Skip to main content
Top
Published in: Physics of Metals and Metallography 1/2020

01-01-2020 | THEORY OF METALS

Simulation of Primary Radiation Damage in Nickel

Author: R. E. Voskoboinikov

Published in: Physics of Metals and Metallography | Issue 1/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The process of radiation damage formation in collision cascades initiated by primary knock-on atoms (PKAs) with energy EPKA = 5, 10, 15, and 20 keV in nickel at temperatures T = 100, 300, 600, 900, and 1200 K was studied using the molecular dynamics method. To ensure the statistical validity of the results, a series of 24 cascades was modeled for each pair of (EPKA, T) parameters. The simulation results were analyzed to determine the number NFP of Frenkel pairs, fractions of vacancies σvac and interstitial atoms σSIA in clusters of point defects, average sizes of vacancy 〈Nvac〉 and interstitial 〈NSIA〉 clusters, and average numbers of vacancy 〈Yvac〉 and interstitial 〈YSIA〉 clusters produced in collision cascades as functions of the PKA energy and simulation temperature. It was found that the relation 〈NFP〉 = 2 ± 0.9 × \(E_{\text{PKA}}^{{1.1 \pm 0.1}}\) holds true at all the examined values of (EPKA, T). The functional dependences of 〈σvac〉 and 〈σSIA〉 on EPKA were identical. The dependence of 〈σvac〉 follows that of 〈Yvac〉, while 〈σSIA〉 is governed by 〈NSIA〉 and the mobility of interstitials. The value of 〈Nvac〉 depends on the irradiation temperature and the thermal stability of vacancy clusters. These clusters are stable at T ≤ 300 K, and 〈Nvac〉 ∝ EPKA; at 600 ≤ T ≤ 900 K, 〈Nvac〉 ≈ 6 and 10, which corresponds to the sizes of regular stacking fault tetrahedra. The value of 〈YSIA〉 is proportional to 〈NFP〉 and, consequently, to EPKA in the entire range of PKA energies.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Handbook of Generation IV Nuclear Reactors 1st Edition, Ed. by I. Pioro, Woodhead Publishing Series in Energy: No. 103, (Woodhead, Duxford, 2016). Handbook of Generation IV Nuclear Reactors 1st Edition, Ed. by I. Pioro, Woodhead Publishing Series in Energy: No. 103, (Woodhead, Duxford, 2016).
2.
go back to reference B. Dominic, “Comparison of efficiency and power output of various power products,” presented at 1997International Gas Turbine Institute (IGTI) Turbo Expo. B. Dominic, “Comparison of efficiency and power output of various power products,” presented at 1997International Gas Turbine Institute (IGTI) Turbo Expo.
3.
go back to reference IAEA Advanced Reactors Information System (ARIS). https://aris.iaea.org/default.html. IAEA Advanced Reactors Information System (ARIS). https://​aris.​iaea.​org/​default.​html.​
4.
go back to reference K. Nordlund, M. Ghaly, R. S. Averback, M. Caturla, T. Diaz de la Rubia, and J. Tarus, “Defect production in collision cascades in elemental semiconductors and fcc metals,” Phys. Rev. B 57, 7556–7570 (1998).CrossRef K. Nordlund, M. Ghaly, R. S. Averback, M. Caturla, T. Diaz de la Rubia, and J. Tarus, “Defect production in collision cascades in elemental semiconductors and fcc metals,” Phys. Rev. B 57, 7556–7570 (1998).CrossRef
5.
go back to reference E. Zarkadoula, G. Samolyuk, H. Xue, H. Bei, and W. J. Weber, “Effects of two-temperature model on cascade evolution in Ni and NiFe,” Scr. Mater. 124, 6–10 (2016).CrossRef E. Zarkadoula, G. Samolyuk, H. Xue, H. Bei, and W. J. Weber, “Effects of two-temperature model on cascade evolution in Ni and NiFe,” Scr. Mater. 124, 6–10 (2016).CrossRef
8.
go back to reference Y. Mishin, “Atomistic modeling of the γ and γ' phases of the Ni-Al system,” Acta Mater. 52, 1451–1467 (2004).CrossRef Y. Mishin, “Atomistic modeling of the γ and γ' phases of the Ni-Al system,” Acta Mater. 52, 1451–1467 (2004).CrossRef
9.
go back to reference J. P. Biersack and J. F. Ziegler, “Refined universal potentials in atomic collisions,” Nucl. Instrum. Methods 194, 93–100 (1982).CrossRef J. P. Biersack and J. F. Ziegler, “Refined universal potentials in atomic collisions,” Nucl. Instrum. Methods 194, 93–100 (1982).CrossRef
10.
