Skip to main content
Top
Published in: Physics of Metals and Metallography 1/2020

01-01-2020 | THEORY OF METALS

Hydrogen as an Alkaline Metal. Electron Transport Phenomena

Author: V. T. Shvets

Published in: Physics of Metals and Metallography | Issue 1/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The pairwise effective interionic interaction, the electrical conductivity and thermal EMF coefficients, and the temperature coefficient of resistivity of liquid metallic hydrogen have been calculated in a wide range of densities and temperatures. This range includes both the values achieved in the experiment and those that exist in the central regions of the giant planets. The perturbation theory in the electron–proton interaction potential is used for this. The electrical resistivity is calculated up to the third-order terms of the perturbation theory. Their role proved to be significant. For the ionic subsystem, a hard-sphere model was used. The packing density is considered one of the adjustable parameters of the theory. It is obtained as a function of density and temperature from the analysis of the effective proton–proton interaction. Its adjustment was carried out at the point of transition of hydrogen to the metallic state. Due to the lack of relevant data for metallic hydrogen, the packing density was taken in the same way as for other alkali metals: lithium, sodium, and potassium at their melting point, obtained from neutron scattering experiments.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference V. L. Ginzburg, “What problems of physics and astrophysics seem are now to be especially important and interesting (thirty years later, already on the verge of XXI century),” Phys.–Usp. 42, 353–373 (1999).CrossRef V. L. Ginzburg, “What problems of physics and astrophysics seem are now to be especially important and interesting (thirty years later, already on the verge of XXI century),” Phys.–Usp. 42, 353–373 (1999).CrossRef
2.
go back to reference E. Wigner and N. V. Huntington, “On the possibility of a metallic modification of hydrogen,” J. Chem. Phys. 3, 764–770 (1935).CrossRef E. Wigner and N. V. Huntington, “On the possibility of a metallic modification of hydrogen,” J. Chem. Phys. 3, 764–770 (1935).CrossRef
3.
go back to reference P. Dias Ranga and F. Silvera Isaac, “Observation of the Wigner–Huntington transition to metallic hydrogen,” Science 355, 715–719 (2017).CrossRef P. Dias Ranga and F. Silvera Isaac, “Observation of the Wigner–Huntington transition to metallic hydrogen,” Science 355, 715–719 (2017).CrossRef
4.
go back to reference S. Deemyad and I. F. Silvera, “The melting line of hydrogen at high pressures,” Phys. Rev. Lett. 100, 155701 (2008).CrossRef S. Deemyad and I. F. Silvera, “The melting line of hydrogen at high pressures,” Phys. Rev. Lett. 100, 155701 (2008).CrossRef
5.
go back to reference S. T. Weir, A. C. Mitchell, and W. J. Nellis, “Metallization of fluid molecular hydrogen at 140 GPa (1.4 Mbar),” Phys. Rev. Lett. 76, 1860–1863 (1996).CrossRef S. T. Weir, A. C. Mitchell, and W. J. Nellis, “Metallization of fluid molecular hydrogen at 140 GPa (1.4 Mbar),” Phys. Rev. Lett. 76, 1860–1863 (1996).CrossRef
6.
go back to reference W. J. Nellis, S. T. Weir, and A. C. Mitchell, “Minimum metallic conductivity of fluid hydrogen at 140 GPa (1.4 Mbar),” Phys. Rev. B 59, 3434–3449 (1999).CrossRef W. J. Nellis, S. T. Weir, and A. C. Mitchell, “Minimum metallic conductivity of fluid hydrogen at 140 GPa (1.4 Mbar),” Phys. Rev. B 59, 3434–3449 (1999).CrossRef
7.
go back to reference W. J. Nellis, “Metastable solid metallic hydrogen,” Philos. Mag. B 79, 655–671 (1999).CrossRef W. J. Nellis, “Metastable solid metallic hydrogen,” Philos. Mag. B 79, 655–671 (1999).CrossRef
