Skip to main content
Erschienen in: Physics of Metals and Metallography 1/2019

01.01.2019 | THEORY OF METALS

Radiation Defects in Aluminum: MD Simulations of Collision Cascades in the Bulk of Material

verfasst von: R. E. Voskoboinikov

Erschienen in: Physics of Metals and Metallography | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The molecular dynamics method has been used to simulate displacement cascades created by primary knock-on atoms (PKAs) with energies EPKA= 5, 10, 15, and 20 keV in aluminum at temperatures T = 100, 300, and 600 K. A series of 24 cascades was simulated for each pair of the parameters (EPKA, T) to ensure a representative sampling. The number of Frenkel pairs, the fraction of vacancies (εvac) and self-interstitial atoms (SIA) (εSIA) in point defect clusters, the average yield of vacancy (Yvac) and SIA (YSIA) clusters per cascade, and the average relaxation time τc have been determined as a function of (EPKA, T). It has been shown that displacement cascades of in aluminum decompose into several sub-cascades along PKA trajectory. Such a spatial structure of cascades is responsible for the absence of the dependence of the values of 〈εvac〉, 〈εSIA〉, 〈Nvac〉, 〈NSIA〉, and τc on the energy of PKAs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat R. E. Voskoboinikov, “Radiation Defects in Aluminum. Simulation of primary damage in surface collision cascades,” Phys. Met. Metallogr. 120, 9–15 (2019). R. E. Voskoboinikov, “Radiation Defects in Aluminum. Simulation of primary damage in surface collision cascades,” Phys. Met. Metallogr. 120, 9–15 (2019).
2.
Zurück zum Zitat R. R. Zope and Y. Mishin, “Interatomic potentials for atomistic simulations of the Ti–Al system,” Phys. Rev. B 68, 024102 (2003).CrossRef R. R. Zope and Y. Mishin, “Interatomic potentials for atomistic simulations of the Ti–Al system,” Phys. Rev. B 68, 024102 (2003).CrossRef
3.
Zurück zum Zitat J. P. Biersack and J. F. Ziegler, “Refined universal potentials in atomic collisions,” Nucl. Instrum. Methods 194, 93–100 (1982).CrossRef J. P. Biersack and J. F. Ziegler, “Refined universal potentials in atomic collisions,” Nucl. Instrum. Methods 194, 93–100 (1982).CrossRef
4.
Zurück zum Zitat K. Gärtner, D. Stock, B. Weber, G. Betz, M. Hautala, G. Hobler, M. Hou, S. Sarite, W. Eckstein, J. J. Jiménez-Rodríguez, A. M. C. Pérez-Martín, E. P. Andribet, V. Konoplev, A. Gras-Marti, M. Posselt, M. H. Shapiro, T. A. Tombrello, H. M. Urbassek, H. Hensel, Y. Yamamura, and W. Takeuchi, “Round robin computer simulation of ion transmission through crystalline layers,” Nucl. Instrum. Methods Phys. Res., Sect. B 102, 183–197 (1995). K. Gärtner, D. Stock, B. Weber, G. Betz, M. Hautala, G. Hobler, M. Hou, S. Sarite, W. Eckstein, J. J. Jiménez-Rodríguez, A. M. C. Pérez-Martín, E. P. Andribet, V. Konoplev, A. Gras-Marti, M. Posselt, M. H. Shapiro, T. A. Tombrello, H. M. Urbassek, H. Hensel, Y. Yamamura, and W. Takeuchi, “Round robin computer simulation of ion transmission through crystalline layers,” Nucl. Instrum. Methods Phys. Res., Sect. B 102, 183–197 (1995).
5.
Zurück zum Zitat H. I. Dawson, G. W. Iseler, A. S. Mehner, and J. W. Kauffman, “Determination of stage I recovery in pure aluminum following electron irradiation,” Phys. Lett. 18, 247–248 (1965).CrossRef H. I. Dawson, G. W. Iseler, A. S. Mehner, and J. W. Kauffman, “Determination of stage I recovery in pure aluminum following electron irradiation,” Phys. Lett. 18, 247–248 (1965).CrossRef
6.
Zurück zum Zitat G. W. Iseler, H. I. Dawson, A. S. Mehner, and J. W. Kauffman, “Production rates of electrical resistivity in copper and aluminum induced by electron irradiation,” Phys. Rev. 146, 468–471 (1966).CrossRef G. W. Iseler, H. I. Dawson, A. S. Mehner, and J. W. Kauffman, “Production rates of electrical resistivity in copper and aluminum induced by electron irradiation,” Phys. Rev. 146, 468–471 (1966).CrossRef
7.
