Skip to main content
Top
Published in:
Cover of the book

2011 | OriginalPaper | Chapter

8. Hydrogen Energy

Authors : Tushar K. Ghosh, Mark A. Prelas

Published in: Energy Resources and Systems

Publisher: Springer Netherlands

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Hydrogen may be considered as a secondary energy source, since it is not available as a pure hydrogen gas. Pure hydrogen must be produced from its compound using another energy source prior to its use. For example, the electricity that is produced from a primary energy source can be used to produce hydrogen from water by electrolysis. The supply of hydrogen on demand also requires a storage system. Hydrogen production, storage, and distribution methods are discussed in this chapter.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bennaceur K, Clark B, Orr FM Jr, Ramakrishnan TS, Roulet C, Stout E (2005) Hydrogen: a future energy carrier? Oilfield Rev 17(1):30–41 Bennaceur K, Clark B, Orr FM Jr, Ramakrishnan TS, Roulet C, Stout E (2005) Hydrogen: a future energy carrier? Oilfield Rev 17(1):30–41
2.
go back to reference Ohi J (2005) Hydrogen energy cycle: an overview. J Mater Res 20(12):3180–3187CrossRef Ohi J (2005) Hydrogen energy cycle: an overview. J Mater Res 20(12):3180–3187CrossRef
3.
go back to reference Kruger P (2004) Electric power required in the world by 2050 for electric power and hydrogen fuel. World nuclear association annual symposium, 8–10 Sept 2004, London Kruger P (2004) Electric power required in the world by 2050 for electric power and hydrogen fuel. World nuclear association annual symposium, 8–10 Sept 2004, London
4.
go back to reference Momirlan M, Veziroglu TN (2002) Current status of hydrogen energy. Renew Sustain Energy Rev 6:141–179CrossRef Momirlan M, Veziroglu TN (2002) Current status of hydrogen energy. Renew Sustain Energy Rev 6:141–179CrossRef
5.
go back to reference Christen K (2005) NRC finds hydrogen economy on track. Environ Sci Technol 39(19):398ACrossRef Christen K (2005) NRC finds hydrogen economy on track. Environ Sci Technol 39(19):398ACrossRef
6.
go back to reference Penner SS (2005) Steps toward the hydrogen economy. Energy (Amsterdam, Neth) 31(1):33–43 Penner SS (2005) Steps toward the hydrogen economy. Energy (Amsterdam, Neth) 31(1):33–43
7.
go back to reference Turner JA, Williams MC, Rajeshwar K (2004) Hydrogen economy based on renewable energy sources. Electrochem Soc Interface 13(3):24–30 Turner JA, Williams MC, Rajeshwar K (2004) Hydrogen economy based on renewable energy sources. Electrochem Soc Interface 13(3):24–30
8.
go back to reference Anon (2008) Event review: the potential for hydrogen as an energy source: the hydrogen economy. Chem Ind (London, UK), 21 April 2008 (8):30 Anon (2008) Event review: the potential for hydrogen as an energy source: the hydrogen economy. Chem Ind (London, UK), 21 April 2008 (8):30
9.
go back to reference Chapman PK, Haynes WE (2005) Power from space and the hydrogen economy. Acta Astronaut 57(2–8):372–383CrossRef Chapman PK, Haynes WE (2005) Power from space and the hydrogen economy. Acta Astronaut 57(2–8):372–383CrossRef
10.
go back to reference Cooper HW (2007) Fuel cells, the hydrogen economy and you. Chem Eng Prog 103(11):34–43 Cooper HW (2007) Fuel cells, the hydrogen economy and you. Chem Eng Prog 103(11):34–43
11.
go back to reference Crabtree GW, Dresselhaus MS, Buchanan MV (2004) The hydrogen economy. Phys Today 57(12):39–44CrossRef Crabtree GW, Dresselhaus MS, Buchanan MV (2004) The hydrogen economy. Phys Today 57(12):39–44CrossRef
12.
go back to reference Eikerling M, Kornyshev A, Kucernak A (2007) Driving the hydrogen economy. Phys World 20(7):32–36 Eikerling M, Kornyshev A, Kucernak A (2007) Driving the hydrogen economy. Phys World 20(7):32–36
13.
go back to reference Marban G, Valdes-Solis T (2008) Towards the hydrogen economy? Int J Hydrogen Energy 33(2):927CrossRef Marban G, Valdes-Solis T (2008) Towards the hydrogen economy? Int J Hydrogen Energy 33(2):927CrossRef
14.
go back to reference Suresh B, Yoneyama M, Schlag S (2007) Hydrogen. SRI Consulting, Menlo Park Suresh B, Yoneyama M, Schlag S (2007) Hydrogen. SRI Consulting, Menlo Park
15.
go back to reference Energy Information Administration (EIA) (2008) The impact of increased use of hydrogen on petroleum consumption and carbon dioxide emissions. Report No. SR-OIAF-CNEAF/ 2008-04 Energy Information Administration (EIA) (2008) The impact of increased use of hydrogen on petroleum consumption and carbon dioxide emissions. Report No. SR-OIAF-CNEAF/ 2008-04
16.
go back to reference An “optimally plausible” solution based on NRC report.3 3 (2004) The NRC report. The hydrogen economy: opportunities, costs, barriers, and R&D needs. The National Academies Press, Washington, DC An “optimally plausible” solution based on NRC report.3 3 (2004) The NRC report. The hydrogen economy: opportunities, costs, barriers, and R&D needs. The National Academies Press, Washington, DC
17.
go back to reference Argonne National Laboratory (2005) Hydrogen demand, production and cost by region to 2050. Report No. ANL/ESD/05-2 Argonne National Laboratory (2005) Hydrogen demand, production and cost by region to 2050. Report No. ANL/ESD/05-2
18.
go back to reference College of the Desert (2001) Module 3 hydrogen use in internal combustion engine. Hydrogen fuel cell engines and related technologies: rev 0, December 2001 College of the Desert (2001) Module 3 hydrogen use in internal combustion engine. Hydrogen fuel cell engines and related technologies: rev 0, December 2001
19.
go back to reference Van Blarigan P (1996) Development of a hydrogen fueled internal combustion engine designed for single speed/power operation. SAE Paper No. 961690 Van Blarigan P (1996) Development of a hydrogen fueled internal combustion engine designed for single speed/power operation. SAE Paper No. 961690
20.
go back to reference Van Blarigan P, Keller JO (1998) A hydrogen fuelled internal combustion engine designed for speed/power operation. Int J Hydrogen Energy 23(7):603–609CrossRef Van Blarigan P, Keller JO (1998) A hydrogen fuelled internal combustion engine designed for speed/power operation. Int J Hydrogen Energy 23(7):603–609CrossRef
21.
go back to reference Verhelst S, Wallner T (2009) Hydrogen fueled internal combustion engines. Prog Energy Combust Sci 35(6):490–527CrossRef Verhelst S, Wallner T (2009) Hydrogen fueled internal combustion engines. Prog Energy Combust Sci 35(6):490–527CrossRef
22.
go back to reference Sato Y, Kawamura A, Yanai T, Naganuma K, Yamane K, Takagi Y (2009) Research and development of hydrogen direct injection internal combustion engine system. In: Proceedings of the 4th IASME/WSEAS international conference on energy and environment, Cambridge, UK, pp 289–296 Sato Y, Kawamura A, Yanai T, Naganuma K, Yamane K, Takagi Y (2009) Research and development of hydrogen direct injection internal combustion engine system. In: Proceedings of the 4th IASME/WSEAS international conference on energy and environment, Cambridge, UK, pp 289–296
23.
go back to reference Welch AB, Mumford D, Munshi S, Holbery J, Boyer B, Younkins M, Jung H (2008) Challenges in developing hydrogen direct injection technology for internal combustion engines. SAE Paper No. 2008-01-2379 Welch AB, Mumford D, Munshi S, Holbery J, Boyer B, Younkins M, Jung H (2008) Challenges in developing hydrogen direct injection technology for internal combustion engines. SAE Paper No. 2008-01-2379
24.
go back to reference White CM, Steeper RR, Lutz AE (2006) The hydrogen fueled internal combustion engine: a technical review. Int J Hydrogen Energy 31(10):1292–1305CrossRef White CM, Steeper RR, Lutz AE (2006) The hydrogen fueled internal combustion engine: a technical review. Int J Hydrogen Energy 31(10):1292–1305CrossRef
25.
go back to reference Berckmüller M, Rottengruber H, Eder A, Brehm N, Elsässer G, Müller-Alander G, Schwarz C (2003) Potentials of a charged SI-hydrogen engine. SAE paper no. 2003-01-3210 Berckmüller M, Rottengruber H, Eder A, Brehm N, Elsässer G, Müller-Alander G, Schwarz C (2003) Potentials of a charged SI-hydrogen engine. SAE paper no. 2003-01-3210
26.
go back to reference Jaura AK, Ortmann W, Stuntz R, Natkin B, Grabowski T (2004) Ford’s H2RV: an industry first HEV propelled with an H2 fueled engine – a fuel efficient and clean solution for sustainable mobility. SAE paper no. 2004-01-0058 Jaura AK, Ortmann W, Stuntz R, Natkin B, Grabowski T (2004) Ford’s H2RV: an industry first HEV propelled with an H2 fueled engine – a fuel efficient and clean solution for sustainable mobility. SAE paper no. 2004-01-0058
27.