8.
go back to reference M. Bastea, A. C. Mitchell, and W. J. Nellis, “High pressure insulator-metal transition in molecular fluid oxygen,” Phys. Rev. Lett. 86, 3108–3112 (2001).CrossRef M. Bastea, A. C. Mitchell, and W. J. Nellis, “High pressure insulator-metal transition in molecular fluid oxygen,” Phys. Rev. Lett. 86, 3108–3112 (2001).CrossRef
9.
go back to reference R. Chau, A. C. Mitchell, R. W. Minich, and W. J. Nellis, “Metallization of fluid nitrogen and the Mott transition in highly compressed low-Z fluids,” Phys. Rev. Lett. 90, 245501(4). R. Chau, A. C. Mitchell, R. W. Minich, and W. J. Nellis, “Metallization of fluid nitrogen and the Mott transition in highly compressed low-Z fluids,” Phys. Rev. Lett. 90, 245501(4).
10.
go back to reference V. E. Fortov, V. Ya. Ternovoi, S. V. Kvitov, V. B. Mintsev, D. N. Nikolaev, A. A. Pyalling, and A. S. Filimonov, “Conductivity of non-ideal hydrogen plasma in the megabar range of dynamic pressures,” Pis’ma Zh. Eksp. Teor. Fiz. 69, 874–878 (1999). V. E. Fortov, V. Ya. Ternovoi, S. V. Kvitov, V. B. Mintsev, D. N. Nikolaev, A. A. Pyalling, and A. S. Filimonov, “Conductivity of non-ideal hydrogen plasma in the megabar range of dynamic pressures,” Pis’ma Zh. Eksp. Teor. Fiz. 69, 874–878 (1999).
11.
go back to reference V. Ya. Ternovoy, F. S. Filimonov, V. E. Fortov, S. V. Kvitov, D. N. Nikolaev, and A. A. Pyaling, “Thermodynamic properties and electrical conductivity of hydrogen under multiple shock compression to 150 GPa,” Physica B 265, 6–11 (1999).CrossRef V. Ya. Ternovoy, F. S. Filimonov, V. E. Fortov, S. V. Kvitov, D. N. Nikolaev, and A. A. Pyaling, “Thermodynamic properties and electrical conductivity of hydrogen under multiple shock compression to 150 GPa,” Physica B 265, 6–11 (1999).CrossRef
12.
go back to reference J. M. McMahon, M. A. Morales, C. Pierleoni, and D. M. Ceperley, “The properties of hydrogen and helium under extreme conditions,” Rev. Mod. Phys. 84, 1607–1653 (2012).CrossRef J. M. McMahon, M. A. Morales, C. Pierleoni, and D. M. Ceperley, “The properties of hydrogen and helium under extreme conditions,” Rev. Mod. Phys. 84, 1607–1653 (2012).CrossRef
13.
go back to reference J. McMinis, R. C. Clay, D. Lee, and M. A. Morales, “Molecular to atomic phase transition in hydrogen under high pressure,” Phys. Rev. Lett. 114, 105305 (2015).CrossRef J. McMinis, R. C. Clay, D. Lee, and M. A. Morales, “Molecular to atomic phase transition in hydrogen under high pressure,” Phys. Rev. Lett. 114, 105305 (2015).CrossRef
14.
go back to reference S. Azadi, B. Monserrat, W. M. C. Foulkes, and R. J. Needs, “Dissociation of high-pressure solid molecular hydrogen: A quantum Monte Carlo and anharmonic vibrational study,” Phys. Rev. Lett. 112, 165501 (2014).CrossRef S. Azadi, B. Monserrat, W. M. C. Foulkes, and R. J. Needs, “Dissociation of high-pressure solid molecular hydrogen: A quantum Monte Carlo and anharmonic vibrational study,” Phys. Rev. Lett. 112, 165501 (2014).CrossRef
15.
go back to reference V. T. Shvets, “High temperature equation of state of metallic hydrogen,” J. Exp. Theor. Phys. 104, 655–660 (2007).CrossRef V. T. Shvets, “High temperature equation of state of metallic hydrogen,” J. Exp. Theor. Phys. 104, 655–660 (2007).CrossRef
16.
go back to reference V. T. Shvets, S. V. Datsko, and Ye. K. Malinovskij, “Metallization degree of hydrogen at a pressure of 1.4 Mbar and a temperature a 3000 K,” Ukr. J. Phys. 52, 70–76 (2007). V. T. Shvets, S. V. Datsko, and Ye. K. Malinovskij, “Metallization degree of hydrogen at a pressure of 1.4 Mbar and a temperature a 3000 K,” Ukr. J. Phys. 52, 70–76 (2007).
17.
