Skip to main content
Erschienen in: Physics of Metals and Metallography 1/2019

01.01.2019 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Structural Vacancy Model of Grain Boundaries

verfasst von: A. V. Weckman, B. F. Dem’yanov

Erschienen in: Physics of Metals and Metallography | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A structural vacancy model of tilt grain boundaries in metals has been developed. For construction of the stable structure of the boundary, the initial pattern was chosen according to the CSL model. The introduction of additional atoms and vacancies into the boundary region and shifting of atoms by the interatomic forces stabilize its structure. The criterion of a stable structure is the grain-boundary energy. The comparison of two main approaches to the stabilization of the grain structure demonstrated that changing the number of atoms at the boundary is more energetically advantageous than the relative shift of grains. The stability of the structure obtained has been studied under the shear stress. In the model developed, atomic structures obtained with pair and many-body potentials have been compared. The comparative analysis has shown that the grain-boundary structure does not depend on the choice of potential; atomic positions differ by less than 0.1 Å, which is 2.5% of the lattice parameter. The atomic structure is in agreement with experimental images of grain boundaries.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M. L. Kronberg and F. N. Wilson, “Structure of high angle grain boundaries,” Trans. AIME 185, 506–508 (1949). M. L. Kronberg and F. N. Wilson, “Structure of high angle grain boundaries,” Trans. AIME 185, 506–508 (1949).
2.
Zurück zum Zitat V. V. Gorbunov and B. M. Darinskii, “Emission of vacancies by an intercrystallite boundary,” Fiz. Tverd. Tela 34, 1059–1063 (1992). V. V. Gorbunov and B. M. Darinskii, “Emission of vacancies by an intercrystallite boundary,” Fiz. Tverd. Tela 34, 1059–1063 (1992).
3.
Zurück zum Zitat M. D. Starostenkov, B. F. Dem’yanov, S. L. Kustov, and E. L. Grakhov, “Symmetric Σ = 5 tilt boundaries in the Ni3Fe alloy,” Phys. Met. Metallogr. 85, 530–535 (1998). M. D. Starostenkov, B. F. Dem’yanov, S. L. Kustov, and E. L. Grakhov, “Symmetric Σ = 5 tilt boundaries in the Ni3Fe alloy,” Phys. Met. Metallogr. 85, 530–535 (1998).
4.
Zurück zum Zitat A. S. Dragunov, B. F. Dem’yanov, and A. V. Weckman, “Computer simulation of internal interfaces in metals and alloys,” Izv. Vyssh. Uchebn. Zaved., Fiz. 53, 82–87 (2010). A. S. Dragunov, B. F. Dem’yanov, and A. V. Weckman, “Computer simulation of internal interfaces in metals and alloys,” Izv. Vyssh. Uchebn. Zaved., Fiz. 53, 82–87 (2010).
5.
Zurück zum Zitat M. A. Tschopp and D. L. McDowell, “Asymmetric tilt grain boundary structure and energy in copper and aluminium,” Philos. Mag. 87, 3871–3892 (2007).CrossRef M. A. Tschopp and D. L. McDowell, “Asymmetric tilt grain boundary structure and energy in copper and aluminium,” Philos. Mag. 87, 3871–3892 (2007).CrossRef
6.
Zurück zum Zitat A. N. Orlov, V. N. Perevezentsev, and V. V. Rybin, “Analysis of defects in the crystal structure of a symmetric tilt boundary,” Fiz. Tverd. Tela 17, 1662–1670 (1975). A. N. Orlov, V. N. Perevezentsev, and V. V. Rybin, “Analysis of defects in the crystal structure of a symmetric tilt boundary,” Fiz. Tverd. Tela 17, 1662–1670 (1975).
7.
Zurück zum Zitat V. V. Rybin and V. N. Perevezentsev, “General theory of grain boundary shifts,” Fiz. Tverd. Tela 17, 3188–3193 (1975). V. V. Rybin and V. N. Perevezentsev, “General theory of grain boundary shifts,” Fiz. Tverd. Tela 17, 3188–3193 (1975).
8.
Zurück zum Zitat W. Bollmann, Crystal Defects and Crystalline Interfaces (Springer Verlag, Berlin, 1970).CrossRef W. Bollmann, Crystal Defects and Crystalline Interfaces (Springer Verlag, Berlin, 1970).CrossRef
9.