go back to reference Natkin RJ, Tang X, Boyer B, Oltmans B, Denlinger A, Heffel JW (2003) Hydrogen IC engine boosting performance and NOx study. SAE paper no. 2003-01-0631 Natkin RJ, Tang X, Boyer B, Oltmans B, Denlinger A, Heffel JW (2003) Hydrogen IC engine boosting performance and NOx study. SAE paper no. 2003-01-0631
28.
go back to reference Escher WJD (1975) The hydrogen-fueled internal combustion engine. A technical survey of contemporary U.S. projects. Technical Report, Escher Technology Associates, Inc., Report for the US Energy and Development Administration, Report No. TEC74/005 Escher WJD (1975) The hydrogen-fueled internal combustion engine. A technical survey of contemporary U.S. projects. Technical Report, Escher Technology Associates, Inc., Report for the US Energy and Development Administration, Report No. TEC74/005
30.
go back to reference Singh M, Moore J, Shadis W (2005) Hydrogen demand, production, and cost by region to 2050. Argonne National Laboratory Report No. ANL/ESD/05-2 Singh M, Moore J, Shadis W (2005) Hydrogen demand, production, and cost by region to 2050. Argonne National Laboratory Report No. ANL/ESD/05-2
31.
go back to reference European Commission (2008) Hyways the European hydrogen roadmap. The sixth framework programme priority 1.6 sustainable development, global change and ecosystems, Report No. cEUR 23123 European Commission (2008) Hyways the European hydrogen roadmap. The sixth framework programme priority 1.6 sustainable development, global change and ecosystems, Report No. cEUR 23123
32.
go back to reference Mintz M, Gillette J, Elgowainy A (2007) Hydrogen production and delivery analysis in U.S. markets: cost, energy and greenhouse gas emissions. In: Proceeding of international conference on non-electric applications of nuclear power: seawater desalination, hydrogen production and other industrial applications Oarai, Japan, 16–19 Apr 2007 Mintz M, Gillette J, Elgowainy A (2007) Hydrogen production and delivery analysis in U.S. markets: cost, energy and greenhouse gas emissions. In: Proceeding of international conference on non-electric applications of nuclear power: seawater desalination, hydrogen production and other industrial applications Oarai, Japan, 16–19 Apr 2007
35.
go back to reference Dominguez M (2006) Hydrogen generation: state of the art and future needs. European Commissions, FISA 2006 conference on EU research and training in reactor systems, 16 Mar 2006 Dominguez M (2006) Hydrogen generation: state of the art and future needs. European Commissions, FISA 2006 conference on EU research and training in reactor systems, 16 Mar 2006
36.
go back to reference Yacobucci BD, Curtright AE (2004) A hydrogen economy and fuel cells: an overview. CRS report for congress. Order Code RL32196 Congressional Research Service, The Library of Congress Yacobucci BD, Curtright AE (2004) A hydrogen economy and fuel cells: an overview. CRS report for congress. Order Code RL32196 Congressional Research Service, The Library of Congress
39.
go back to reference Padro CEG, Putsche V (1999) Survey of the economics of hydrogen technologies. National Renewable Energy Laboratory, Sept 1999CrossRef Padro CEG, Putsche V (1999) Survey of the economics of hydrogen technologies. National Renewable Energy Laboratory, Sept 1999CrossRef
40.
go back to reference Zachariah-Wolff JL, Egyedi TM, Hemmes K (2007) From natural gas to hydrogen via the Wobbe index: the role of standardized gateways in sustainable infrastructure transitions. Int J Hydrogen Energy 32(9):1235–1245CrossRef Zachariah-Wolff JL, Egyedi TM, Hemmes K (2007) From natural gas to hydrogen via the Wobbe index: the role of standardized gateways in sustainable infrastructure transitions. Int J Hydrogen Energy 32(9):1235–1245CrossRef
41.
go back to reference New York State Energy Research and Development Authority. Hydrogen Fact Sheet Hydrogen production Steam methane reforming (SMR) New York State Energy Research and Development Authority. Hydrogen Fact Sheet Hydrogen production Steam methane reforming (SMR)
42.
go back to reference Simpson AP, Lutz AE (2007) Exergy analysis of hydrogen production via steam methane reforming. Int J Hydrogen Energy 32:4811–4820CrossRef Simpson AP, Lutz AE (2007) Exergy analysis of hydrogen production via steam methane reforming. Int J Hydrogen Energy 32:4811–4820CrossRef
43.
go back to reference Fulcheri L, Schwab Y (1995) From methane to hydrogen, carbon black and water. Int J Hydrogen Energy 20(3):197–202CrossRef Fulcheri L, Schwab Y (1995) From methane to hydrogen, carbon black and water. Int J Hydrogen Energy 20(3):197–202CrossRef
44.
go back to reference Gaudernack B, Lynum S (1998) Hydrogen from natural gas without release of CO2 to the atmosphere. Int J Hydrogen Energy 23(12):1087–1093CrossRef Gaudernack B, Lynum S (1998) Hydrogen from natural gas without release of CO2 to the atmosphere. Int J Hydrogen Energy 23(12):1087–1093CrossRef
45.
go back to reference Li Y, Chen J, Qin Y, Chang L (2000) Simultaneous production of hydrogen and nanocarbon from decomposition of methane on a nickel-based catalyst. Energy Fuels 14:1188–1194CrossRef Li Y, Chen J, Qin Y, Chang L (2000) Simultaneous production of hydrogen and nanocarbon from decomposition of methane on a nickel-based catalyst. Energy Fuels 14:1188–1194CrossRef
46.
go back to reference Muradov NZ (2001) Hydrogen via methane decomposition: an application of decarbonization of fossil fuels. Int J Hydrogen Energy 26:1165–1175CrossRef Muradov NZ (2001) Hydrogen via methane decomposition: an application of decarbonization of fossil fuels. Int J Hydrogen Energy 26:1165–1175CrossRef
47.
go back to reference Otsuka K, Shigeta Y, Takenaka S (2002) (Japan) Production of hydrogen from gasoline range alkanes with reduced CO2 emissions. Int J Hydrogen Energy 27:11–18CrossRef Otsuka K, Shigeta Y, Takenaka S (2002) (Japan) Production of hydrogen from gasoline range alkanes with reduced CO2 emissions. Int J Hydrogen Energy 27:11–18CrossRef
48.
go back to reference Ahmed S, Krumpelt M (2001) Hydrogen from hydrocarbon fuels for fuel cells. Int J Hydrogen Energy 26:291–301CrossRef Ahmed S, Krumpelt M (2001) Hydrogen from hydrocarbon fuels for fuel cells. Int J Hydrogen Energy 26:291–301CrossRef
49.
go back to reference Astanovsky DL, Astanovsky LZ (2001) Hydrogen production by steam catalytic natural gas conversion with using drilling gas pressure. In: Proceedings of the National Hydrogen Associations 12th Annual U.S. Hydrogen Meeting, March, Washington, D.C., USA. Astanovsky DL, Astanovsky LZ (2001) Hydrogen production by steam catalytic natural gas conversion with using drilling gas pressure. In: Proceedings of the National Hydrogen Associations 12th Annual U.S. Hydrogen Meeting, March, Washington, D.C., USA.
50.
go back to reference Balthasar W, Hambleton DJ (1978) Industrial scale production of hydrogen from natural gas, naphtha and coal. In: Veziroglu TN, Seifritz W (eds) Hydrogen energy system: proceedings of the 2nd world hydrogen energy conference, Zurich, Switzerland, 21–24 August, vol 2. Pergamon Press, Oxford, pp 1007–1014 Balthasar W, Hambleton DJ (1978) Industrial scale production of hydrogen from natural gas, naphtha and coal. In: Veziroglu TN, Seifritz W (eds) Hydrogen energy system: proceedings of the 2nd world hydrogen energy conference, Zurich, Switzerland, 21–24 August, vol 2. Pergamon Press, Oxford, pp 1007–1014
51.
go back to reference Bromberg L, Cohn DR, Rabinovich A (1998) Plasma reforming of methane. Energy Fuels 12:11–18CrossRef Bromberg L, Cohn DR, Rabinovich A (1998) Plasma reforming of methane. Energy Fuels 12:11–18CrossRef
52.
go back to reference Pruden B (1999) Hydrogen production from natural gas. In: Proceedings 9th Canadian hydrogen conference, Vancouver, BC, Canada, 7–10 Feb, pp 494–501 Pruden B (1999) Hydrogen production from natural gas. In: Proceedings 9th Canadian hydrogen conference, Vancouver, BC, Canada, 7–10 Feb, pp 494–501
53.
go back to reference Bhat SA, Sadhukhan J (2008) Process intensification aspects for steam methane reforming: an overview. AlChE J 55(2):408–422CrossRef Bhat SA, Sadhukhan J (2008) Process intensification aspects for steam methane reforming: an overview. AlChE J 55(2):408–422CrossRef
54.