go back to reference J. Waseda and K. Suzuki, “Characteristics of soft core in pour potential and static structure in liquid metals,” Sci. Rep. Res. Inst., Tokio Univ. A 24, 139–184 (1973). J. Waseda and K. Suzuki, “Characteristics of soft core in pour potential and static structure in liquid metals,” Sci. Rep. Res. Inst., Tokio Univ. A 24, 139–184 (1973).
18.
go back to reference E. G. Brovman, Yu. Kholas, and A. Kagan, “On the structure of metallic hydrogen at zero pressure,” Zh. Eksp. Teor. Fiz. 61, 1300–1315 (1972). E. G. Brovman, Yu. Kholas, and A. Kagan, “On the structure of metallic hydrogen at zero pressure,” Zh. Eksp. Teor. Fiz. 61, 1300–1315 (1972).
19.
go back to reference E. G. Brovman, Yu. Kagan, and A. Kholas, “Properties of metallic hydrogen under pressure,” Sov. Phys. JETF 35, 783–787 (1972). E. G. Brovman, Yu. Kagan, and A. Kholas, “Properties of metallic hydrogen under pressure,” Sov. Phys. JETF 35, 783–787 (1972).
20.
go back to reference W. A. Harrison, Pseudopotentials in Theory of Metals (W. A. Benjamin, 1966; Mir, Moscow, 1968). W. A. Harrison, Pseudopotentials in Theory of Metals (W. A. Benjamin, 1966; Mir, Moscow, 1968).
21.
go back to reference V. T. Shvets, Method of Green Functions in Theory of Metals (Latstar, Odessa, 2002). V. T. Shvets, Method of Green Functions in Theory of Metals (Latstar, Odessa, 2002).
22.
go back to reference V. T. Shvets, Extreme State of Matter. Metallization of Gases (Grin’, Kherson) (in Ukrainian). V. T. Shvets, Extreme State of Matter. Metallization of Gases (Grin’, Kherson) (in Ukrainian).
23.
go back to reference T. V. Shvets and V. T. Shvets, “Higher-order perturbation-theory effects in the resistance of simple disordered metals,” Phys. Met. Metallogr. 111, 339–354 (2011).CrossRef T. V. Shvets and V. T. Shvets, “Higher-order perturbation-theory effects in the resistance of simple disordered metals,” Phys. Met. Metallogr. 111, 339–354 (2011).CrossRef
24.
go back to reference E. G. Brovman and Yu. Kagan, “Phonons in non-transition metals,” Usp. Fiz. Nauk 112, 369–426 (1974).CrossRef E. G. Brovman and Yu. Kagan, “Phonons in non-transition metals,” Usp. Fiz. Nauk 112, 369–426 (1974).CrossRef
25.
go back to reference D. J. M. Geldart and S. H. Vosko, “The screening function of an interacting electron gas,” Can. J. Phys. 44, 2137–2171 (1966).CrossRef D. J. M. Geldart and S. H. Vosko, “The screening function of an interacting electron gas,” Can. J. Phys. 44, 2137–2171 (1966).CrossRef
26.
go back to reference L. Ballentine and V. Heine, “On the theory of liquid metals,” Philos. Mag. 9, 617–622 (1964).CrossRef L. Ballentine and V. Heine, “On the theory of liquid metals,” Philos. Mag. 9, 617–622 (1964).CrossRef
27.
go back to reference V. T. Shvets, S. V. Savenko, and Ye. K. Malinovskii, “Ionic interaction and conductivity of metallic hydrogen,” Condens. Matter Phys. 9, 127–133 (2006).CrossRef V. T. Shvets, S. V. Savenko, and Ye. K. Malinovskii, “Ionic interaction and conductivity of metallic hydrogen,” Condens. Matter Phys. 9, 127–133 (2006).CrossRef
28.
go back to reference V. T. Shvets, “Effective proton-proton interaction and metallization of hydrogen,” JETP Lett. 95, 29–32 (2012).CrossRef V. T. Shvets, “Effective proton-proton interaction and metallization of hydrogen,” JETP Lett. 95, 29–32 (2012).CrossRef
Metadata
Title
Hydrogen as an Alkaline Metal. Electron Transport Phenomena
Author
V. T. Shvets
Publication date
01-01-2020
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 1/2020
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X20010159

Other articles of this Issue 1/2020

Physics of Metals and Metallography 1/2020 Go to the issue

STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Atom Probe Tomography of the VV751P Nickel-Based Superalloy