Zurück zum Zitat G. H. Bishop and B. Chalmers, “A coincidence-ledge-dislocation description of grain boundaries,” Scr. Metall. 2, 133–139 (1968).CrossRef G. H. Bishop and B. Chalmers, “A coincidence-ledge-dislocation description of grain boundaries,” Scr. Metall. 2, 133–139 (1968).CrossRef
10.
Zurück zum Zitat L. K. Fionova, “Ordinary grain boundaries,” Phys. Met. Metallogr., 73, 333–336 (1992). L. K. Fionova, “Ordinary grain boundaries,” Phys. Met. Metallogr., 73, 333–336 (1992).
11.
Zurück zum Zitat G. Hasson, J. Y. Boos, J. Herbeuval, M. Biscondi, and E. C. Goux, “Theoretical and experimental determination of grain boundary structures and energies: Correlation with various experimental results,” Surf. Sci. 31, 115–137 (1972).CrossRef G. Hasson, J. Y. Boos, J. Herbeuval, M. Biscondi, and E. C. Goux, “Theoretical and experimental determination of grain boundary structures and energies: Correlation with various experimental results,” Surf. Sci. 31, 115–137 (1972).CrossRef
12.
Zurück zum Zitat M. F. Ashby, F. Spaepen, and S. Williams, “The structure of grain boundaries described as a packing of polyhedra,” Acta Metall. 26, 1647–1664 (1978).CrossRef M. F. Ashby, F. Spaepen, and S. Williams, “The structure of grain boundaries described as a packing of polyhedra,” Acta Metall. 26, 1647–1664 (1978).CrossRef
13.
Zurück zum Zitat R. C. Pond, D. A. Smith, and V. Vitek, “Computer simulation of 〈110〉 tilt boundaries: Structure and symmetry,” Acta Metall. 27, 235–241 (1979).CrossRef R. C. Pond, D. A. Smith, and V. Vitek, “Computer simulation of 〈110〉 tilt boundaries: Structure and symmetry,” Acta Metall. 27, 235–241 (1979).CrossRef
14.
Zurück zum Zitat J. D. Bernal, “The Bakerian Lecture, 1962. The Structure of Liquids,” Proc. R. Soc. London, Ser. A 280 (1382), 299–322 (1964).CrossRef J. D. Bernal, “The Bakerian Lecture, 1962. The Structure of Liquids,” Proc. R. Soc. London, Ser. A 280 (1382), 299–322 (1964).CrossRef
15.
Zurück zum Zitat V. Vitek, “Intrinsic stacking faults in body-centered cubic crystals,” Philos. Mag. 18 (154), 773–786 (1968).CrossRef V. Vitek, “Intrinsic stacking faults in body-centered cubic crystals,” Philos. Mag. 18 (154), 773–786 (1968).CrossRef
16.
Zurück zum Zitat D. A. Smith, V. V. Vitek, and R. C. Pond, “Computer simulation of symmetrical high angle boundaries in aluminium,” Acta Metall. 25, 475–483 (1977).CrossRef D. A. Smith, V. V. Vitek, and R. C. Pond, “Computer simulation of symmetrical high angle boundaries in aluminium,” Acta Metall. 25, 475–483 (1977).CrossRef
17.
Zurück zum Zitat M. J. Weins, H. Gleiter, and B. Chalmers, “Computer calculations of the structure and energy of high-angle grain boundaries,” J. Appl. Phys. 42, 2636–2645 (1971).CrossRef M. J. Weins, H. Gleiter, and B. Chalmers, “Computer calculations of the structure and energy of high-angle grain boundaries,” J. Appl. Phys. 42, 2636–2645 (1971).CrossRef
18.
Zurück zum Zitat P. D. Bristowe and A. G. Crocker, “A computer simulation study of the structures of twin boundaries in body-centered cubic crystals,” Philos. Mag. 31, 503–517 (1975).CrossRef P. D. Bristowe and A. G. Crocker, “A computer simulation study of the structures of twin boundaries in body-centered cubic crystals,” Philos. Mag. 31, 503–517 (1975).CrossRef
19.
Zurück zum Zitat E. Tarnow, P. D. Bristowe, J. P. Joannopoulos, and M. C. Payne, “Predicting the structure and energy of a grain boundary in germanium,” J. Phys.: Condens. Matter 1, 327–333 (1989). E. Tarnow, P. D. Bristowe, J. P. Joannopoulos, and M. C. Payne, “Predicting the structure and energy of a grain boundary in germanium,” J. Phys.: Condens. Matter 1, 327–333 (1989).