Zurück zum Zitat L. D. Landau and E. M. Lifshits, Theoretical Physics, in 10 Vols., Vol. I. Mechanics (Nauka, Moscow, 1957-1988; Pergamon, Oxford–London–Paris, 1960–1981). L. D. Landau and E. M. Lifshits, Theoretical Physics, in 10 Vols., Vol. I. Mechanics (Nauka, Moscow, 1957-1988; Pergamon, Oxford–London–Paris, 1960–1981).
8.
Zurück zum Zitat M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon Press, Oxford, 1987). M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon Press, Oxford, 1987).
9.
Zurück zum Zitat L. A. Marques, J. E. Rubio, M. Jaraiz, L. Enriquez, and J. Barbolla, “An improved molecular dynamics scheme for ion bombardment simulations,” Nucl. Instrum. Methods Phys. Res., Sect. B 102, 7–11 (1995). L. A. Marques, J. E. Rubio, M. Jaraiz, L. Enriquez, and J. Barbolla, “An improved molecular dynamics scheme for ion bombardment simulations,” Nucl. Instrum. Methods Phys. Res., Sect. B 102, 7–11 (1995).
10.
Zurück zum Zitat R. E. Voskoboinikov, Yu. N. Osetsky, and D. J. Bacon, “Computer simulation of primary damage creation in displacement cascades in copper. I. Defect creation and cluster statistics,” J. Nucl. Mater. 377, 385–395 (2008).CrossRef R. E. Voskoboinikov, Yu. N. Osetsky, and D. J. Bacon, “Computer simulation of primary damage creation in displacement cascades in copper. I. Defect creation and cluster statistics,” J. Nucl. Mater. 377, 385–395 (2008).CrossRef
11.
Zurück zum Zitat R. E. Voskoboinikov, Yu. N. Osetsky, and D. J. Bacon, “Atomic-scale simulation of defect cluster formation in high-energy displacement cascades in zirconium,” ASTM STP 1475, 299–314 (2006). R. E. Voskoboinikov, Yu. N. Osetsky, and D. J. Bacon, “Atomic-scale simulation of defect cluster formation in high-energy displacement cascades in zirconium,” ASTM STP 1475, 299–314 (2006).
12.
Zurück zum Zitat R. E. Voskoboinikov, “MD simulations of collision cascades in the vicinity of a screw dislocation in aluminium,” Nucl. Instrum. Methods Phys. Res., Sect. B 303, 104–107 (2013). R. E. Voskoboinikov, “MD simulations of collision cascades in the vicinity of a screw dislocation in aluminium,” Nucl. Instrum. Methods Phys. Res., Sect. B 303, 104–107 (2013).
13.
Zurück zum Zitat R. E. Voskoboinikov, “Interaction of collision cascades with an isolated edge dislocation in aluminium,” Nucl. Instrum. Methods Phys. Res., Sect. B 303, 125–128 (2013). R. E. Voskoboinikov, “Interaction of collision cascades with an isolated edge dislocation in aluminium,” Nucl. Instrum. Methods Phys. Res., Sect. B 303, 125–128 (2013).
14.
Zurück zum Zitat F. A. Lindemann, “The calculation of molecular vibration frequencies,” Z. Phys. 11, 609–612 (1910). F. A. Lindemann, “The calculation of molecular vibration frequencies,” Z. Phys. 11, 609–612 (1910).
15.
Zurück zum Zitat K. Nordlund and R. S. Averback, “Point defect movement and annealing in collision cascades,” Phys. Rev. B 56, 2421–2431 (1997).CrossRef K. Nordlund and R. S. Averback, “Point defect movement and annealing in collision cascades,” Phys. Rev. B 56, 2421–2431 (1997).CrossRef
16.
Zurück zum Zitat 20 keV collision cascade in aluminum at T = 100 K. http://youtu.be/9DmsxklFGc4. 20 keV collision cascade in aluminum at T = 100 K. http://​youtu.​be/​9DmsxklFGc4.​
17.
Zurück zum Zitat 20 keV collision cascade in aluminum at T = 300 K. http://youtu.be/VfUytyxjRfg. 20 keV collision cascade in aluminum at T = 300 K. http://​youtu.​be/​VfUytyxjRfg.​
18.
Zurück zum Zitat 20 keV collision cascade in aluminum at T = 600 K. http://youtu.be/_a4VfQz72oQ. 20 keV collision cascade in aluminum at T = 600 K. http://​youtu.​be/​_​a4VfQz72oQ.​
19.
Zurück zum Zitat M. L. Swanson, L. M. Howe, J. A. Moore, and A. F. Quenneville, “Defect complexes in ion-irradiated aluminum,” Nucl. Instrum. Methods Phys. Res., Sect. B 209/210, 1029–1034 (1983). M. L. Swanson, L. M. Howe, J. A. Moore, and A. F. Quenneville, “Defect complexes in ion-irradiated aluminum,” Nucl. Instrum. Methods Phys. Res., Sect. B 209/210, 1029–1034 (1983).
20.
Zurück zum Zitat P. Ehrhart and W. Schilling, “Investigation of interstitials in electron-irradiated aluminum by diffuse-X-ray scattering experiments,” Phys. Rev. B 8, 2604–2621 (1973).CrossRef P. Ehrhart and W. Schilling, “Investigation of interstitials in electron-irradiated aluminum by diffuse-X-ray scattering experiments,” Phys. Rev. B 8, 2604–2621 (1973).CrossRef