go back to reference Harale A, Hwang HT, Liu PKT, Sahimi M, Tsotsis TT (2009) Design aspects of the cyclic hybrid adsorbent-membrane reactor (HAMR) system for hydrogen production. Chem Eng Sci 65(1):427–435 Harale A, Hwang HT, Liu PKT, Sahimi M, Tsotsis TT (2009) Design aspects of the cyclic hybrid adsorbent-membrane reactor (HAMR) system for hydrogen production. Chem Eng Sci 65(1):427–435
55.
go back to reference Hopkinson BE (1975) Materials selection for steam reforming hydrogen plants. Interam Conf Mater Technol, [Proc], 4th, pp 181–185 Hopkinson BE (1975) Materials selection for steam reforming hydrogen plants. Interam Conf Mater Technol, [Proc], 4th, pp 181–185
56.
go back to reference Jasinski M, Dors M, Mizeraczyk J (2008) Production of hydrogen via methane reforming using atmospheric pressure microwave plasma. J Power Sources 181(1):41–45CrossRef Jasinski M, Dors M, Mizeraczyk J (2008) Production of hydrogen via methane reforming using atmospheric pressure microwave plasma. J Power Sources 181(1):41–45CrossRef
57.
go back to reference Mathure PV, Patwardhan AV, Saha RK (2007) Steam reforming of methane for bulk and small scale production of hydrogen. Indian Chem Eng 49(4):480–491 Mathure PV, Patwardhan AV, Saha RK (2007) Steam reforming of methane for bulk and small scale production of hydrogen. Indian Chem Eng 49(4):480–491
58.
go back to reference Spath PL, Mann MK (2001) Life cycle assessment of hydrogen production via natural gas steam reforming. National Renewable Energy Laboratory. Report No. NREL/TP-570-27637 Spath PL, Mann MK (2001) Life cycle assessment of hydrogen production via natural gas steam reforming. National Renewable Energy Laboratory. Report No. NREL/TP-570-27637
60.
go back to reference Albrecht KO, Satrio JA, Shanks BH, Wheelock TD (2010) Application of a combined catalyst and sorbent for steam reforming of methane. Ind Eng Chem Res 49(9):4091–4098CrossRef Albrecht KO, Satrio JA, Shanks BH, Wheelock TD (2010) Application of a combined catalyst and sorbent for steam reforming of methane. Ind Eng Chem Res 49(9):4091–4098CrossRef
61.
go back to reference Borowiecki T, Denis A, Panczyk M, Gac W, Stolecki K (2008) Steam reforming of methane on the Ni-Re catalysts. Pol J Chem 82(9):1733–1742 Borowiecki T, Denis A, Panczyk M, Gac W, Stolecki K (2008) Steam reforming of methane on the Ni-Re catalysts. Pol J Chem 82(9):1733–1742
62.
go back to reference Choi SO, Moon SH (2009) Performance of La1-xCexFe0.7Ni0.3O3 perovskite catalysts for methane steam reforming. Catal Today 146(1–2):148–153 Choi SO, Moon SH (2009) Performance of La1-xCexFe0.7Ni0.3O3 perovskite catalysts for methane steam reforming. Catal Today 146(1–2):148–153
63.
go back to reference Graf PO, Mojet BL, Lefferts L (2009) The effect of potassium addition to Pt supported on YSZ on steam reforming of mixtures of methane and ethane. Appl Catal A Gen 362(1–2): 88–94CrossRef Graf PO, Mojet BL, Lefferts L (2009) The effect of potassium addition to Pt supported on YSZ on steam reforming of mixtures of methane and ethane. Appl Catal A Gen 362(1–2): 88–94CrossRef
64.
go back to reference Hossain MA, Trambouze Y (1984) Steam reforming of methane to synthesis gas over cobalt catalysts. Front Chem React Eng [Proc – Int Chem React Eng Conf] 2:23–35 Hossain MA, Trambouze Y (1984) Steam reforming of methane to synthesis gas over cobalt catalysts. Front Chem React Eng [Proc – Int Chem React Eng Conf] 2:23–35
65.
go back to reference Liu H-M, Ye Q, Xu B-Q (2007) Efficient hydrogen production via stepwised steam reforming of methane using nanocomposite Ni/ZrO2 catalyst. Stud Surf Sci Catal 172:473–476 (Science and Technology in Catalysis 2006) Liu H-M, Ye Q, Xu B-Q (2007) Efficient hydrogen production via stepwised steam reforming of methane using nanocomposite Ni/ZrO2 catalyst. Stud Surf Sci Catal 172:473–476 (Science and Technology in Catalysis 2006)
66.
go back to reference Martavaltzi CS, Pampaka EP, Korkakaki ES, Lemonidou AA (2010) Hydrogen production via steam reforming of methane with simultaneous CO2 capture over CaO-Ca12Al14O33. Energy Fuels 24(4):2589–2595CrossRef Martavaltzi CS, Pampaka EP, Korkakaki ES, Lemonidou AA (2010) Hydrogen production via steam reforming of methane with simultaneous CO2 capture over CaO-Ca12Al14O33. Energy Fuels 24(4):2589–2595CrossRef
67.
go back to reference Moon DJ, Kim DH, Lee BG, Kim MJ, Hong SI (2008) Hydrogen production: steam reforming of light hydrocarbon over Ni-based catalysts. Prepr Symp Am Chem Soc, Div Fuel Chem 53(2):620–621 Moon DJ, Kim DH, Lee BG, Kim MJ, Hong SI (2008) Hydrogen production: steam reforming of light hydrocarbon over Ni-based catalysts. Prepr Symp Am Chem Soc, Div Fuel Chem 53(2):620–621
68.
go back to reference Mukherjee DK, Sahay BP, Bhattacharyya NB (1974) Catalytic methane-steam reformation: effect of temperature and partial pressure of methane. Technology(Sindri, India) 11(1):3–8 Mukherjee DK, Sahay BP, Bhattacharyya NB (1974) Catalytic methane-steam reformation: effect of temperature and partial pressure of methane. Technology(Sindri, India) 11(1):3–8
69.
go back to reference Ross JRH, Steel MCF, Zeini-Isfahani A (1975) Steam reforming of methane over nickel catalysts. Mech Hydrocarbon React, Symposium, pp 201–214 Ross JRH, Steel MCF, Zeini-Isfahani A (1975) Steam reforming of methane over nickel catalysts. Mech Hydrocarbon React, Symposium, pp 201–214
70.
go back to reference Ryi S-K, Park J-S, Kim D-K, Kim T-H, Kim S-H (2009) Methane steam reforming with a novel catalytic nickel membrane for effective hydrogen production. J Membr Sci 339 (1–2):189–194CrossRef Ryi S-K, Park J-S, Kim D-K, Kim T-H, Kim S-H (2009) Methane steam reforming with a novel catalytic nickel membrane for effective hydrogen production. J Membr Sci 339 (1–2):189–194CrossRef
71.
go back to reference Sabirova ZA, Danilova MM, Kuzin NA, Kirillov VA, Zaikovskii VI, Krieger TA (2009) Reinforced nickel catalysts for steam reforming of methane to synthesis gas. React Kinet Catal Lett 97(2):363–370CrossRef Sabirova ZA, Danilova MM, Kuzin NA, Kirillov VA, Zaikovskii VI, Krieger TA (2009) Reinforced nickel catalysts for steam reforming of methane to synthesis gas. React Kinet Catal Lett 97(2):363–370CrossRef
72.
go back to reference Schaedel BT, Duisberg M, Deutschmann O (2009) Steam reforming of methane, ethane, propane, butane, and natural gas over a rhodium-based catalyst. Catal Today 142(1–2):42–51CrossRef Schaedel BT, Duisberg M, Deutschmann O (2009) Steam reforming of methane, ethane, propane, butane, and natural gas over a rhodium-based catalyst. Catal Today 142(1–2):42–51CrossRef
73.
go back to reference Shen W, Komatsubara K, Hagiyama T, Yoshida A, Naito S (2009) Steam reforming of methane over ordered mesoporous Ni-Mg-Al oxides. Chem Commun(Cambridge, UK) 42:6490–6492 Shen W, Komatsubara K, Hagiyama T, Yoshida A, Naito S (2009) Steam reforming of methane over ordered mesoporous Ni-Mg-Al oxides. Chem Commun(Cambridge, UK) 42:6490–6492
74.
