F., Li, Z., et al.: Hydrate-based multistage biogas separation using a novel jet impingement stream reactor. Energy Fuels 37(15), 11142–11151 (2023)CrossRef
13.
go back to reference Chu, H., Shin, K.: Highly-selective xenon–krypton separation using hydrate-based technology. Separat. Purif. Technol. 319, 12404 (2023)CrossRef Chu, H., Shin, K.: Highly-selective xenon–krypton separation using hydrate-based technology. Separat. Purif. Technol. 319, 12404 (2023)CrossRef
14.
go back to reference Saikia, T., Patil, S., Sultan, A.: Hydrogen hydrate promoters for gas storage—a review. Energies 16(6), 2667 (2023)CrossRef Saikia, T., Patil, S., Sultan, A.: Hydrogen hydrate promoters for gas storage—a review. Energies 16(6), 2667 (2023)CrossRef
15.
go back to reference Vos, W.L., Finger, L.W., Hemley, R.J., et al.: Novel H2–H2O clathrates at high pressures. Phys. Rev. Lett. 71(19), 3150–3153 (1993)CrossRef Vos, W.L., Finger, L.W., Hemley, R.J., et al.: Novel H2–H2O clathrates at high pressures. Phys. Rev. Lett. 71(19), 3150–3153 (1993)CrossRef
16.
go back to reference Mao, W.L., Mao, H.-K.: Hydrogen storage in molecular compounds. Proc. Natl. Acad. Sci. 101(3), 708–710 (2004)CrossRef Mao, W.L., Mao, H.-K.: Hydrogen storage in molecular compounds. Proc. Natl. Acad. Sci. 101(3), 708–710 (2004)CrossRef
17.
go back to reference Florusse, L.J., Peters, C.J., Schoonman, J., et al.: Stable low-pressure hydrogen clusters stored in a binary clathrate hydrate. Science 306(5695), 469–471 (2004)CrossRef Florusse, L.J., Peters, C.J., Schoonman, J., et al.: Stable low-pressure hydrogen clusters stored in a binary clathrate hydrate. Science 306(5695), 469–471 (2004)CrossRef
18.
go back to reference Handa, Y.P.: Calorimetric determinations of the compositions, enthalpies of dissociation, and heat capacities in the range 85 to 270 K for clathrate hydrates of xenon and krypton. J. Chem. Thermodyn. 18(9), 891–902 (1986)CrossRef Handa, Y.P.: Calorimetric determinations of the compositions, enthalpies of dissociation, and heat capacities in the range 85 to 270 K for clathrate hydrates of xenon and krypton. J. Chem. Thermodyn. 18(9), 891–902 (1986)CrossRef
19.
go back to reference Uchida, T., Kida, M., Nagao, J.: Dissociation termination of methane-ethane hydrates in temperature-ramping tests at atmospheric pressure below the melting point of ice. ChemPhysChem 12(9), 1652–1656 (2011)CrossRef Uchida, T., Kida, M., Nagao, J.: Dissociation termination of methane-ethane hydrates in temperature-ramping tests at atmospheric pressure below the melting point of ice. ChemPhysChem 12(9), 1652–1656 (2011)CrossRef
20.
go back to reference Stern, L.A., Circone, S., Kirby, S.H., et al.: Anomalous preservation of pure methane hydrate at 1 atm. J. Phys. Chem. B 105(9), 1756–1762 (2001)CrossRef Stern, L.A., Circone, S., Kirby, S.H., et al.: Anomalous preservation of pure methane hydrate at 1 atm. J. Phys. Chem. B 105(9), 1756–1762 (2001)CrossRef
21.
go back to reference Wang, S., Xu, J., Fan, S., et al.: Atmospheric preservation of CH4 hydrate above ice point: A potential application for high-density natural gas storage under moderate conditions. Fuel 293, 120482 (2021)CrossRef Wang, S., Xu, J., Fan, S., et al.: Atmospheric preservation of CH4 hydrate above ice point: A potential application for high-density natural gas storage under moderate conditions. Fuel 293, 120482 (2021)CrossRef
22.