20.
Zurück zum Zitat P. Guyot and J. P. Simon, “Symmetrical high angle tilt boundary energy calculation in aluminium and lithium,” Phys. Status Solidi A 38, 207–216 (1976).CrossRef P. Guyot and J. P. Simon, “Symmetrical high angle tilt boundary energy calculation in aluminium and lithium,” Phys. Status Solidi A 38, 207–216 (1976).CrossRef
21.
Zurück zum Zitat H. Gleiter and B. Chalmers, High-Angle Grain Boundaries (Pergamon, Oxford, U. K. 1972; Mir, Moscow, 1975). H. Gleiter and B. Chalmers, High-Angle Grain Boundaries (Pergamon, Oxford, U. K. 1972; Mir, Moscow, 1975).
22.
Zurück zum Zitat A. N. Orlov, V. N. Perevezentsev, and V. V. Rybin, Grain Boundaries in Metals (Metallurgiya, Moscow, 1980) [in Russian]. A. N. Orlov, V. N. Perevezentsev, and V. V. Rybin, Grain Boundaries in Metals (Metallurgiya, Moscow, 1980) [in Russian].
23.
Zurück zum Zitat O. A. Kaibyshev and R. Z. Valiev, Grain Boundaries and Properties of Metals (Metallurgiya, Moscow, 1987) [in Russian]. O. A. Kaibyshev and R. Z. Valiev, Grain Boundaries and Properties of Metals (Metallurgiya, Moscow, 1987) [in Russian].
24.
Zurück zum Zitat Ch. V. Kopetskii, A. N. Orlov, and L. K. Fionova, Grain Boundaries in Pure Metals (Nauka, Moscow, 1987) [in Russian]. Ch. V. Kopetskii, A. N. Orlov, and L. K. Fionova, Grain Boundaries in Pure Metals (Nauka, Moscow, 1987) [in Russian].
25.
Zurück zum Zitat D. Wolf, “Effect of interatomic potential on the calculated energy and structure of high-angle coincident site grain boundaries—I. (100) twist boundaries in aluminum,” Acta Metall. 32, 242–258 (1984). D. Wolf, “Effect of interatomic potential on the calculated energy and structure of high-angle coincident site grain boundaries—I. (100) twist boundaries in aluminum,” Acta Metall. 32, 242–258 (1984).
26.
Zurück zum Zitat D. Wolf, “Structure–energy correlation for grain boundaries in fcc metals—I. Boundaries on the (111) and (100) planes,” Acta Metall. 37, 1983–1993 (1989).CrossRef D. Wolf, “Structure–energy correlation for grain boundaries in fcc metals—I. Boundaries on the (111) and (100) planes,” Acta Metall. 37, 1983–1993 (1989).CrossRef
27.
Zurück zum Zitat D. Wolf, “Structure–energy correlation for grain boundaries in fcc metals—II. Boundaries on the (110) and (113) planes,” Acta Metall. 37, 2823–2833 (1989).CrossRef D. Wolf, “Structure–energy correlation for grain boundaries in fcc metals—II. Boundaries on the (110) and (113) planes,” Acta Metall. 37, 2823–2833 (1989).CrossRef
28.
Zurück zum Zitat J. D. Rittner and D. N. Seidman, “〈110〉 symmetric tilt grain-boundary structures in fcc metals with low stacking-fault energies,” Phys. Rev. B 54, 6999–7015 (1996).CrossRef J. D. Rittner and D. N. Seidman, “〈110〉 symmetric tilt grain-boundary structures in fcc metals with low stacking-fault energies,” Phys. Rev. B 54, 6999–7015 (1996).CrossRef
29.
Zurück zum Zitat J. S. Braithwaite and P. Rez, “Grain boundary impurities in iron,” Acta Mater. 53, 2715–2726 (2005).CrossRef J. S. Braithwaite and P. Rez, “Grain boundary impurities in iron,” Acta Mater. 53, 2715–2726 (2005).CrossRef
30.
Zurück zum Zitat A. G. Lipnitskii, A. V. Ivanov, and Yu. R. Kolobov, “Studying grain-boundary stresses in copper by the molecular-statistics method,” Phys. Met. Metallogr. 101, 303–309 (2006).CrossRef A. G. Lipnitskii, A. V. Ivanov, and Yu. R. Kolobov, “Studying grain-boundary stresses in copper by the molecular-statistics method,” Phys. Met. Metallogr. 101, 303–309 (2006).CrossRef
31.