75.
go back to reference Wu P, Li X, Ji S, Lang B, Habimana F, Li C (2009) Steam reforming of methane to hydrogen over Ni-based metal monolith catalysts. Catal Today 146(1–2):82–86CrossRef Wu P, Li X, Ji S, Lang B, Habimana F, Li C (2009) Steam reforming of methane to hydrogen over Ni-based metal monolith catalysts. Catal Today 146(1–2):82–86CrossRef
76.
go back to reference Abbas HF, Wan Daud WMA (2010) Hydrogen production by methane decomposition: a review. Int J Hydrogen Energy 35(3):1160–1190CrossRef Abbas HF, Wan Daud WMA (2010) Hydrogen production by methane decomposition: a review. Int J Hydrogen Energy 35(3):1160–1190CrossRef
77.
go back to reference Adachi T (1975) Uses of nuclear reactors. Gendai Kagaku 55:24–26 Adachi T (1975) Uses of nuclear reactors. Gendai Kagaku 55:24–26
78.
go back to reference Albertazzi S, Basile F, Vaccari A (2004) Catalytic properties of hydrotalcite-type anionic clays. Interface Sci Technol 1:496–546 (Clay Surfaces) Albertazzi S, Basile F, Vaccari A (2004) Catalytic properties of hydrotalcite-type anionic clays. Interface Sci Technol 1:496–546 (Clay Surfaces)
79.
go back to reference Al-Ubaid AS (1987) Steam reforming of hydrocarbons catalyzed over nickel supported catalysts. Arabian J Sci Eng 12(2):189–198 Al-Ubaid AS (1987) Steam reforming of hydrocarbons catalyzed over nickel supported catalysts. Arabian J Sci Eng 12(2):189–198
80.
go back to reference Barelli L, Bidini G, Gallorini F, Servili S (2008) Hydrogen production through sorption-enhanced steam methane reforming and membrane technology: a review. Energy (Oxford, UK) 33(4):554–570 Barelli L, Bidini G, Gallorini F, Servili S (2008) Hydrogen production through sorption-enhanced steam methane reforming and membrane technology: a review. Energy (Oxford, UK) 33(4):554–570
81.
go back to reference Bridger GW (1973) Coking prevention in steam reforming of methane. Redaktionsgasen Huettenw, Symposium Series 7, Published by Komm Gaserzeugung Int Gas-Union, Karlsruhe, Germany, pp 22 Bridger GW (1973) Coking prevention in steam reforming of methane. Redaktionsgasen Huettenw, Symposium Series 7, Published by Komm Gaserzeugung Int Gas-Union, Karlsruhe, Germany, pp 22
82.
go back to reference Choudhary TV, Goodman DW (2000) Methane activation on Ni and Ru model catalysts. J Mol Catal A: Chem 163(1–2):9–18CrossRef Choudhary TV, Goodman DW (2000) Methane activation on Ni and Ru model catalysts. J Mol Catal A: Chem 163(1–2):9–18CrossRef
83.
go back to reference Graboski MS (1984) The production of synthesis gas from methane, coal and biomass. Catal Convers Synth Gas Alcohols Chem, [Proc Symp] 37–50 Graboski MS (1984) The production of synthesis gas from methane, coal and biomass. Catal Convers Synth Gas Alcohols Chem, [Proc Symp] 37–50
84.
go back to reference Hu YH, Ruckenstein E (2004) Catalytic conversion of methane to synthesis gas by partial oxidation and CO2 reforming. Adv Catal 48:297–345CrossRef Hu YH, Ruckenstein E (2004) Catalytic conversion of methane to synthesis gas by partial oxidation and CO2 reforming. Adv Catal 48:297–345CrossRef
85.
go back to reference Imai N (1976) Development of HTR methane steam reforming at the Juelich Nuclear Research Center. Kagaku Kogaku 40(12):646–647 Imai N (1976) Development of HTR methane steam reforming at the Juelich Nuclear Research Center. Kagaku Kogaku 40(12):646–647
86.
go back to reference Inui T (1999) High speed hydrogen production technology. In: Ekuserugi Kogaku, Yoshida K (ed) Kyoritsu Shuppan, Tokyo, Japan. 195–204 Inui T (1999) High speed hydrogen production technology. In: Ekuserugi Kogaku, Yoshida K (ed) Kyoritsu Shuppan, Tokyo, Japan. 195–204
87.
go back to reference Jackson PJ, Seddon D (1984) New Fischer-Tropsch routes for the conversion of Australian natural gas to transport fuels. Winning in the Competitive World, 12th Australian Chemical Engineering Conference, vol 2, pp 641–648 Jackson PJ, Seddon D (1984) New Fischer-Tropsch routes for the conversion of Australian natural gas to transport fuels. Winning in the Competitive World, 12th Australian Chemical Engineering Conference, vol 2, pp 641–648
88.
go back to reference Kuo JCW (1992) Evaluation of direct methane conversion processes. NATO ASI Ser E: Appl Sci 225(Chemical Reactor Technology for Environmentally Safe Reactors and Products), pp 183–226 Kuo JCW (1992) Evaluation of direct methane conversion processes. NATO ASI Ser E: Appl Sci 225(Chemical Reactor Technology for Environmentally Safe Reactors and Products), pp 183–226
89.
go back to reference Ledakowicz S (1976) Possibilities of using high-temperature reactors in chemical technology. Chemik 29(3):82–86 Ledakowicz S (1976) Possibilities of using high-temperature reactors in chemical technology. Chemik 29(3):82–86
90.
go back to reference S-w L, Y-d L (2005) Research advances on methane reforming for hydrogen. Wuhan Huagong Xueyuan Xuebao 27(1):20–47 S-w L, Y-d L (2005) Research advances on methane reforming for hydrogen. Wuhan Huagong Xueyuan Xuebao 27(1):20–47
91.
go back to reference Mayer B, Koepsel R (1978) Reaction kinetics of the methane-water vapor conversion on the GIAP 3–6 N catalyst. Freiberg Forschungsh A A591:59–114 Mayer B, Koepsel R (1978) Reaction kinetics of the methane-water vapor conversion on the GIAP 3–6 N catalyst. Freiberg Forschungsh A A591:59–114
92.
go back to reference Pfeifer P, Haas-Santo K, Goerke O, Bohn L, Schubert K (2005) Fuel to hydrogen – an overview over fuel conversion activities at the Institute for Micro Process Engineering. In: AIChE Spring National Meeting, Conference Proceedings, Atlanta, GA, United States, 10–14 Apr 2005: 136H/1-136H/5 Pfeifer P, Haas-Santo K, Goerke O, Bohn L, Schubert K (2005) Fuel to hydrogen – an overview over fuel conversion activities at the Institute for Micro Process Engineering. In: AIChE Spring National Meeting, Conference Proceedings, Atlanta, GA, United States, 10–14 Apr 2005: 136H/1-136H/5
93.
go back to reference Rostrup-Nielsen JR (1981) New uses of natural gas by steam reforming processes. Dansk Kemi 62(1):6–10 Rostrup-Nielsen JR (1981) New uses of natural gas by steam reforming processes. Dansk Kemi 62(1):6–10
94.
go back to reference Scarpiello DA (1996) Catalytic conversion of methane. In: Proceedings of the international gas research conference, vol 2, pp 2707–2716 Scarpiello DA (1996) Catalytic conversion of methane. In: Proceedings of the international gas research conference, vol 2, pp 2707–2716
95.
go back to reference Sugisawa M, Teramura K, Kubonra J, Domen K (2008) Nickel oxide catalysts for methane steam reforming. Kemikaru Enjiniyaringu 53(6):423–426 Sugisawa M, Teramura K, Kubonra J, Domen K (2008) Nickel oxide catalysts for methane steam reforming. Kemikaru Enjiniyaringu 53(6):423–426
96.
go back to reference Tada A (2008) Application of direct methane reforming for hydrogen power generation and application of nano carbon materials. Metan Kodo Kagaku Henkan Gijutsu Shusei, pp 222–233 Tada A (2008) Application of direct methane reforming for hydrogen power generation and application of nano carbon materials. Metan Kodo Kagaku Henkan Gijutsu Shusei, pp 222–233
97.
go back to reference Takamura H (2005) Hydrogen production from methane by using oxygen permeable ceramics. Materia 44(3):211–215 Takamura H (2005) Hydrogen production from methane by using oxygen permeable ceramics. Materia 44(3):211–215
98.
go back to reference Tomishige K (2001) Catalytic process for synthesis gas production from natural gas. Kagaku Kogyo 52(10):767–772 Tomishige K (2001) Catalytic process for synthesis gas production from natural gas. Kagaku Kogyo 52(10):767–772
99.
go back to reference Tomishige K (2009) Production of synthesis gas and hydrogen by oxidative steam reforming of methane: development of Ni catalysts with trace noble metals. Nenryo Denchi 8(3):57–66 Tomishige K (2009) Production of synthesis gas and hydrogen by oxidative steam reforming of methane: development of Ni catalysts with trace noble metals. Nenryo Denchi 8(3):57–66
100.
go back to reference Yasuda I, Shirasaki Y (2006) Development of highly-efficient hydrogen production system based on membrane reactor from natural gas. Shokubai 48(5):296–301 Yasuda I, Shirasaki Y (2006) Development of highly-efficient hydrogen production system based on membrane reactor from natural gas. Shokubai 48(5):296–301
101.
go back to reference Zheng W, Li J, Wu H, Liu S (2008) Research progress on catalysts for stepwise steam reforming of methane for hydrogen production. Jingxi Shiyou Huagong Jinzhan 9(7):24–28 Zheng W, Li J, Wu H, Liu S (2008) Research progress on catalysts for stepwise steam reforming of methane for hydrogen production. Jingxi Shiyou Huagong Jinzhan 9(7):24–28
102.