go back to reference C. Dimitrov, B. Sitaud, and O. Dimitrov, “Displacement threshold energies in Ni(Al) solid solutions and in Ni3Al,” J. Nucl. Mater. 208, 53–60 (1994).CrossRef C. Dimitrov, B. Sitaud, and O. Dimitrov, “Displacement threshold energies in Ni(Al) solid solutions and in Ni3Al,” J. Nucl. Mater. 208, 53–60 (1994).CrossRef
11.
go back to reference G. S. Was, Fundamentals of Radiation Materials Science—Metals and Alloys (Springer, Berlin, 2007). G. S. Was, Fundamentals of Radiation Materials Science—Metals and Alloys (Springer, Berlin, 2007).
12.
go back to reference K. Gärtner, D. Stock, B. Weber, G. Betz, M. Hautala, G. Hobler, M. Hou, S. Sarite, W. Eckstein, J. J. Jiménez-Rodríguez, A. M. C. Pérez-Martín, E. P. Andribet, V. Konoplev, A. Gras-Marti, M. Posselt, M. H. Shapiro, T. A. Tombrello, H. M. Urbassek, H. Hensel, Y. Yamamura, and W. Takeuchi, “Round robin computer simulation of ion transmission through crystalline layers,” Nucl. Instrum. Methods Phys. Res., Sect. B 102, 183–197 (1995). K. Gärtner, D. Stock, B. Weber, G. Betz, M. Hautala, G. Hobler, M. Hou, S. Sarite, W. Eckstein, J. J. Jiménez-Rodríguez, A. M. C. Pérez-Martín, E. P. Andribet, V. Konoplev, A. Gras-Marti, M. Posselt, M. H. Shapiro, T. A. Tombrello, H. M. Urbassek, H. Hensel, Y. Yamamura, and W. Takeuchi, “Round robin computer simulation of ion transmission through crystalline layers,” Nucl. Instrum. Methods Phys. Res., Sect. B 102, 183–197 (1995).
13.
go back to reference L. D. Landau and E. M. Lifshits, Mechanics: Volume 1 (Course of Theoretical Physics S) 3rd Edition (Butterworth-Heinemann, Oxford, 1976). L. D. Landau and E. M. Lifshits, Mechanics: Volume 1 (Course of Theoretical Physics S) 3rd Edition (Butterworth-Heinemann, Oxford, 1976).
14.
go back to reference M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon, Oxford, 1987). M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon, Oxford, 1987).
15.
go back to reference L. A. Marques, J. E. Rubio, M. Jaraiz, L. Enriquez, and J. Barbolla, “An improved molecular dynamics scheme for ion bombardment simulations,” Nucl. Instrum. Methods Phys. Res., Sect. B 102, 7–11 (1995). L. A. Marques, J. E. Rubio, M. Jaraiz, L. Enriquez, and J. Barbolla, “An improved molecular dynamics scheme for ion bombardment simulations,” Nucl. Instrum. Methods Phys. Res., Sect. B 102, 7–11 (1995).
16.
go back to reference R. E. Voskoboinikov, “Radiation defects in aluminum: MD simulations of collision cascades in the bulk of material,” Phys. Met. Metallogr. 120, 1–8 (2019).CrossRef R. E. Voskoboinikov, “Radiation defects in aluminum: MD simulations of collision cascades in the bulk of material,” Phys. Met. Metallogr. 120, 1–8 (2019).CrossRef
17.
go back to reference R. E. Voskoboinikov, “Radiation defects in aluminum. Simulation of primary damage in surface collision cascades,” Phys. Met. Metallogr. 120, 9–15 (2019).CrossRef R. E. Voskoboinikov, “Radiation defects in aluminum. Simulation of primary damage in surface collision cascades,” Phys. Met. Metallogr. 120, 9–15 (2019).CrossRef
18.
go back to reference R. E. Voskoboinikov, Yu. N. Osetsky, and D. J. Bacon, “Computer simulation of primary damage creation in displacement cascades in copper. I. Defect creation and cluster statistics,” J. Nucl. Mater. 377, 385–395 (2008).CrossRef R. E. Voskoboinikov, Yu. N. Osetsky, and D. J. Bacon, “Computer simulation of primary damage creation in displacement cascades in copper. I. Defect creation and cluster statistics,” J. Nucl. Mater. 377, 385–395 (2008).CrossRef
19.
go back to reference R. E. Voskoboinikov, Yu. N. Osetsky, and D. J. Bacon, “Statistics of primary damage creation in high-energy displacement cascades in copper and zirconium,” Nucl. Instrum. Methods Phys. Res., Sect. B 242, 68–70 (2006). R. E. Voskoboinikov, Yu. N. Osetsky, and D. J. Bacon, “Statistics of primary damage creation in high-energy displacement cascades in copper and zirconium,” Nucl. Instrum. Methods Phys. Res., Sect. B 242, 68–70 (2006).
20.
