Skip to main content
Erschienen in: Physics of Metals and Metallography 1/2019

01.01.2019 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Anion Mobility and Cation Diffusion in Alkali Metal Borohydrides

verfasst von: A. V. Soloninin

Erschienen in: Physics of Metals and Metallography | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This study presents a wide spectrum of experimental investigations of alkali borohydrides МВН4 (М = Li, Na, K, Rb, Cs) and complex hydrides with substituted anions Li(BH4)1– yIy, LiLa(BH4)3Cl, and Na2(BH4)(NH2) obtained by the nuclear magnetic resonance method, quasielastic neutron scattering spectroscopy, and X-ray diffraction analysis. Activation energies for reorientational motion of anions in alkali borohydrides have been systematized, and possible configurations and types of jumps of ВН4 groups have been discussed. It has been shown that the activation energy of reorientations of ВН4 groups change nonmonotonously with the growth of the cation radius. Substitution of halides and amides for anions in complex hydrides leads to an enhancement in the frequency of anion reorientations at low temperatures, a change in the translational diffusion of cations at the expense of a change in the crystalline structure, the appearance of vacancies in the lattice, and influence of the paddle-wheel effect. Interrelation between the type of anion reorientations, cation diffusion, and the crystal lattice has been demonstrated.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat W. Grochala and P. P. Edwards, “Thermal decomposition of the non-interstitial hydrides for the storage and production of hydrogen,” Chem. Rev. 104, 1283−1315 (2004).CrossRef W. Grochala and P. P. Edwards, “Thermal decomposition of the non-interstitial hydrides for the storage and production of hydrogen,” Chem. Rev. 104, 1283−1315 (2004).CrossRef
2.
Zurück zum Zitat L. George and S. K. Saxena, “Structural stability of metal hydrides, alanates and borohydrides of alkali and alkali-earth elements: a review,” Int. J. Hydrogen Energy 35, 5454−5470 (2010).CrossRef L. George and S. K. Saxena, “Structural stability of metal hydrides, alanates and borohydrides of alkali and alkali-earth elements: a review,” Int. J. Hydrogen Energy 35, 5454−5470 (2010).CrossRef
3.
Zurück zum Zitat R. Mohtadi, A. Remhof, and P. Jena, “Complex metal borohydrides: multifunctional materials for energy storage and conversion,” J. Phys.: Condens. Matter 28, 353001 (2016). R. Mohtadi, A. Remhof, and P. Jena, “Complex metal borohydrides: multifunctional materials for energy storage and conversion,” J. Phys.: Condens. Matter 28, 353001 (2016).
4.
Zurück zum Zitat S.-i. Orimo, Y. Nakamori, J. R. Eliseo, A. Züttel, and C. M. Jensen, “Complex hydrides for hydrogen storage,” Chem. Rev. 107, 4111−4132 (2007).CrossRef S.-i. Orimo, Y. Nakamori, J. R. Eliseo, A. Züttel, and C. M. Jensen, “Complex hydrides for hydrogen storage,” Chem. Rev. 107, 4111−4132 (2007).CrossRef
5.
Zurück zum Zitat M. Paskevicius, L. H. Jepsen, P. Schouwink, R. Černy, D. B. Ravnsbæk, Y. Filinchuk, M. Dornheim, F. Besenbacher, and T. R. Jensen, “Metal borohydrides and derivatives—Synthesis, structure and properties,” Chem. Soc. Rev. 46, 1565−1634 (2017).CrossRef M. Paskevicius, L. H. Jepsen, P. Schouwink, R. Černy, D. B. Ravnsbæk, Y. Filinchuk, M. Dornheim, F. Besenbacher, and T. R. Jensen, “Metal borohydrides and derivatives—Synthesis, structure and properties,” Chem. Soc. Rev. 46, 1565−1634 (2017).CrossRef
6.