go back to reference Berrocal GP, Da Silva ALM, Assaf JM, Albornoz A, MdC R (2010) Novel supports for nickel-based catalysts for the partial oxidation of methane. Catal Today 149(3–4):240–247CrossRef Berrocal GP, Da Silva ALM, Assaf JM, Albornoz A, MdC R (2010) Novel supports for nickel-based catalysts for the partial oxidation of methane. Catal Today 149(3–4):240–247CrossRef
103.
go back to reference Beznis NV, Weckhuysen BM, Bitter JH (2010) Partial oxidation of methane over co-zsm-5: tuning the oxygenate selectivity by altering the preparation route. Catal Lett 136(1–2):52–56CrossRef Beznis NV, Weckhuysen BM, Bitter JH (2010) Partial oxidation of methane over co-zsm-5: tuning the oxygenate selectivity by altering the preparation route. Catal Lett 136(1–2):52–56CrossRef
104.
go back to reference Cheng YS, Pena MA, Yeung KL (2009) Hydrogen production from partial oxidation of methane in a membrane reactor. J Taiwan Inst Chem Eng 40(3):281–288CrossRef Cheng YS, Pena MA, Yeung KL (2009) Hydrogen production from partial oxidation of methane in a membrane reactor. J Taiwan Inst Chem Eng 40(3):281–288CrossRef
105.
go back to reference Ferreira AC, Ferraria AM, Botelho do Rego AM, Goncalves AP, Correia MR, Gasche TA, Branco JB (2009) Partial oxidation of methane over bimetallic nickel-lanthanide oxides. J Alloy Comp 489(1):316–323 Ferreira AC, Ferraria AM, Botelho do Rego AM, Goncalves AP, Correia MR, Gasche TA, Branco JB (2009) Partial oxidation of methane over bimetallic nickel-lanthanide oxides. J Alloy Comp 489(1):316–323
106.
go back to reference Ferreira AC, Ferraria AM, Rego AM Botelho do, Goncalves AP, Girao AV, Correia R, Gasche TA, Branco JB (2010) Partial oxidation of methane over bimetallic copper-cerium oxide catalysts. J Mol Catal A: Chem 320(1–2):47–55 Ferreira AC, Ferraria AM, Rego AM Botelho do, Goncalves AP, Girao AV, Correia R, Gasche TA, Branco JB (2010) Partial oxidation of methane over bimetallic copper-cerium oxide catalysts. J Mol Catal A: Chem 320(1–2):47–55
107.
go back to reference Ferreira AC, Goncalves AP, Gasche TA, Ferraria AM, Rego AM Botelho do, Correia MR, Bola AM, Branco JB (2010) Partial oxidation of methane over bimetallic copper- and nickel-actinide oxides (Th, U). J Alloy Comp 497(1–2):249–258 Ferreira AC, Goncalves AP, Gasche TA, Ferraria AM, Rego AM Botelho do, Correia MR, Bola AM, Branco JB (2010) Partial oxidation of methane over bimetallic copper- and nickel-actinide oxides (Th, U). J Alloy Comp 497(1–2):249–258
108.
go back to reference Fleys M, Simon Y, Marquaire P-M, Lapicque F (2009) Hydrogen production by catalytic partial oxidation of methane. Study of reaction mechanism. Récents Progrès en Génie des Procédés – Numéro 96 – 2007 ISBN 2-910239-70-5, Ed. SFGP, Paris, France Fleys M, Simon Y, Marquaire P-M, Lapicque F (2009) Hydrogen production by catalytic partial oxidation of methane. Study of reaction mechanism. Récents Progrès en Génie des Procédés – Numéro 96 – 2007 ISBN 2-910239-70-5, Ed. SFGP, Paris, France
109.
go back to reference Gubanova EL, Schuurman Y, Sadykov VA, Mirodatos C, van Veen AC (2009) Evaluation of kinetic models for the partial oxidation of methane to synthesis gas over a Pt/PrCeZrOx catalyst coated on a triangular monolith. Chem Eng J (Amsterdam, Neth) 154(1–3):174–184 Gubanova EL, Schuurman Y, Sadykov VA, Mirodatos C, van Veen AC (2009) Evaluation of kinetic models for the partial oxidation of methane to synthesis gas over a Pt/PrCeZrOx catalyst coated on a triangular monolith. Chem Eng J (Amsterdam, Neth) 154(1–3):174–184
110.
go back to reference Habimana F, Li X, Ji S, Lang B, Sun D, Li C (2009) Effect of Cu promoter on Ni-based SBA-15 catalysts for partial oxidation of methane to syngas. J Nat Gas Chem 18(4):392–398CrossRef Habimana F, Li X, Ji S, Lang B, Sun D, Li C (2009) Effect of Cu promoter on Ni-based SBA-15 catalysts for partial oxidation of methane to syngas. J Nat Gas Chem 18(4):392–398CrossRef
111.
go back to reference Prangsri-aroon S, Viravathana P, Worayingyong (2010) A partial oxidation of methane to syngas by LaCoO3 oxidative catalysts. In: Abstracts of Papers, 239th ACS National Meeting, San Francisco, CA, United States, 21–25 Mar 2010: PETR-12 Prangsri-aroon S, Viravathana P, Worayingyong (2010) A partial oxidation of methane to syngas by LaCoO3 oxidative catalysts. In: Abstracts of Papers, 239th ACS National Meeting, San Francisco, CA, United States, 21–25 Mar 2010: PETR-12
112.
go back to reference Salazar-Villalpando MD, Reyes B (2009) Hydrogen production over Ni/ceria-supported catalysts by partial oxidation of methane. Int J Hydrogen Energy 34(24):9723–9729CrossRef Salazar-Villalpando MD, Reyes B (2009) Hydrogen production over Ni/ceria-supported catalysts by partial oxidation of methane. Int J Hydrogen Energy 34(24):9723–9729CrossRef
113.
go back to reference Schmal M, Perez CA, Teixeira da Silva V, Padilha LF (2010) Hydrogen and ethylene production from partial oxidation of methane on CuCe, CuZr mixed oxides and ZrO2 catalysts. Appl Catal A Gen 375(2):205–212CrossRef Schmal M, Perez CA, Teixeira da Silva V, Padilha LF (2010) Hydrogen and ethylene production from partial oxidation of methane on CuCe, CuZr mixed oxides and ZrO2 catalysts. Appl Catal A Gen 375(2):205–212CrossRef
114.
go back to reference Shang R, Wang Y, Jin G, Guo X-Y (2009) Partial oxidation of methane over nickel catalysts supported on nitrogen-doped SiC. Catal Commun 10(11):1502–1505CrossRef Shang R, Wang Y, Jin G, Guo X-Y (2009) Partial oxidation of methane over nickel catalysts supported on nitrogen-doped SiC. Catal Commun 10(11):1502–1505CrossRef
115.
go back to reference Kothari R, Tyagi VV, Pathak A (2010) Waste-to-energy: a way from renewable energy sources to sustainable development. Renew Sustain Energy Rev 14(9):3164–3170CrossRef Kothari R, Tyagi VV, Pathak A (2010) Waste-to-energy: a way from renewable energy sources to sustainable development. Renew Sustain Energy Rev 14(9):3164–3170CrossRef
116.
go back to reference Cai X, Cai Y, Lin W (2008) Autothermal reforming of methane over Ni catalysts supported over ZrO2-CeO2-Al2O3. J Nat Gas Chem 17(2):201–207CrossRef Cai X, Cai Y, Lin W (2008) Autothermal reforming of methane over Ni catalysts supported over ZrO2-CeO2-Al2O3. J Nat Gas Chem 17(2):201–207CrossRef
117.
go back to reference Cai X, Dong X, Lin W (2006) Autothermal reforming of methane over Ni catalysts supported on CuO-ZrO2-CeO2-Al2O3. J Nat Gas Chem 15(2):122–126CrossRef Cai X, Dong X, Lin W (2006) Autothermal reforming of methane over Ni catalysts supported on CuO-ZrO2-CeO2-Al2O3. J Nat Gas Chem 15(2):122–126CrossRef
118.
go back to reference Cao L, Ni C, Yuan Z, Wang S (2009) Autothermal reforming of methane over CeO2-ZrO2-La2O3 supported Rh catalyst. Catal Lett 131(3–4):474–479CrossRef Cao L, Ni C, Yuan Z, Wang S (2009) Autothermal reforming of methane over CeO2-ZrO2-La2O3 supported Rh catalyst. Catal Lett 131(3–4):474–479CrossRef
119.
go back to reference Ciambelli P, Palma V, Palo E, Iaquaniello G (2009) Natural gas autothermal reforming: an effective option for a sustainable distributed production of hydrogen. In: Barbaro P, Bianchini C (eds) Catalysis for sustainable energy production, Wiley-VCH Verlag GmbH, Weinheim, Germany, pp 287–319CrossRef Ciambelli P, Palma V, Palo E, Iaquaniello G (2009) Natural gas autothermal reforming: an effective option for a sustainable distributed production of hydrogen. In: Barbaro P, Bianchini C (eds) Catalysis for sustainable energy production, Wiley-VCH Verlag GmbH, Weinheim, Germany, pp 287–319CrossRef
120.