go back to reference Li, X.-Y., Zhong, D.-L., Englezos, P., et al.: Insights into the self-preservation effect of methane hydrate at atmospheric pressure using high pressure DSC. J. Nat. Gas Sci. Eng. 86, 103738 (2021)CrossRef Li, X.-Y., Zhong, D.-L., Englezos, P., et al.: Insights into the self-preservation effect of methane hydrate at atmospheric pressure using high pressure DSC. J. Nat. Gas Sci. Eng. 86, 103738 (2021)CrossRef
23.
go back to reference Chen, J., Wu, J., Zeng, Y., et al.: Self-preservation effect exceeding 273.2 K by introducing deuteriumoxide to form methane hydrate. Chem. Eng. J. 433, 134591 (2022)CrossRef Chen, J., Wu, J., Zeng, Y., et al.: Self-preservation effect exceeding 273.2 K by introducing deuteriumoxide to form methane hydrate. Chem. Eng. J. 433, 134591 (2022)CrossRef
24.
go back to reference Takeya, S., Muromachi, S., Yamamoto, Y., et al.: Preservation of CO2 hydrate under different atmospheric conditions. Fluid Phase Equilibria 413, 137–141 (2016)CrossRef Takeya, S., Muromachi, S., Yamamoto, Y., et al.: Preservation of CO2 hydrate under different atmospheric conditions. Fluid Phase Equilibria 413, 137–141 (2016)CrossRef
25.
go back to reference Misyura, S.Y., Donskoy, I.G.: Dissociation kinetics of methane hydrate and CO2 hydrate for different granular composition. Fuel 262, 116614 (2020)CrossRef Misyura, S.Y., Donskoy, I.G.: Dissociation kinetics of methane hydrate and CO2 hydrate for different granular composition. Fuel 262, 116614 (2020)CrossRef
26.
go back to reference Falenty, A., Kuhs, W.F.: “Self-Preservation” of CO2 gas hydrates—surface microstructure and ice perfection. J. Phys. Chem. B 113(49), 15975–15988 (2009)CrossRef Falenty, A., Kuhs, W.F.: “Self-Preservation” of CO2 gas hydrates—surface microstructure and ice perfection. J. Phys. Chem. B 113(49), 15975–15988 (2009)CrossRef
27.
go back to reference Kaur, S.P., Ramachandran, C.N.: Hydrogen-tetrahydrofuran mixed hydrates: a computational study. Int. J. Hydrogen Energy 43(42), 19559–19566 (2018)CrossRef Kaur, S.P., Ramachandran, C.N.: Hydrogen-tetrahydrofuran mixed hydrates: a computational study. Int. J. Hydrogen Energy 43(42), 19559–19566 (2018)CrossRef
28.
go back to reference Belosudov, R.V., Bozhko, Y.Y., Zhdanov, R.K., et al.: Hydrogen hydrates: equation of state and self-preservation effect. Fluid Phase Equilibria 413, 220–228 (2016)CrossRef Belosudov, R.V., Bozhko, Y.Y., Zhdanov, R.K., et al.: Hydrogen hydrates: equation of state and self-preservation effect. Fluid Phase Equilibria 413, 220–228 (2016)CrossRef
29.
go back to reference Cai, J., Yan, R., Xu, C.-G., et al.: Formation and dissociation behavior studies of hydrogen hydrate in the presence of tetrahydrofuran by using high pressure DSC. Energy Procedia 158, 5149–5155 (2019)CrossRef Cai, J., Yan, R., Xu, C.-G., et al.: Formation and dissociation behavior studies of hydrogen hydrate in the presence of tetrahydrofuran by using high pressure DSC. Energy Procedia 158, 5149–5155 (2019)CrossRef
30.