Zurück zum Zitat P. E. de Jongh, D. Blanchard, M. Matsuo, T. J. Udovic, and S. Orimo, “Complex hydrides as room-temperature solid electrolytes for rechargeable batteries,” Appl. Phys. A 122, 251 (2016).CrossRef P. E. de Jongh, D. Blanchard, M. Matsuo, T. J. Udovic, and S. Orimo, “Complex hydrides as room-temperature solid electrolytes for rechargeable batteries,” Appl. Phys. A 122, 251 (2016).CrossRef
7.
Zurück zum Zitat A. Züttel, A. Borgschulte, and S. Orimo, “Tetrahydroborates as new hydrogen storage materials,” Scr. Mater. 56, 823−828 (2007).CrossRef A. Züttel, A. Borgschulte, and S. Orimo, “Tetrahydroborates as new hydrogen storage materials,” Scr. Mater. 56, 823−828 (2007).CrossRef
8.
Zurück zum Zitat A. F. Gross, J. J. Vajo, S. L. Van Atta, and G. L. Olson, “Enhanced hydrogen storage kinetics of LiBH4 in nanoporous carbon scaffolds,” J. Phys. Chem. C 112, 5651−5657 (2008).CrossRef A. F. Gross, J. J. Vajo, S. L. Van Atta, and G. L. Olson, “Enhanced hydrogen storage kinetics of LiBH4 in nanoporous carbon scaffolds,” J. Phys. Chem. C 112, 5651−5657 (2008).CrossRef
9.
Zurück zum Zitat J. J. Vajo and G. L. Olson, “Hydrogen storage in destabilized chemical systems,” Scr. Mater. 56, 829−834 (2007).CrossRef J. J. Vajo and G. L. Olson, “Hydrogen storage in destabilized chemical systems,” Scr. Mater. 56, 829−834 (2007).CrossRef
10.
Zurück zum Zitat R. Retnamma, A. Q. Novais, and C. M. Rangel, “Kinetics of hydrolysis of sodium borohydride for hydrogen production in fuel cell applications: A review,” Int. J. Hydrogen Energy 36, 9772−9790 (2011).CrossRef R. Retnamma, A. Q. Novais, and C. M. Rangel, “Kinetics of hydrolysis of sodium borohydride for hydrogen production in fuel cell applications: A review,” Int. J. Hydrogen Energy 36, 9772−9790 (2011).CrossRef
11.
Zurück zum Zitat A. V. Skripov, A. V. Soloninin, and O. A. Babanova, “Nuclear magnetic resonance studies of atomic motion in borohydrides,” J. Alloys Compd. 509S, S535−S539 (2011).CrossRef A. V. Skripov, A. V. Soloninin, and O. A. Babanova, “Nuclear magnetic resonance studies of atomic motion in borohydrides,” J. Alloys Compd. 509S, S535−S539 (2011).CrossRef
12.
Zurück zum Zitat A. Remhof, Z. Łodziana, P. Martelli, O. Friedrichs, A. Züttel, A. V. Skripov, J. P. Embs, and T. Strässle, “Rotational motion of BH4 units in MBH4 (M = Li, Na, K) from quasielastic neutron scattering and density functional calculations,” Phys. Rev. B 81, 214304 (2010).CrossRef A. Remhof, Z. Łodziana, P. Martelli, O. Friedrichs, A. Züttel, A. V. Skripov, J. P. Embs, and T. Strässle, “Rotational motion of BH4 units in MBH4 (M = Li, Na, K) from quasielastic neutron scattering and density functional calculations,” Phys. Rev. B 81, 214304 (2010).CrossRef
13.
Zurück zum Zitat Y. Filinchuk, D. Chernyshov, and R. Cerny, “Lightest borohydride probed by synchrotron X-ray diffraction: Experiment calls for a new theoretical revision,” J. Phys. Chem. C 112, 10579−10584 (2008).CrossRef Y. Filinchuk, D. Chernyshov, and R. Cerny, “Lightest borohydride probed by synchrotron X-ray diffraction: Experiment calls for a new theoretical revision,” J. Phys. Chem. C 112, 10579−10584 (2008).CrossRef
14.