go back to reference Ciambelli P, Palma V, Palo E, Sannino D (2005) Hydrogen production via catalytic autothermal reforming of methane. World Congress of Chemical Engineering, 7th, Glasgow, United Kingdom, 10–14 July 2005: 86113/1-86113/9 Ciambelli P, Palma V, Palo E, Sannino D (2005) Hydrogen production via catalytic autothermal reforming of methane. World Congress of Chemical Engineering, 7th, Glasgow, United Kingdom, 10–14 July 2005: 86113/1-86113/9
121.
go back to reference Dias JAC, Assaf JM (2008) Autothermal reforming of methane over Ni/gamma -Al2O3 promoted with Pd. Appl Catal A Gen 334(1–2):243–250CrossRef Dias JAC, Assaf JM (2008) Autothermal reforming of methane over Ni/gamma -Al2O3 promoted with Pd. Appl Catal A Gen 334(1–2):243–250CrossRef
122.
go back to reference Kim SH, Chung JH, Kim YT, Han J, Yoon SP, Nam S-W, Lim T-H, Lee H-I (2009) Disk-type porous Ni-Cr bulk catalyst for hydrogen production by autothermal reforming of methane. Catal Today 146(1–2):96–102CrossRef Kim SH, Chung JH, Kim YT, Han J, Yoon SP, Nam S-W, Lim T-H, Lee H-I (2009) Disk-type porous Ni-Cr bulk catalyst for hydrogen production by autothermal reforming of methane. Catal Today 146(1–2):96–102CrossRef
123.
go back to reference Lee WS, Kim TY, Woo SI (2010) High-throughput screening for the promoters of alumina supported Ni catalysts in autothermal reforming of methane. Top Catal 53(1–2):123–128CrossRef Lee WS, Kim TY, Woo SI (2010) High-throughput screening for the promoters of alumina supported Ni catalysts in autothermal reforming of methane. Top Catal 53(1–2):123–128CrossRef
124.
go back to reference Meira de Souza AEA, Maciel LJL, Medeiros de Lima Filho N, Moraes de Abreu CA (2010) Catalytic activity evaluation for hydrogen production via autothermal reforming of methane. Catal Today 149(3–4):413–417CrossRef Meira de Souza AEA, Maciel LJL, Medeiros de Lima Filho N, Moraes de Abreu CA (2010) Catalytic activity evaluation for hydrogen production via autothermal reforming of methane. Catal Today 149(3–4):413–417CrossRef
125.
go back to reference Nagaoka K, Eiraku T, Nishiguchi H, Takita Y (2006) Ni/(rare earth phosphate) as a new effective catalyst for autothermal reforming of methane. Chem Lett 35(6):580–581CrossRef Nagaoka K, Eiraku T, Nishiguchi H, Takita Y (2006) Ni/(rare earth phosphate) as a new effective catalyst for autothermal reforming of methane. Chem Lett 35(6):580–581CrossRef
126.
go back to reference Rabe S, Truong T-B, Vogel F (2007) Catalytic autothermal reforming of methane: performance of a kW scale reformer using pure oxygen as oxidant. Appl Catal A Gen 318:54–62CrossRef Rabe S, Truong T-B, Vogel F (2007) Catalytic autothermal reforming of methane: performance of a kW scale reformer using pure oxygen as oxidant. Appl Catal A Gen 318:54–62CrossRef
127.
go back to reference Ratnasamy C, Wagner JP, Tackett D (2004) Production of hydrogen by autothermal reforming of methane and simulated natural gas. In: AIChE Spring National Meeting, Conference Proceedings, New Orleans, LA, United States, 25–29 Apr 2004, pp 177–181 Ratnasamy C, Wagner JP, Tackett D (2004) Production of hydrogen by autothermal reforming of methane and simulated natural gas. In: AIChE Spring National Meeting, Conference Proceedings, New Orleans, LA, United States, 25–29 Apr 2004, pp 177–181
128.
go back to reference Souza MMVM, Schmal M (2005) Autothermal reforming of methane over Pt/ZrO2/Al2O3 catalysts. Appl Catal A Gen 281(1–2):19–24CrossRef Souza MMVM, Schmal M (2005) Autothermal reforming of methane over Pt/ZrO2/Al2O3 catalysts. Appl Catal A Gen 281(1–2):19–24CrossRef
129.
go back to reference Wang G, Coppens M-O (2010) Rational design of hierarchically structured porous catalysts for autothermal reforming of methane. Chem Eng Sci 65(7):2344–2351CrossRef Wang G, Coppens M-O (2010) Rational design of hierarchically structured porous catalysts for autothermal reforming of methane. Chem Eng Sci 65(7):2344–2351CrossRef
130.
go back to reference Ayabe S, Omoto H, Utaka T, Kikuchi R, Sasaki K, Teraoka Y, Eguchi K (2003) Catalytic autothermal reforming of methane and propane over supported metal catalysts. Appl Catal A Gen 241(1):261–269CrossRef Ayabe S, Omoto H, Utaka T, Kikuchi R, Sasaki K, Teraoka Y, Eguchi K (2003) Catalytic autothermal reforming of methane and propane over supported metal catalysts. Appl Catal A Gen 241(1):261–269CrossRef
131.
go back to reference Fletcher EA, Moen RL (1977) Hydrogen and oxygen from water. Science 197:1050 Fletcher EA, Moen RL (1977) Hydrogen and oxygen from water. Science 197:1050
132.
go back to reference Ihara S (1980) On the study of hydrogen production from water using solar thermal energy. Int J Hydrogen Energy 5(5):527–534CrossRef Ihara S (1980) On the study of hydrogen production from water using solar thermal energy. Int J Hydrogen Energy 5(5):527–534CrossRef
133.
go back to reference Ohta T (1979) Solar hydrogen energy system. Pergamon Press, Oxford, p 59 Ohta T (1979) Solar hydrogen energy system. Pergamon Press, Oxford, p 59
134.
go back to reference Kogan A (2000) Direct solar thermal splitting of water and on-site separation of the products-IV. Development of porous ceramic membranes for a solar thermal water-splitting reactor. Int J Hydrogen Energy 25:1043–1050 Kogan A (2000) Direct solar thermal splitting of water and on-site separation of the products-IV. Development of porous ceramic membranes for a solar thermal water-splitting reactor. Int J Hydrogen Energy 25:1043–1050
135.
go back to reference Yalcin S (1989) A review of nuclear hydrogen production. Int J Hydrogen Energy 14(8):551–561CrossRef Yalcin S (1989) A review of nuclear hydrogen production. Int J Hydrogen Energy 14(8):551–561CrossRef
136.
go back to reference Verfondern K (2007) Nuclear energy for hydrogen production. Schriften des Forschungszentrums Juelich, Reihe Energietechnik/Energy Technology 58:i-ii, 1–185 Verfondern K (2007) Nuclear energy for hydrogen production. Schriften des Forschungszentrums Juelich, Reihe Energietechnik/Energy Technology 58:i-ii, 1–185
137.
go back to reference Ryland DK, Li H, Sadhankar RR (2007) Electrolytic hydrogen generation using CANDU nuclear reactors. Int J Energy Res 31(12):1142–1155CrossRef Ryland DK, Li H, Sadhankar RR (2007) Electrolytic hydrogen generation using CANDU nuclear reactors. Int J Energy Res 31(12):1142–1155CrossRef
138.
go back to reference Marcus GH (2009) An international overview of nuclear hydrogen production programs. Nucl Technol 166(1):27–31 Marcus GH (2009) An international overview of nuclear hydrogen production programs. Nucl Technol 166(1):27–31
139.
go back to reference Verfondern K (2005) Nuclear hydrogen production. Nachrichten – Forschungszentrum Karlsruhe 37(3):124–128 Verfondern K (2005) Nuclear hydrogen production. Nachrichten – Forschungszentrum Karlsruhe 37(3):124–128
140.
go back to reference Schulten R, Barnert H, Fedders H, Grziwa G, Schulte A (1976) The concept of ”nuclear hydrogen production” and progress of work in the Nuclear Research Center Juelich. In: Proceedings of the 1st World Hydrogen Energy Conference, vol 1, pp 1A, 19–32 Schulten R, Barnert H, Fedders H, Grziwa G, Schulte A (1976) The concept of ”nuclear hydrogen production” and progress of work in the Nuclear Research Center Juelich. In: Proceedings of the 1st World Hydrogen Energy Conference, vol 1, pp 1A, 19–32
141.
go back to reference Uhrig RE (2008) Producing hydrogen using nuclear energy. Int J Nucl Hydrogen Prod Appl 1(3):179–193CrossRef Uhrig RE (2008) Producing hydrogen using nuclear energy. Int J Nucl Hydrogen Prod Appl 1(3):179–193CrossRef
142.
go back to reference Kasai S, Fujiwara S, Yamada K, Ogawa T, Matsunaga K, Yoshino M, Hoashi E, Makino S (2009) Nuclear hydrogen production by high-temperature electrolysis. Nihon Genshiryoku Gakkai Wabun Ronbunshu 8(2):122–141 Kasai S, Fujiwara S, Yamada K, Ogawa T, Matsunaga K, Yoshino M, Hoashi E, Makino S (2009) Nuclear hydrogen production by high-temperature electrolysis. Nihon Genshiryoku Gakkai Wabun Ronbunshu 8(2):122–141
143.
