Skip to main content
Erschienen in: Physics of Metals and Metallography 1/2019

01.01.2019 | STRENGTH AND PLASTICITY

Constitutive Model and Micro Hardening and Softening Mechanism for Nonoriented Electrical Steel

verfasst von: C. Liu, A. R. He, Y. Qiang, D. F. Guo, J. Shao

Erschienen in: Physics of Metals and Metallography | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Because of the occurrence at a high temperature of the phase transformations, hot finishing rolling of the non-oriented electrical steel inevitably takes place in its multiphase condition. Because of the difference in lattice structure between ferrite and austenite, the constitutive model and softening mechanism should consider the phase differences. The combined effect of work hardening and dynamic softening is related not only to temperature, but also to the phase structure. In the present study, steady stress is determined to approximately represent the average deformation resistance referring to the characteristics of stress–strain curves and practice-connected rolling requirements. The constitutive models of the ferrite and austenite regions are established correspondingly by the Arrhenius equation. Metallographic observations revealed that the dominant softening mechanism in the austenite region is dynamic recrystallization and that in the ferrite region is dynamic recovery, which contributes to the elimination of some discrepancies over this issue. Furthermore, according to the relationship between steady stress and dislocation multiplication and annihilation from the dislocation model, an indicator called the hardening–softening ratio is proposed, which is proportional to the square of steady stress. It can be used to link up the macro steady stress and micro dislocation evolution and to quantify the combined effect of work hardening and dynamic softening in different phase regions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A. R. He, J. Shao, W. Q. Sun, C. L. Guan, X. Y. Shen, and J. P. Zhang, “Transverse thickness deviation control of non-oriented silicon steel during cold rolling,” J. Mech. Eng. 47, 25–30 (2011).CrossRef A. R. He, J. Shao, W. Q. Sun, C. L. Guan, X. Y. Shen, and J. P. Zhang, “Transverse thickness deviation control of non-oriented silicon steel during cold rolling,” J. Mech. Eng. 47, 25–30 (2011).CrossRef
2.
Zurück zum Zitat J. X. Yan, W. Tang, L. Xiang, S. T. Qiu, and Y. H. Qi, “Phase transition point and high-temperature mechanical properties of non-oriented silicon steel,” Heat. Treat. Met. 40, 38–42 (2015). J. X. Yan, W. Tang, L. Xiang, S. T. Qiu, and Y. H. Qi, “Phase transition point and high-temperature mechanical properties of non-oriented silicon steel,” Heat. Treat. Met. 40, 38–42 (2015).
3.
Zurück zum Zitat J. G. Cao, H. Tang, G. H. Yang, D. Wen, Y. S. Zhou, and J. Q. Lai, “Finite element analysis of edge wave for non-oriented electrical strip with high temperature phase transition,” J. Mech. Eng. 48, 146–151 (2016). J. G. Cao, H. Tang, G. H. Yang, D. Wen, Y. S. Zhou, and J. Q. Lai, “Finite element analysis of edge wave for non-oriented electrical strip with high temperature phase transition,” J. Mech. Eng. 48, 146–151 (2016).
4.
Zurück zum Zitat J. G. Cao, T. C. Wang, H. B. Li, Y. Qiao, D. Wen, and Y. S. Zhou, “High-temperature constitutive relationship of non-oriented electrical steel based on modified Arrhenius model,” J. Mech. Eng. 52, 90–102 (2016).CrossRef J. G. Cao, T. C. Wang, H. B. Li, Y. Qiao, D. Wen, and Y. S. Zhou, “High-temperature constitutive relationship of non-oriented electrical steel based on modified Arrhenius model,” J. Mech. Eng. 52, 90–102 (2016).CrossRef
5.
Zurück zum Zitat J. F. Siciliano, K. Minami, T. M. Maccagno, and J. J. Jonas, “Mathematical modeling of the mean flow stress, fractional softening and grain size during the hot strip rolling of C-Mn steels,” ISIJ Int. 36, 1500–1506 (1996).CrossRef J. F. Siciliano, K. Minami, T. M. Maccagno, and J. J. Jonas, “Mathematical modeling of the mean flow stress, fractional softening and grain size during the hot strip rolling of C-Mn steels,” ISIJ Int. 36, 1500–1506 (1996).CrossRef
6.
Zurück zum Zitat J. F. Siciliano, and J. J. Jonas, “Mathematical modeling of the hot strip rolling of microalloyed Nb, multiply-alloyed Cr-Mo, and plain C-Mn steels,” Metall. Mater. Trans. 31, 511–530 (2000).CrossRef J. F. Siciliano, and J. J. Jonas, “Mathematical modeling of the hot strip rolling of microalloyed Nb, multiply-alloyed Cr-Mo, and plain C-Mn steels,” Metall. Mater. Trans. 31, 511–530 (2000).CrossRef
7.