Zurück zum Zitat G. Renaudin, S. Gomes, H. Hagemann, L. Keller, and K. Yvon, “Structural and spectroscopic studies on the alkali borohydrides MBH4 (M = Na, K, Rb, Cs),” J. Alloys Compd. 375, 98−106 (2004).CrossRef G. Renaudin, S. Gomes, H. Hagemann, L. Keller, and K. Yvon, “Structural and spectroscopic studies on the alkali borohydrides MBH4 (M = Na, K, Rb, Cs),” J. Alloys Compd. 375, 98−106 (2004).CrossRef
15.
Zurück zum Zitat A. V. Skripov, A. V. Soloninin, Y. Filinchuk, and D. Chernyshov, “Nuclear magnetic resonance study of the rotational motion and the phase transition in LiBH4,” J. Phys. Chem. C 112, 18701−18705 (2008).CrossRef A. V. Skripov, A. V. Soloninin, Y. Filinchuk, and D. Chernyshov, “Nuclear magnetic resonance study of the rotational motion and the phase transition in LiBH4,” J. Phys. Chem. C 112, 18701−18705 (2008).CrossRef
16.
Zurück zum Zitat A. V. Soloninin, A. V. Skripov, A. L. Buzlukov, and A. P. Stepanov, “Nuclear magnetic resonance study of Li and H diffusion in the high-temperature solid phase of LiBH4,” J. Solid State Chem. 182, 2357−2361 (2009).CrossRef A. V. Soloninin, A. V. Skripov, A. L. Buzlukov, and A. P. Stepanov, “Nuclear magnetic resonance study of Li and H diffusion in the high-temperature solid phase of LiBH4,” J. Solid State Chem. 182, 2357−2361 (2009).CrossRef
17.
Zurück zum Zitat O. A. Babanova, A. V. Soloninin, A. P. Stepanov, A. V. Skripov, and Y. Filinchuk, “Structural and dynamical properties of NaBH4 and KBH4: NMR and synchrotron X-ray diffraction studies,” J. Phys. Chem. C 114, 3712−3718 (2010).CrossRef O. A. Babanova, A. V. Soloninin, A. P. Stepanov, A. V. Skripov, and Y. Filinchuk, “Structural and dynamical properties of NaBH4 and KBH4: NMR and synchrotron X-ray diffraction studies,” J. Phys. Chem. C 114, 3712−3718 (2010).CrossRef
18.
Zurück zum Zitat O. A. Babanova, A. V. Soloninin, A. V. Skripov, D. B. Ravnsbæk, T. R. Jensen, and Y. Filinchuk, “Reorientational motion in alkali-metal borohydrides: NMR data for RbBH4 and CsBH4 and systematics of the activation energy variations,” J. Phys. Chem. C 115, 10305−10309 (2011).CrossRef O. A. Babanova, A. V. Soloninin, A. V. Skripov, D. B. Ravnsbæk, T. R. Jensen, and Y. Filinchuk, “Reorientational motion in alkali-metal borohydrides: NMR data for RbBH4 and CsBH4 and systematics of the activation energy variations,” J. Phys. Chem. C 115, 10305−10309 (2011).CrossRef
19.
Zurück zum Zitat A. Abragam, The Principles of Nuclear Magnetism (Clarendon Press, Oxford, 1961; Inostrannaya literatura, Moscow, 1963) [in Russian]. A. Abragam, The Principles of Nuclear Magnetism (Clarendon Press, Oxford, 1961; Inostrannaya literatura, Moscow, 1963) [in Russian].
20.