Zurück zum Zitat M. A. Tschopp and D. L. McDowell, “Structures and energies of Σ3 asymmetric tilt grain boundaries in copper and aluminium,” Philos. Mag. 87, 3147–3173 (2007).CrossRef M. A. Tschopp and D. L. McDowell, “Structures and energies of Σ3 asymmetric tilt grain boundaries in copper and aluminium,” Philos. Mag. 87, 3147–3173 (2007).CrossRef
32.
Zurück zum Zitat R. Matsumoto, M. Riku, S. Taketomi, and N. Miyazaki, “Hydrogen–grain boundary interaction in Fe, Fe–C, and Fe–N systems,” Prog. Nucl. Sci. Technol. 2, 9–15 (2011).CrossRef R. Matsumoto, M. Riku, S. Taketomi, and N. Miyazaki, “Hydrogen–grain boundary interaction in Fe, Fe–C, and Fe–N systems,” Prog. Nucl. Sci. Technol. 2, 9–15 (2011).CrossRef
33.
Zurück zum Zitat A. I. Tsaregorodtsev, N. V. Gorlov, B. F. Dem’yanov, and M. D. Starostenkov, “The atomic structure of the antiphase boundary and its effect on the lattice state near a dislocation in ordered alloys with L12 superstructure,” Fiz. Met. Metalloved. 58, 336–343 (1984). A. I. Tsaregorodtsev, N. V. Gorlov, B. F. Dem’yanov, and M. D. Starostenkov, “The atomic structure of the antiphase boundary and its effect on the lattice state near a dislocation in ordered alloys with L12 superstructure,” Fiz. Met. Metalloved. 58, 336–343 (1984).
34.
Zurück zum Zitat W. Krakow, “Structural multiplicity observed at a Σ5/[001] 53.1° tilt boundary in gold,” Philos. Mag. A 63, 233–240 (1991).CrossRef W. Krakow, “Structural multiplicity observed at a Σ5/[001] 53.1° tilt boundary in gold,” Philos. Mag. A 63, 233–240 (1991).CrossRef
35.
Zurück zum Zitat F. Cosandey, S.-W. Chan, and P. Stadelmann, “HREM studies of [001] tilt grain boundaries in gold,” Colloq. Phys. Colloq. Cl. 51, 109–113 (1990). F. Cosandey, S.-W. Chan, and P. Stadelmann, “HREM studies of [001] tilt grain boundaries in gold,” Colloq. Phys. Colloq. Cl. 51, 109–113 (1990).
36.
Zurück zum Zitat M. S. Daw and M. I. Baskes, “Embedded-atom method: Derivation and application to impurities, surfaces and other defects in metals,” Phys. Rev. B 29, 6443–6453 (1984).CrossRef M. S. Daw and M. I. Baskes, “Embedded-atom method: Derivation and application to impurities, surfaces and other defects in metals,” Phys. Rev. B 29, 6443–6453 (1984).CrossRef
37.
Zurück zum Zitat M. S. Daw, S. M. Foiles, and M. I. Baskes, “The embedded-atom method: a review of theory and applications,” Mater. Sci. Rep. 9, 251–310 (1993).CrossRef M. S. Daw, S. M. Foiles, and M. I. Baskes, “The embedded-atom method: a review of theory and applications,” Mater. Sci. Rep. 9, 251–310 (1993).CrossRef
38.
Zurück zum Zitat F. Ercolessi, E. Tosatti, and M. Parrinello, “Au (100) surface reconstruction,” Phys. Rev. Lett. 57, 719–722 (1986).CrossRef F. Ercolessi, E. Tosatti, and M. Parrinello, “Au (100) surface reconstruction,” Phys. Rev. Lett. 57, 719–722 (1986).CrossRef
39.
Zurück zum Zitat F. Ercolessi, M. Parrnello, and E. Tosatti, “Simulation of gold in the glue model,” Philos. Mag. 58, 213–226 (1988).CrossRef F. Ercolessi, M. Parrnello, and E. Tosatti, “Simulation of gold in the glue model,” Philos. Mag. 58, 213–226 (1988).CrossRef
40.