go back to reference O’Brien JE, Stoots CM, Herring JS, Hartvigsen JJ (2006) Hydrogen production performance of a 10- cell planar solid-oxide electrolysis stack. J Fuel Cell Sci Technol 3:213–219CrossRef O’Brien JE, Stoots CM, Herring JS, Hartvigsen JJ (2006) Hydrogen production performance of a 10- cell planar solid-oxide electrolysis stack. J Fuel Cell Sci Technol 3:213–219CrossRef
144.
go back to reference O’Brien JE, Stoots CM, Herring JS, Hartvigsen JJ (2007) Performance of planar high-temperature electrolysis stacks for hydrogen production from nuclear energy. Nucl Technol 158:118–131 O’Brien JE, Stoots CM, Herring JS, Hartvigsen JJ (2007) Performance of planar high-temperature electrolysis stacks for hydrogen production from nuclear energy. Nucl Technol 158:118–131
145.
go back to reference Hawkes GL, O’Brien JE, Stoots CM, Herring JS (2007) CFD model of a planar solid oxide electrolysis cell for hydrogen production from nuclear energy. Nucl Technol 158:132–144 Hawkes GL, O’Brien JE, Stoots CM, Herring JS (2007) CFD model of a planar solid oxide electrolysis cell for hydrogen production from nuclear energy. Nucl Technol 158:132–144
146.
go back to reference Herring JS, O’Brien JE, Stoots CM, Hawkes GL (2007) Progress in high-temperature electrolysis for hydrogen production using planar SOFC technology. Int J Hydrogen Energy 32(4):440–450CrossRef Herring JS, O’Brien JE, Stoots CM, Hawkes GL (2007) Progress in high-temperature electrolysis for hydrogen production using planar SOFC technology. Int J Hydrogen Energy 32(4):440–450CrossRef
147.
go back to reference Ivy J (2004) Summary of electrolytic hydrogen production. NREL Report NREL/MP-560-36734, Sept 2004 Ivy J (2004) Summary of electrolytic hydrogen production. NREL Report NREL/MP-560-36734, Sept 2004
148.
go back to reference Rivera-Tinoco R, Mansilla C, Bouallou C, Werkoff F (2008) Techno-economic study of hydrogen production by high temperature electrolysiscoupled with an epr, sfr or htr – water steam production and coupling possibilities. Int J Nucl Hydrogen Prod Appl 1(3):249–266CrossRef Rivera-Tinoco R, Mansilla C, Bouallou C, Werkoff F (2008) Techno-economic study of hydrogen production by high temperature electrolysiscoupled with an epr, sfr or htr – water steam production and coupling possibilities. Int J Nucl Hydrogen Prod Appl 1(3):249–266CrossRef
149.
go back to reference Anzieu P, Aujollet P, Barbier D, Bassi A, Bertrand F, Duigou AL, Leybros J, Rodriguez G (2008) Coupling a hydrogen production process to a nuclear reactor. Int J Nucl Hydrogen Prod Appl 1(3):207–218CrossRef Anzieu P, Aujollet P, Barbier D, Bassi A, Bertrand F, Duigou AL, Leybros J, Rodriguez G (2008) Coupling a hydrogen production process to a nuclear reactor. Int J Nucl Hydrogen Prod Appl 1(3):207–218CrossRef
150.
go back to reference Bo Y, Wenqiang Z, Jingming X, Jing C (2010) Status and research of highly efficient hydrogen production through high temperature steam electrolysis at INET. Int J Hydrogen Energy 35(7):2829–2835CrossRef Bo Y, Wenqiang Z, Jingming X, Jing C (2010) Status and research of highly efficient hydrogen production through high temperature steam electrolysis at INET. Int J Hydrogen Energy 35(7):2829–2835CrossRef
151.
go back to reference Fujiwara S, Kasai S, Yamauchi H, Yamada K, Makino S, Matsunaga K, Yoshino M, Kameda T, Ogawa T, Momma S, Hoashi E (2008) Hydrogen production by high temperature electrolysis with nuclear reactor. Prog Nucl Energy 50(2–6):422–426CrossRef Fujiwara S, Kasai S, Yamauchi H, Yamada K, Makino S, Matsunaga K, Yoshino M, Kameda T, Ogawa T, Momma S, Hoashi E (2008) Hydrogen production by high temperature electrolysis with nuclear reactor. Prog Nucl Energy 50(2–6):422–426CrossRef
152.
go back to reference Harvego EA, McKellar MG, O’Brien JE, Herring JS (2009) Parametric evaluation of large-scale high-temperature electrolysis hydrogen production using different advanced nuclear reactor heat sources. Nucl Eng Des 239(9):1571–1580CrossRef Harvego EA, McKellar MG, O’Brien JE, Herring JS (2009) Parametric evaluation of large-scale high-temperature electrolysis hydrogen production using different advanced nuclear reactor heat sources. Nucl Eng Des 239(9):1571–1580CrossRef
153.
go back to reference Mansilla C, Sigurvinsson J, Bontemps A, Maréchal A, Werkoff F (2007) Heat management for hydrogen production by high temperature steam electrolysis. Energy 32(4):423–430CrossRef Mansilla C, Sigurvinsson J, Bontemps A, Maréchal A, Werkoff F (2007) Heat management for hydrogen production by high temperature steam electrolysis. Energy 32(4):423–430CrossRef
154.
go back to reference O’Brien JE, McKellar MG, Harvego EA, Stoots CM (2010) High-temperature electrolysis for large-scale hydrogen and syngas production from nuclear energy – summary of system simulation and economic analyses. Int J Hydrogen Energy 35(10):4808–4819CrossRef O’Brien JE, McKellar MG, Harvego EA, Stoots CM (2010) High-temperature electrolysis for large-scale hydrogen and syngas production from nuclear energy – summary of system simulation and economic analyses. Int J Hydrogen Energy 35(10):4808–4819CrossRef
155.
go back to reference Shin Y, Park W, Chang J, Park J (2007) Evaluation of the high temperature electrolysis of steam to produce hydrogen. Int J Hydrogen Energy 32(10–11):1486–1491CrossRef Shin Y, Park W, Chang J, Park J (2007) Evaluation of the high temperature electrolysis of steam to produce hydrogen. Int J Hydrogen Energy 32(10–11):1486–1491CrossRef
156.
go back to reference Stoots CM, O’Brien JE, Condie KG, Hartvigsen JJ (2010) High-temperature electrolysis for large-scale hydrogen production from nuclear energy: experimental investigations. Int J Hydrogen Energy 35(10):4861–4870CrossRef Stoots CM, O’Brien JE, Condie KG, Hartvigsen JJ (2010) High-temperature electrolysis for large-scale hydrogen production from nuclear energy: experimental investigations. Int J Hydrogen Energy 35(10):4861–4870CrossRef
157.
go back to reference Udagawa J, Aguiar P, Brandon NP (2007) Hydrogen production through steam electrolysis: model-based steady state performance of a cathode-supported intermediate temperature solid oxide electrolysis cell. J Power Sources 166(1):127–136CrossRef Udagawa J, Aguiar P, Brandon NP (2007) Hydrogen production through steam electrolysis: model-based steady state performance of a cathode-supported intermediate temperature solid oxide electrolysis cell. J Power Sources 166(1):127–136CrossRef
158.
go back to reference Utgikar V, Thiesen T (2006) Life cycle assessment of high temperature electrolysis for hydrogen production via nuclear energy. Int J Hydrogen Energy 31(7):939–944CrossRef Utgikar V, Thiesen T (2006) Life cycle assessment of high temperature electrolysis for hydrogen production via nuclear energy. Int J Hydrogen Energy 31(7):939–944CrossRef
159.
go back to reference Yu B, Zhang W, Chen J, Xu J, Wang S (2008) Advance in highly efficient hydrogen production by high temperature steam electrolysis. Sci China B Chem 51(4):289–304CrossRef Yu B, Zhang W, Chen J, Xu J, Wang S (2008) Advance in highly efficient hydrogen production by high temperature steam electrolysis. Sci China B Chem 51(4):289–304CrossRef
160.
go back to reference Yildiz B, Kazimi MS (2006) Efficiency of hydrogen production systems using alternative nuclear energy technologies. Int J Hydrogen Energy 31:77–92CrossRef Yildiz B, Kazimi MS (2006) Efficiency of hydrogen production systems using alternative nuclear energy technologies. Int J Hydrogen Energy 31:77–92CrossRef
161.
go back to reference O’Brien JE, Stoots CM, Herring JS, Hawkees GL (2006) Hydrogen production from nuclear energy via high temperature electrolysis. 1st Energy Center Hydrogen Initiative Symposium. Paper: ECHI-I-IL-3, Purdue University, West Lafayette, 5–6 Apr 2006. Report No. INL/CON-06-01375 O’Brien JE, Stoots CM, Herring JS, Hawkees GL (2006) Hydrogen production from nuclear energy via high temperature electrolysis. 1st Energy Center Hydrogen Initiative Symposium. Paper: ECHI-I-IL-3, Purdue University, West Lafayette, 5–6 Apr 2006. Report No. INL/CON-06-01375
162.