Zurück zum Zitat M. R. Hartman, J. J. Rush, T. J. Udovic, and R. C. Bowman, and S.-J. Hwang, “Structure and vibrational dynamics of isotopically labeled lithium borohydride using neutron diffraction and spectroscopy,” J. Solid State Chem. 180, 1298−1305 (2007).CrossRef M. R. Hartman, J. J. Rush, T. J. Udovic, and R. C. Bowman, and S.-J. Hwang, “Structure and vibrational dynamics of isotopically labeled lithium borohydride using neutron diffraction and spectroscopy,” J. Solid State Chem. 180, 1298−1305 (2007).CrossRef
21.
Zurück zum Zitat Y. Filinchuk, A. V. Talyzin, H. Hagemann, V. Dmitriev, D. Chernyshov, and B. Sundqvist, “Cation size and anion anisotropy in structural chemistry of metal borohydrides. The peculiar pressure evolution of RbBH4,” Inorg. Chem. 49, 5285−5292 (2010).CrossRef Y. Filinchuk, A. V. Talyzin, H. Hagemann, V. Dmitriev, D. Chernyshov, and B. Sundqvist, “Cation size and anion anisotropy in structural chemistry of metal borohydrides. The peculiar pressure evolution of RbBH4,” Inorg. Chem. 49, 5285−5292 (2010).CrossRef
22.
Zurück zum Zitat K. Jimura and S. Hayashi, “Reorientational motion of BH4 ions in alkali borohydrides MBH4 (M = Li, Na, K) as studied by solid-state NMR,” J. Phys. Chem. C 116, 4883−4891 (2012).CrossRef K. Jimura and S. Hayashi, “Reorientational motion of BH4 ions in alkali borohydrides MBH4 (M = Li, Na, K) as studied by solid-state NMR,” J. Phys. Chem. C 116, 4883−4891 (2012).CrossRef
23.
Zurück zum Zitat A. Remhof, A. Züttel, T. Ramirez-Cuesta, V. García-Sakai, and B. Frick, “Hydrogen dynamics in the low temperature phase of LiBH4 probed by quasielastic neutron scattering,” Chem. Phys. 427, 18−21 (2013).CrossRef A. Remhof, A. Züttel, T. Ramirez-Cuesta, V. García-Sakai, and B. Frick, “Hydrogen dynamics in the low temperature phase of LiBH4 probed by quasielastic neutron scattering,” Chem. Phys. 427, 18−21 (2013).CrossRef
24.
Zurück zum Zitat N. Verdal, M. R. Hartman, T. Jenkins, D. J. DeVries, J. J. Rush, and T. J. Udovic, “Reorientational dynamics of NaBH4 and KBH4,” J. Phys. Chem. C 114, 10027−10033 (2010).CrossRef N. Verdal, M. R. Hartman, T. Jenkins, D. J. DeVries, J. J. Rush, and T. J. Udovic, “Reorientational dynamics of NaBH4 and KBH4,” J. Phys. Chem. C 114, 10027−10033 (2010).CrossRef
25.
Zurück zum Zitat A. Remhof, Z. Łodziana, F. Buchter, P. Martelli, F. Pendolino, O. Friedrichs, A. Züttel, and J. P. Embs, “Rotational diffusion in NaBH4,” J. Phys. Chem. C 113, 16834−16837 (2009).CrossRef A. Remhof, Z. Łodziana, F. Buchter, P. Martelli, F. Pendolino, O. Friedrichs, A. Züttel, and J. P. Embs, “Rotational diffusion in NaBH4,” J. Phys. Chem. C 113, 16834−16837 (2009).CrossRef
26.
Zurück zum Zitat M. Matsuo, Y. Nakamori, S-i. Orimo, H. Maekawa, and H. Takamura, “Lithium superionic conduction in lithium borohydride accompanied by structural transition,” Appl. Phys. Lett. 91, 224103−224105 (2007).CrossRef M. Matsuo, Y. Nakamori, S-i. Orimo, H. Maekawa, and H. Takamura, “Lithium superionic conduction in lithium borohydride accompanied by structural transition,” Appl. Phys. Lett. 91, 224103−224105 (2007).CrossRef
27.