Zurück zum Zitat M. W. Finnis and J. E. Sinclair, “A simple empirical N‑body potential for transition metals,” Philos. Mag. A 50, 45–55 (1984).CrossRef M. W. Finnis and J. E. Sinclair, “A simple empirical N‑body potential for transition metals,” Philos. Mag. A 50, 45–55 (1984).CrossRef
41.
Zurück zum Zitat A. P. Sutton and J. Chen, “Long-range Finnis–Sinclair potentials,” Philos. Mag. Lett. 61, 139–146 (1990).CrossRef A. P. Sutton and J. Chen, “Long-range Finnis–Sinclair potentials,” Philos. Mag. Lett. 61, 139–146 (1990).CrossRef
42.
Zurück zum Zitat H. Rafii-Tabar and A. P. Sulton, “Long-range Finnis–Sinclair potentials for f.c.c. metallic alloys,” Philos. Mag. Lett. 63, 217–224 (1991).CrossRef H. Rafii-Tabar and A. P. Sulton, “Long-range Finnis–Sinclair potentials for f.c.c. metallic alloys,” Philos. Mag. Lett. 63, 217–224 (1991).CrossRef
43.
Zurück zum Zitat B. R. Eggen, R. L. Johnston, S. Li, and J. N. Murrell, “Potential energy functions for atomic solids. IV. Reproducing the properties of more than one solid phase,” Mol. Phys. 76, 619–633 (1992).CrossRef B. R. Eggen, R. L. Johnston, S. Li, and J. N. Murrell, “Potential energy functions for atomic solids. IV. Reproducing the properties of more than one solid phase,” Mol. Phys. 76, 619–633 (1992).CrossRef
44.
Zurück zum Zitat H. Cox, R. L. Johnston, and J. N. Murrell, “Empirical potentials for modelling solid, surfaces and clusters,” J. Solid State Chem. 145, 517–540 (1999).CrossRef H. Cox, R. L. Johnston, and J. N. Murrell, “Empirical potentials for modelling solid, surfaces and clusters,” J. Solid State Chem. 145, 517–540 (1999).CrossRef
45.
Zurück zum Zitat D. Wolf, “Correlation between the energy and structure of grain boundaries in bcc metals. 1. Symmetrical boundaries on the (110) and (100) planes,” Philos. Mag. B 59, 667–680 (1989).CrossRef D. Wolf, “Correlation between the energy and structure of grain boundaries in bcc metals. 1. Symmetrical boundaries on the (110) and (100) planes,” Philos. Mag. B 59, 667–680 (1989).CrossRef
46.
Zurück zum Zitat J. Th. M. De Hosson and V. Vitek, “Atomic structure of (111) twist grain boundaries in f.c.c metals,” Philos. Mag. A 61, 305–327 (1990).CrossRef J. Th. M. De Hosson and V. Vitek, “Atomic structure of (111) twist grain boundaries in f.c.c metals,” Philos. Mag. A 61, 305–327 (1990).CrossRef
47.
Zurück zum Zitat N. Takata, K. Ikeda, H. Nakashima, and H. Abe, “Grain boundary energy and atomic structure of symmetric tilt boundaries in copper, Nippon Kinzoku Gakkaishi 68, 240–246 (2004). N. Takata, K. Ikeda, H. Nakashima, and H. Abe, “Grain boundary energy and atomic structure of symmetric tilt boundaries in copper, Nippon Kinzoku Gakkaishi 68, 240–246 (2004).
48.
Zurück zum Zitat F. Cleri and V. Rosato, “Tight-binding potentials for transition metals and alloys,” Phys. Rev. B 48, 22–33 (1993).CrossRef F. Cleri and V. Rosato, “Tight-binding potentials for transition metals and alloys,” Phys. Rev. B 48, 22–33 (1993).CrossRef
49.
Zurück zum Zitat J. P. Hirth and J. Lothe, Theory of Dislocations (McGraw-Hill, New York, 1967; Atomizdat, Moscow, 1972). J. P. Hirth and J. Lothe, Theory of Dislocations (McGraw-Hill, New York, 1967; Atomizdat, Moscow, 1972).
Metadaten
Titel
Structural Vacancy Model of Grain Boundaries
verfasst von
A. V. Weckman
B. F. Dem’yanov
Publikationsdatum
01.01.2019
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 1/2019
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X18110200

Weitere Artikel der Ausgabe 1/2019

Physics of Metals and Metallography 1/2019 Zur Ausgabe