21.
Zurück zum Zitat R. Qiu, H. Lu, B. Ao, L. Huang, T. Tang, and P. Chen, “Energetics of intrinsic point defects in aluminium via orbital-free density functional theory,” Philos. Mag. A 97, 2164–2181 (2017).CrossRef R. Qiu, H. Lu, B. Ao, L. Huang, T. Tang, and P. Chen, “Energetics of intrinsic point defects in aluminium via orbital-free density functional theory,” Philos. Mag. A 97, 2164–2181 (2017).CrossRef
22.
Zurück zum Zitat D. J. Mazey, R. S. Barnes, and A. Howie, “On interstitial dislocation loops in aluminium bombarded with alpha-particles,” Philos. Mag. 7, 1861–1870 (1962).CrossRef D. J. Mazey, R. S. Barnes, and A. Howie, “On interstitial dislocation loops in aluminium bombarded with alpha-particles,” Philos. Mag. 7, 1861–1870 (1962).CrossRef
23.
Zurück zum Zitat J. Howe and M. Sarikaya, “Observation of radiation-induced defect formation in aluminum by high-resolution transmission electron microscopy,” Mater. Res. Soc. Symp. Proc. 138, 41–45 (1988).CrossRef J. Howe and M. Sarikaya, “Observation of radiation-induced defect formation in aluminum by high-resolution transmission electron microscopy,” Mater. Res. Soc. Symp. Proc. 138, 41–45 (1988).CrossRef
24.
Zurück zum Zitat M. Kiritani, N. Yoshida, and H. Takata, “Interstitial clusters in electron irradiated aluminum,” J. Phys. Soc. Jpn. 36, 720–729 (1974).CrossRef M. Kiritani, N. Yoshida, and H. Takata, “Interstitial clusters in electron irradiated aluminum,” J. Phys. Soc. Jpn. 36, 720–729 (1974).CrossRef
25.
Zurück zum Zitat A. Seeger, On the theory of radiation damage and radiation hardening, Proceedings of the 2nd United Nations International Conference on Peaceful Uses of Atomic Energy, Geneva, 6, 250–273 (1958). A. Seeger, On the theory of radiation damage and radiation hardening, Proceedings of the 2nd United Nations International Conference on Peaceful Uses of Atomic Energy, Geneva, 6, 250–273 (1958).
26.
Zurück zum Zitat J. S. Williams and J. Wong-Leung, Voids and Nanocavities in Silicon, Ed. by H. Bernas, in: Materials Science with Ion Beams, Topics Appl. Physics Vol. 116 (Springer-Verlag, Berlin, 2010), pp. 113–146. J. S. Williams and J. Wong-Leung, Voids and Nanocavities in Silicon, Ed. by H. Bernas, in: Materials Science with Ion Beams, Topics Appl. Physics Vol. 116 (Springer-Verlag, Berlin, 2010), pp. 113–146.
27.
Zurück zum Zitat J. Yu, Interstitial dislocation loop nucleation and growth and swelling produced by high-energy cascades, ASTM STP 955, 393–413 (1987). J. Yu, Interstitial dislocation loop nucleation and growth and swelling produced by high-energy cascades, ASTM STP 955, 393–413 (1987).
28.
Zurück zum Zitat V. Gavini, K. Bhattacharya, and M. Ortiz, “Vacancy clustering and prismatic dislocation loop formation in aluminum,” Phys. Rev. B 76, 180101(R) (2007). V. Gavini, K. Bhattacharya, and M. Ortiz, “Vacancy clustering and prismatic dislocation loop formation in aluminum,” Phys. Rev. B 76, 180101(R) (2007).
29.
Zurück zum Zitat I. G. Aramanovich and V. I. Levin, Equations of Mathematical Physics (Nauka, Moscow, 1969) [in Russian]. I. G. Aramanovich and V. I. Levin, Equations of Mathematical Physics (Nauka, Moscow, 1969) [in Russian].
Metadaten
Titel
Radiation Defects in Aluminum: MD Simulations of Collision Cascades in the Bulk of Material
verfasst von
R. E. Voskoboinikov
Publikationsdatum
01.01.2019
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 1/2019
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X18110212

Weitere Artikel der Ausgabe 1/2019

Physics of Metals and Metallography 1/2019 Zur Ausgabe

STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Anion Mobility and Cation Diffusion in Alkali Metal Borohydrides

STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Structural Vacancy Model of Grain Boundaries

ELECTRICAL AND MAGNETIC PROPERTIES

Study of Dilute CuEr Alloys by the EPR Method