Zurück zum Zitat M. Matsuo and S-i. Orimo, “Lithium fast-ionic conduction in complex hydrides: review and prospects,” Adv. Energy Mater. 1, 161−172 (2011).CrossRef M. Matsuo and S-i. Orimo, “Lithium fast-ionic conduction in complex hydrides: review and prospects,” Adv. Energy Mater. 1, 161−172 (2011).CrossRef
28.
Zurück zum Zitat R. L. Corey, D. T. Shane, R. C. Bowman, and M. S. Conradi, “Atomic motions in LiBH4 by NMR,” J. Phys. Chem. C 112, 18706−18710 (2008).CrossRef R. L. Corey, D. T. Shane, R. C. Bowman, and M. S. Conradi, “Atomic motions in LiBH4 by NMR,” J. Phys. Chem. C 112, 18706−18710 (2008).CrossRef
29.
Zurück zum Zitat V. Epp and M. Wilkening, “Fast Li diffusion in crystalline LiBH4 due to reduced dimensionality: frequency-dependent NMR spectroscopy,” Phys. Rev. B 82, 020301(R) (2010). V. Epp and M. Wilkening, “Fast Li diffusion in crystalline LiBH4 due to reduced dimensionality: frequency-dependent NMR spectroscopy,” Phys. Rev. B 82, 020301(R) (2010).
30.
Zurück zum Zitat A. Lundén, “On the paddle-wheel mechanism for cation conduction in lithium sulphate,” Z. Naturforsch. 50a, 1067−1076 (1995). A. Lundén, “On the paddle-wheel mechanism for cation conduction in lithium sulphate,” Z. Naturforsch. 50a, 1067−1076 (1995).
31.
Zurück zum Zitat A. V. Skripov, A. V. Soloninin, M. B. Ley, T. R. Jensen, and Y. Filinchuk, “Nuclear magnetic resonance studies of BH4 reorientations and Li diffusion in LiLa(BH4)3Cl,” J. Phys. Chem. C 117, 14965−14972 (2013).CrossRef A. V. Skripov, A. V. Soloninin, M. B. Ley, T. R. Jensen, and Y. Filinchuk, “Nuclear magnetic resonance studies of BH4 reorientations and Li diffusion in LiLa(BH4)3Cl,” J. Phys. Chem. C 117, 14965−14972 (2013).CrossRef
32.
Zurück zum Zitat T. Ikeshoji, E. Tsuchida, T. Morishita, K. Ikeda, M. Matsuo, Y. Kawazoe, and S-i. Orimo, “Fast-ionic conductivity of Li+ in LiBH4,” Phys. Rev. B 83, 144301 (2011).CrossRef T. Ikeshoji, E. Tsuchida, T. Morishita, K. Ikeda, M. Matsuo, Y. Kawazoe, and S-i. Orimo, “Fast-ionic conductivity of Li+ in LiBH4,” Phys. Rev. B 83, 144301 (2011).CrossRef
33.
Zurück zum Zitat D. T. Shane, R. C. Bowman, and M. S. Conradi, “Exchange of hydrogen atoms between BH4 in LiBH4,” J. Phys. Chem. C 113, 5039−5042 (2009).CrossRef D. T. Shane, R. C. Bowman, and M. S. Conradi, “Exchange of hydrogen atoms between BH4 in LiBH4,” J. Phys. Chem. C 113, 5039−5042 (2009).CrossRef
34.
Zurück zum Zitat A. V. Skripov, A. V. Soloninin, L. H. Rude, T. R. Jensen, and Y. Filinchuk, “Nuclear magnetic resonance studies of reorientational motion and Li diffusion in LiBH4-LiI solid solutions,” J. Phys. Chem. C 116, 26177−26184 (2012).CrossRef A. V. Skripov, A. V. Soloninin, L. H. Rude, T. R. Jensen, and Y. Filinchuk, “Nuclear magnetic resonance studies of reorientational motion and Li diffusion in LiBH4-LiI solid solutions,” J. Phys. Chem. C 116, 26177−26184 (2012).CrossRef
35.