go back to reference R. E. Voskoboinikov, Yu. N. Osetsky, and D. J. Bacon, “Atomic-scale simulation of defect cluster formation in high-energy displacement cascades in zirconium,” ASTM STP1475, 299–314 (2006). R. E. Voskoboinikov, Yu. N. Osetsky, and D. J. Bacon, “Atomic-scale simulation of defect cluster formation in high-energy displacement cascades in zirconium,” ASTM STP1475, 299–314 (2006).
21.
go back to reference R. Voskoboinikov, “A contribution of L10 ordered crystal structure to the high radiation tolerance of γ-TiAl intermetallics,” Nucl. Instrum. Methods Phys. Res., Sect. B 460, 92–97 (2019). R. Voskoboinikov, “A contribution of L10 ordered crystal structure to the high radiation tolerance of γ-TiAl intermetallics,” Nucl. Instrum. Methods Phys. Res., Sect. B 460, 92–97 (2019).
22.
go back to reference R. Voskoboinikov, “An insight into radiation resistance of D019 Ti3Al intermetallics,” J. Nucl. Mater. 519, 239–246 (2019).CrossRef R. Voskoboinikov, “An insight into radiation resistance of D019 Ti3Al intermetallics,” J. Nucl. Mater. 519, 239–246 (2019).CrossRef
23.
go back to reference R. Voskoboinikov, “MD simulations of primary damage formation in L12 Ni3Al intermetallics,” J. Nucl. Mater. 522, 123–135 (2019).CrossRef R. Voskoboinikov, “MD simulations of primary damage formation in L12 Ni3Al intermetallics,” J. Nucl. Mater. 522, 123–135 (2019).CrossRef
24.
go back to reference R. E. Voskoboinikov, “MD simulations of collision cascades in the vicinity of a screw dislocation in aluminium,” Nucl. Instrum. Methods Phys. Res., Sect. B 303, 104–107 (2013). R. E. Voskoboinikov, “MD simulations of collision cascades in the vicinity of a screw dislocation in aluminium,” Nucl. Instrum. Methods Phys. Res., Sect. B 303, 104–107 (2013).
25.
go back to reference R. E. Voskoboinikov, “Interaction of collision cascades with an isolated edge dislocation in aluminium,” Nucl. Instrum. Methods Phys. Res., Sect. B 303, 125–128 (2013). R. E. Voskoboinikov, “Interaction of collision cascades with an isolated edge dislocation in aluminium,” Nucl. Instrum. Methods Phys. Res., Sect. B 303, 125–128 (2013).
26.
go back to reference F. A. Lindemann, “The calculation of molecular vibration frequencies,” Z. Phys. 11, 609–612 (1910). F. A. Lindemann, “The calculation of molecular vibration frequencies,” Z. Phys. 11, 609–612 (1910).
27.
go back to reference K. Nordlund and R. S. Averback, “Point defect movement and annealing in collision cascades,” Phys. Rev. B 56, 2421–2431 (1997).CrossRef K. Nordlund and R. S. Averback, “Point defect movement and annealing in collision cascades,” Phys. Rev. B 56, 2421–2431 (1997).CrossRef
28.
go back to reference C. D. Judge, “The Effects of Irradiation on Inconel X‑750,” PhD Thesis (McMaster University, 2015). http://hdl.handle.net/11375/18091 C. D. Judge, “The Effects of Irradiation on Inconel X‑750,” PhD Thesis (McMaster University, 2015). http://​hdl.​handle.​net/​11375/​18091
29.
go back to reference H. K. Zhang, Z. Yao, G. Morin, and M. Griffiths, “TEM characterization of in-reactor neutron irradiated CANDU spacer material Inconel X-750,” J. Nucl. Mater. 451, 88–96 (2014).CrossRef H. K. Zhang, Z. Yao, G. Morin, and M. Griffiths, “TEM characterization of in-reactor neutron irradiated CANDU spacer material Inconel X-750,” J. Nucl. Mater. 451, 88–96 (2014).CrossRef
30.
go back to reference K. W. Ingle, R. C. Perrin, and H. R. Schober, “Interstitial cluster in FCC metals,” J. Phys. F: Met. Phys. 11, 1161–1173 (1981).CrossRef K. W. Ingle, R. C. Perrin, and H. R. Schober, “Interstitial cluster in FCC metals,” J. Phys. F: Met. Phys. 11, 1161–1173 (1981).CrossRef
31.
go back to reference V. A. Borodin and R. E. Voskoboinikov. To be published. V. A. Borodin and R. E. Voskoboinikov. To be published.
Metadata
Title
Simulation of Primary Radiation Damage in Nickel
Author
R. E. Voskoboinikov
Publication date
01-01-2020
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 1/2020
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X20010196

Other articles of this Issue 1/2020

Physics of Metals and Metallography 1/2020 Go to the issue

STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Atom Probe Tomography of the VV751P Nickel-Based Superalloy