go back to reference Lang, X., Zheng, C., Fan, S., et al.: “Similar self-preservation” and decomposition kinetics of tetrahydrofuran-hydrogen hydrate particles. Int. J. Hydrogen Energy 47(13), 8457–8466 (2022)CrossRef Lang, X., Zheng, C., Fan, S., et al.: “Similar self-preservation” and decomposition kinetics of tetrahydrofuran-hydrogen hydrate particles. Int. J. Hydrogen Energy 47(13), 8457–8466 (2022)CrossRef
31.
go back to reference Jianwei, D., Deqing, L., Dongliang, L., et al.: Experimental determination of the equilibrium conditions of binary gas hydrates of cyclopentane + oxygen, cyclopentane + nitrogen, and cyclopentane + hydrogen. Ind. Eng. Chem. Res. 49(22), 11797–11800 (2010)CrossRef Jianwei, D., Deqing, L., Dongliang, L., et al.: Experimental determination of the equilibrium conditions of binary gas hydrates of cyclopentane + oxygen, cyclopentane + nitrogen, and cyclopentane + hydrogen. Ind. Eng. Chem. Res. 49(22), 11797–11800 (2010)CrossRef
32.
go back to reference Makino, T., Sugahara, T., Ohgaki, K.: Stability boundaries of tetrahydrofuran + water system. J. Chem. Eng. Data 50(6), 2058–2060 (2005)CrossRef Makino, T., Sugahara, T., Ohgaki, K.: Stability boundaries of tetrahydrofuran + water system. J. Chem. Eng. Data 50(6), 2058–2060 (2005)CrossRef
33.
go back to reference Seol, J., Park, J., Shin, W.: Epoxycyclopentane hydrate for sustainable hydrate-based energy storage: notable improvements in thermodynamic condition and storage capacity. Chem. Commun. 56(60), 8368–8371 (2020)CrossRef Seol, J., Park, J., Shin, W.: Epoxycyclopentane hydrate for sustainable hydrate-based energy storage: notable improvements in thermodynamic condition and storage capacity. Chem. Commun. 56(60), 8368–8371 (2020)CrossRef
34.
go back to reference Trueba, A.T., Rovetto, L.J., Florusse, L.J., et al.: Phase equilibrium measurements of structure II clathrate hydrates of hydrogen with various promoters. Fluid Phase Equilib. 307(1), 6–10 (2011)CrossRef Trueba, A.T., Rovetto, L.J., Florusse, L.J., et al.: Phase equilibrium measurements of structure II clathrate hydrates of hydrogen with various promoters. Fluid Phase Equilib. 307(1), 6–10 (2011)CrossRef
35.
go back to reference Anderson, R., Chapoy, A., Tohidi, B.: Phase relations and binary clathrate hydrate formation in the system H2−THF−H2O. Langmuir 23(6), 3440–3444 (2007)CrossRef Anderson, R., Chapoy, A., Tohidi, B.: Phase relations and binary clathrate hydrate formation in the system H2−THF−H2O. Langmuir 23(6), 3440–3444 (2007)CrossRef
36.
go back to reference Dirdal, E.G., Arulanantham, C., Sefidroodi, H., et al.: Can cyclopentane hydrate formation be used to rank the performance of kinetic hydrate inhibitors? Chem. Eng. Sci. 82, 177–184 (2012)CrossRef Dirdal, E.G., Arulanantham, C., Sefidroodi, H., et al.: Can cyclopentane hydrate formation be used to rank the performance of kinetic hydrate inhibitors? Chem. Eng. Sci. 82, 177–184 (2012)CrossRef
Metadata
Title
Study on Dissociation Characteristics of Type II Hydrogen Hydrate with ECP, CP, THF and 1, 3-DIOX Promoter
Authors
Zhimin Wu
Yanhong Wang
Shuanshi Fan
Xuemei Lang
Gang Li
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-1309-7_35