Zurück zum Zitat A. V. Soloninin, O. A. Babanova, E. Y. Medvedev, A. V. Skripov, M. Matsuo, and S-i. Orimo, “Nuclear magnetic resonance study of atomic motion in the mixed borohydride-amide Na2(BH4)(NH2),” J. Phys. Chem. C 118, 14805−14812 (2014).CrossRef A. V. Soloninin, O. A. Babanova, E. Y. Medvedev, A. V. Skripov, M. Matsuo, and S-i. Orimo, “Nuclear magnetic resonance study of atomic motion in the mixed borohydride-amide Na2(BH4)(NH2),” J. Phys. Chem. C 118, 14805−14812 (2014).CrossRef
36.
Zurück zum Zitat H. Maekawa, M. Matsuo, H. Takamura, M. Ando, Y. Noda, T. Karahashi, and S-i. Orimo, “Halide-stabilized LiBH4, a room-temperature lithium fast-ion conductor,” J. Am. Chem. Soc. 131, 894−895 (2009).CrossRef H. Maekawa, M. Matsuo, H. Takamura, M. Ando, Y. Noda, T. Karahashi, and S-i. Orimo, “Halide-stabilized LiBH4, a room-temperature lithium fast-ion conductor,” J. Am. Chem. Soc. 131, 894−895 (2009).CrossRef
37.
Zurück zum Zitat R. Miyazaki, T. Karahashi, N. Kumatani, Y. Noda, M. Ando, H. Takamura, M. Matsuo, S. Orimo, and H. Maekawa, “Room temperature lithium fast-ion conduction and phase relationship of LiI stabilized LiBH4,” Solid State Ionics 192, 143–147 (2011).CrossRef R. Miyazaki, T. Karahashi, N. Kumatani, Y. Noda, M. Ando, H. Takamura, M. Matsuo, S. Orimo, and H. Maekawa, “Room temperature lithium fast-ion conduction and phase relationship of LiI stabilized LiBH4,” Solid State Ionics 192, 143–147 (2011).CrossRef
38.
Zurück zum Zitat P. Martelli, A. Remhof, A. Borgschulte, R. Ackermann, T. Strässle, J. P. Embs, M. Ernst, M. Matsuo, S. Orimo, and A. Züttel, “Rotational motion in LiBH4/LiI solid solutions,” J. Phys. Chem. A 115, 5329−5334 (2011).CrossRef P. Martelli, A. Remhof, A. Borgschulte, R. Ackermann, T. Strässle, J. P. Embs, M. Ernst, M. Matsuo, S. Orimo, and A. Züttel, “Rotational motion in LiBH4/LiI solid solutions,” J. Phys. Chem. A 115, 5329−5334 (2011).CrossRef
39.
Zurück zum Zitat A. V. Skripov, A. V. Soloninin, O. A. Babanova, and R. V. Skoryunov, “Nuclear magnetic resonance studies of atomic motion in borohydride-based materials: Fast anion reorientations and cation diffusion,” J. Alloys Compd. 645, S428−S433 (2015).CrossRef A. V. Skripov, A. V. Soloninin, O. A. Babanova, and R. V. Skoryunov, “Nuclear magnetic resonance studies of atomic motion in borohydride-based materials: Fast anion reorientations and cation diffusion,” J. Alloys Compd. 645, S428−S433 (2015).CrossRef
40.
Zurück zum Zitat N. Verdal, T. J. Udovic, and J. J. Rush, “The nature of \({\text{BH}}_{4}^{ - }\) reorientations in hexagonal LiBH4,” J. Phys. Chem. C 116, 1614−1618 (2012).CrossRef N. Verdal, T. J. Udovic, and J. J. Rush, “The nature of \({\text{BH}}_{4}^{ - }\) reorientations in hexagonal LiBH4,” J. Phys. Chem. C 116, 1614−1618 (2012).CrossRef
41.