Zurück zum Zitat Y. D. Xiao, M. Li, W. Wang, J. Zhou, G. L. Wu, and Y. M. Peng, “High temperature plastic deformation behavior of non-oriented electrical steel,” J. Cent. South Univ. Technol. 16, 25–31 (2009).CrossRef Y. D. Xiao, M. Li, W. Wang, J. Zhou, G. L. Wu, and Y. M. Peng, “High temperature plastic deformation behavior of non-oriented electrical steel,” J. Cent. South Univ. Technol. 16, 25–31 (2009).CrossRef
8.
Zurück zum Zitat Y. Dong, Z. X. Gong, and G. H. Xiao, “Flow stress of plastic deformation for non-orientation electrical steel under high temperature,” J. Iron Steel Res. Int. 24, 53–58 (2012). Y. Dong, Z. X. Gong, and G. H. Xiao, “Flow stress of plastic deformation for non-orientation electrical steel under high temperature,” J. Iron Steel Res. Int. 24, 53–58 (2012).
9.
Zurück zum Zitat C. C. Chen, J. Shao, and A. R. He, “Research on online calculation methods of temperature field of hot strip,” J. Mech. Eng. 50, 135–142 (2014).CrossRef C. C. Chen, J. Shao, and A. R. He, “Research on online calculation methods of temperature field of hot strip,” J. Mech. Eng. 50, 135–142 (2014).CrossRef
10.
Zurück zum Zitat M. P. Phaniraj, B. B. Behara, and A. K. Lahiri, “Thermo-mechanical modeling of two phase rolling and microstructural evolution in the hot strip mill Part I. Prediction of rolling loads and finish rolling temperature,” J. Mater. Process. Technol. 170, 323–335 (2005).CrossRef M. P. Phaniraj, B. B. Behara, and A. K. Lahiri, “Thermo-mechanical modeling of two phase rolling and microstructural evolution in the hot strip mill Part I. Prediction of rolling loads and finish rolling temperature,” J. Mater. Process. Technol. 170, 323–335 (2005).CrossRef
11.
Zurück zum Zitat M. P. Phaniraj, B. B. Behara, and A. K. Lahiri, “Thermo-mechanical modeling of two phase rolling and microstructural evolution in the hot strip mill Part-II. Microstructure evolution,” J. Mater. Process. Technol. 178, 388–394 (2006).CrossRef M. P. Phaniraj, B. B. Behara, and A. K. Lahiri, “Thermo-mechanical modeling of two phase rolling and microstructural evolution in the hot strip mill Part-II. Microstructure evolution,” J. Mater. Process. Technol. 178, 388–394 (2006).CrossRef
12.
Zurück zum Zitat Y. B. Xu, Y. M. Yu, X. H. Liu, and G. D. Wang, “Prediction of rolling load, recrystallization kinetics, and microstructure during hot strip rolling,” J. Iron. Steel Res. Int. 14, 42–46 (2007).CrossRef Y. B. Xu, Y. M. Yu, X. H. Liu, and G. D. Wang, “Prediction of rolling load, recrystallization kinetics, and microstructure during hot strip rolling,” J. Iron. Steel Res. Int. 14, 42–46 (2007).CrossRef
13.
Zurück zum Zitat P. Springer, and U. Prahl, “Characterisation of mechanical behavior of 18CrNiMo7-6 steel with and without Nb under warm forging conditions through processing maps analysis,” J. Mater. Process. Technol. 237, 216–234 (2016).CrossRef P. Springer, and U. Prahl, “Characterisation of mechanical behavior of 18CrNiMo7-6 steel with and without Nb under warm forging conditions through processing maps analysis,” J. Mater. Process. Technol. 237, 216–234 (2016).CrossRef
14.
Zurück zum Zitat E. I. Poliak, and J. J. Jonas, “Initiation of dynamic recrystallization in constant strain rate hot deformation,” ISIJ Int. 43, 684–691 (2003).CrossRef E. I. Poliak, and J. J. Jonas, “Initiation of dynamic recrystallization in constant strain rate hot deformation,” ISIJ Int. 43, 684–691 (2003).CrossRef
15.
Zurück zum Zitat J. J. Jonas, X. Quelennec, L. Jiang, and E. Martin, “The Avrami kinetics of dynamic recrystallization,” Acta Mater. 57, 2748–2756 (2009).CrossRef J. J. Jonas, X. Quelennec, L. Jiang, and E. Martin, “The Avrami kinetics of dynamic recrystallization,” Acta Mater. 57, 2748–2756 (2009).CrossRef
16.
Zurück zum Zitat A. Yoshie, T. Fujita, M. Fujioka, K. Okamoto, and H. Morikawa, “Formulation of flow stress of Nb added steels by considering work-hardening and dynamic recovery,” ISIJ Int. 36, 467–473 (1996).CrossRef A. Yoshie, T. Fujita, M. Fujioka, K. Okamoto, and H. Morikawa, “Formulation of flow stress of Nb added steels by considering work-hardening and dynamic recovery,” ISIJ Int. 36, 467–473 (1996).CrossRef
Metadaten
Titel
Constitutive Model and Micro Hardening and Softening Mechanism for Nonoriented Electrical Steel
verfasst von
C. Liu
A. R. He
Y. Qiang
D. F. Guo
J. Shao
Publikationsdatum
01.01.2019
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 1/2019
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X18080082

Weitere Artikel der Ausgabe 1/2019

Physics of Metals and Metallography 1/2019 Zur Ausgabe

STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Structural Vacancy Model of Grain Boundaries

ELECTRICAL AND MAGNETIC PROPERTIES

Study of Dilute CuEr Alloys by the EPR Method