Zurück zum Zitat N. Verdal, T. J. Udovic, J. J. Rush, H. Wu, and A. V. Skripov, “Evolution of the reorientational motions of the tetrahydroborate anions in hexagonal LiBH4−LiI solid solution by high-Q quasielastic neutron scattering,” J. Phys. Chem. C 117, 12010−12018 (2013).CrossRef N. Verdal, T. J. Udovic, J. J. Rush, H. Wu, and A. V. Skripov, “Evolution of the reorientational motions of the tetrahydroborate anions in hexagonal LiBH4−LiI solid solution by high-Q quasielastic neutron scattering,” J. Phys. Chem. C 117, 12010−12018 (2013).CrossRef
42.
Zurück zum Zitat M. B. Ley, S. Boulineau, R. Janot, Y. Filinchuk, and T. R. Jensen, “New Li ion conductors and solid state hydrogen storage materials: LiM(BH4)3Cl, M = La, Gd,” J. Phys. Chem. C 116, 21267−21276 (2012).CrossRef M. B. Ley, S. Boulineau, R. Janot, Y. Filinchuk, and T. R. Jensen, “New Li ion conductors and solid state hydrogen storage materials: LiM(BH4)3Cl, M = La, Gd,” J. Phys. Chem. C 116, 21267−21276 (2012).CrossRef
43.
Zurück zum Zitat Y-S. Lee, M. B. Ley, T. R. Jensen, and Y. W. Cho, “Lithium ion disorder and conduction mechanism in LiCe(BH4)3Cl,” J. Phys. Chem. C 120, 19035−19042 (2016).CrossRef Y-S. Lee, M. B. Ley, T. R. Jensen, and Y. W. Cho, “Lithium ion disorder and conduction mechanism in LiCe(BH4)3Cl,” J. Phys. Chem. C 120, 19035−19042 (2016).CrossRef
44.
Zurück zum Zitat M. Matsuo, S. Kuromoto, T. Sato, H. Oguchi, H. Takamura, and S. Orimo, “Sodium ionic conduction in complex hydrides with [BH4]− and [NH2]− anions,” Appl. Phys. Lett. 100, 203904 (2012).CrossRef M. Matsuo, S. Kuromoto, T. Sato, H. Oguchi, H. Takamura, and S. Orimo, “Sodium ionic conduction in complex hydrides with [BH4] and [NH2] anions,” Appl. Phys. Lett. 100, 203904 (2012).CrossRef
45.
Zurück zum Zitat M. Somer, S. Acar, C. Koz, I. Kokal, P. Höhn, R. Cardoso-Gil, U. Aydemir, and L. Akselrud, “α- and β‑Na2[BH4][NH2]: two modifications of a complex hydride in the system NaNH2–NaBH4; syntheses, crystal structures, thermal analyses, mass and vibrational spectra,” J. Alloys Compd. 491, 98−105 (2010).CrossRef M. Somer, S. Acar, C. Koz, I. Kokal, P. Höhn, R. Cardoso-Gil, U. Aydemir, and L. Akselrud, “α- and β‑Na2[BH4][NH2]: two modifications of a complex hydride in the system NaNH2–NaBH4; syntheses, crystal structures, thermal analyses, mass and vibrational spectra,” J. Alloys Compd. 491, 98−105 (2010).CrossRef
Metadaten
Titel
Anion Mobility and Cation Diffusion in Alkali Metal Borohydrides
verfasst von
A. V. Soloninin
Publikationsdatum
01.01.2019
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 1/2019
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X19010046

Weitere Artikel der Ausgabe 1/2019

Physics of Metals and Metallography 1/2019 Zur Ausgabe

ELECTRICAL AND MAGNETIC PROPERTIES

Study of Dilute CuEr Alloys by the EPR Method