go back to reference Russell JL, McCorkle KH, Norman JH, Schuster JR, Trester PW (1976) Development of thermochemical water splitting at General Atomic Company. In: Proceedings of synthetic pipeline gas symposium, vol 8, pp 335–361 Russell JL, McCorkle KH, Norman JH, Schuster JR, Trester PW (1976) Development of thermochemical water splitting at General Atomic Company. In: Proceedings of synthetic pipeline gas symposium, vol 8, pp 335–361
163.
go back to reference Funk JE (1976) Thermochemical production of hydrogen via multistage water splitting processes. Int J Hydrogen Energy 1(1):33–43CrossRef Funk JE (1976) Thermochemical production of hydrogen via multistage water splitting processes. Int J Hydrogen Energy 1(1):33–43CrossRef
164.
go back to reference Pangborn JB, Sharer JC (1975) Analysis of thermochemical water-splitting cycles. In: Hydrogen energy, Proceedings of the hydrogen economy Miami energy conference, Miami Beach, Fla., March 18–20, 1974. Part A. (A75-44751 22–44). Plenum Press, New York, pp 499–515 Pangborn JB, Sharer JC (1975) Analysis of thermochemical water-splitting cycles. In: Hydrogen energy, Proceedings of the hydrogen economy Miami energy conference, Miami Beach, Fla., March 18–20, 1974. Part A. (A75-44751 22–44). Plenum Press, New York, pp 499–515
165.
go back to reference Russell JL, Porter JT (1975) A search for thermochemical water-splitting cycles. In: Hydrogen energy, Proceedings of the hydrogen economy Miami energy conference, Miami Beach, Fla., March 18–20, 1974, Part A. (A75-44751 22–44). Plenum Press, New York, pp 517–529 Russell JL, Porter JT (1975) A search for thermochemical water-splitting cycles. In: Hydrogen energy, Proceedings of the hydrogen economy Miami energy conference, Miami Beach, Fla., March 18–20, 1974, Part A. (A75-44751 22–44). Plenum Press, New York, pp 517–529
166.
167.
go back to reference Brown LC, Funk JF, Showalter SK (2000) High efficiency generation of hydrogen fuel using nuclear power. Annual report to the Department of Energy, Report No. GA-A23451 Brown LC, Funk JF, Showalter SK (2000) High efficiency generation of hydrogen fuel using nuclear power. Annual report to the Department of Energy, Report No. GA-A23451
168.
go back to reference Brecher LE, Spewock S, Warde CJ (1977) Westinghouse sulfur cycle for the thermochemical decomposition of water. Int J Hydrogen Energy 21(1):7–15CrossRef Brecher LE, Spewock S, Warde CJ (1977) Westinghouse sulfur cycle for the thermochemical decomposition of water. Int J Hydrogen Energy 21(1):7–15CrossRef
169.
go back to reference Beghi GE (1986) A decade of research on thermochemical hydrogen at the joint research center, Ispra. Int J Hydrogen Energy 11(12):761–771CrossRef Beghi GE (1986) A decade of research on thermochemical hydrogen at the joint research center, Ispra. Int J Hydrogen Energy 11(12):761–771CrossRef
170.
go back to reference Funk JK, Reinstrom RM (1966) Energy requirements in the production of hydrogen from water. Ind Eng Chem Process Des Dev 5(3):336–342CrossRef Funk JK, Reinstrom RM (1966) Energy requirements in the production of hydrogen from water. Ind Eng Chem Process Des Dev 5(3):336–342CrossRef
171.
go back to reference Besenbruch GE (1982) General Atomic sulfur-iodine thermochemical water-splitting process. Am Chem Soc Div Pet Chem Prepr 271:48–51 Besenbruch GE (1982) General Atomic sulfur-iodine thermochemical water-splitting process. Am Chem Soc Div Pet Chem Prepr 271:48–51
172.
go back to reference Williams LO (1980) Hydrogen power. Pergamon Press, New York Williams LO (1980) Hydrogen power. Pergamon Press, New York
173.
go back to reference Ueda R, Tagawa H, Sato S, Yasuno T, Ohno S, Maeda M (1974) Production of hydrogen from water using nuclear energy, a review. Japan Atomic Energy Research Institute, Tokyo, Japan:, pp 69 Ueda R, Tagawa H, Sato S, Yasuno T, Ohno S, Maeda M (1974) Production of hydrogen from water using nuclear energy, a review. Japan Atomic Energy Research Institute, Tokyo, Japan:, pp 69
174.
go back to reference Tamaura Y, Steinfeld A, Kuhn P, Ehrensberger K (1995) Production of solar hydrogen by a novel, 2-step, water-splitting thermochemical cycle. Energy (Oxford, UK) 20(4):325–330 Tamaura Y, Steinfeld A, Kuhn P, Ehrensberger K (1995) Production of solar hydrogen by a novel, 2-step, water-splitting thermochemical cycle. Energy (Oxford, UK) 20(4):325–330
175.
go back to reference Bamberger CE (1978) Hydrogen production from water by thermochemical cycles; a 1977 update. Cryogenics 18:170CrossRef Bamberger CE (1978) Hydrogen production from water by thermochemical cycles; a 1977 update. Cryogenics 18:170CrossRef
176.
go back to reference Knoche KF, Schuster P (1984) Thermochemical production of hydrogen by a vanadium/chlorine cycle. Part 1: an energy and exergy analysis of the process. Int J Hydrogen Energy 9(6):457–472 Knoche KF, Schuster P (1984) Thermochemical production of hydrogen by a vanadium/chlorine cycle. Part 1: an energy and exergy analysis of the process. Int J Hydrogen Energy 9(6):457–472
177.
go back to reference Russell J, Porter J (1974) Production of hydrogen from water. General Atomics Report GA–A12889 Russell J, Porter J (1974) Production of hydrogen from water. General Atomics Report GA–A12889
178.
go back to reference Schuster JR, Russell JL Jr, McCorkle KH, Mysels KJ, Norman JH, O’Keefe DR, Sharp R, Stowell SA, Trester PW, Williamson DG (1977) Development of a sulfur-iodine thermochemical water-splitting cycle for hydrogen production. In: Proceedings of the Intersociety Energy Conversion Engineering Conference, vol 1, pp 920–927 Schuster JR, Russell JL Jr, McCorkle KH, Mysels KJ, Norman JH, O’Keefe DR, Sharp R, Stowell SA, Trester PW, Williamson DG (1977) Development of a sulfur-iodine thermochemical water-splitting cycle for hydrogen production. In: Proceedings of the Intersociety Energy Conversion Engineering Conference, vol 1, pp 920–927
179.
go back to reference De Graaf JD, McCorkle KH, Norman JH, Sharp R, Webb GB, Ohno T (1978) Engineering and bench-scale studies of the sulfur-iodine cycle at General Atomic. In: Proceedings of the Intersociety Energy Conversion Engineering Conference, vol 13 No. 2, pp 1150–1157 De Graaf JD, McCorkle KH, Norman JH, Sharp R, Webb GB, Ohno T (1978) Engineering and bench-scale studies of the sulfur-iodine cycle at General Atomic. In: Proceedings of the Intersociety Energy Conversion Engineering Conference, vol 13 No. 2, pp 1150–1157
180.
go back to reference De Graaf JD, McCorkle KH, Norman JH, Sharp R, Webb GB, Ohno T, (1979) Engineering and bench-scale studies on the general atomic sulfur-iodine thermochemical water-splitting cycle. Advances in Hydrogen Energy 1 (Hydrogen Energy System, vol 2): 545–567 De Graaf JD, McCorkle KH, Norman JH, Sharp R, Webb GB, Ohno T, (1979) Engineering and bench-scale studies on the general atomic sulfur-iodine thermochemical water-splitting cycle. Advances in Hydrogen Energy 1 (Hydrogen Energy System, vol 2): 545–567
181.
go back to reference Besenbruch G, Caprioglio G, McCorkle K, Mysels K, Norman J, O’Keefe D, Rode J, Sharp R, Trester P, Yoshimoto M (1979) Development of a sulfur – iodine thermochemical water-splitting cycle for hydrogen production. In: Proceedings of the 14th Intersociety Energy Conversion Engineering Conference, vol. 1, pp 737–742 Besenbruch G, Caprioglio G, McCorkle K, Mysels K, Norman J, O’Keefe D, Rode J, Sharp R, Trester P, Yoshimoto M (1979) Development of a sulfur – iodine thermochemical water-splitting cycle for hydrogen production. In: Proceedings of the 14th Intersociety Energy Conversion Engineering Conference, vol. 1, pp 737–742
182.
go back to reference Schuster JR, Caprioglio G, McCorkle KH, Ohno T (1979) Bench-scale investigations and process engineering on the sulfur-iodine cycle. Proceedings of the DOE Chemical/Hydrogen Energy Systems Contracts Review. Meeting Date 1978 (CONF-781142), pp 119–130 Schuster JR, Caprioglio G, McCorkle KH, Ohno T (1979) Bench-scale investigations and process engineering on the sulfur-iodine cycle. Proceedings of the DOE Chemical/Hydrogen Energy Systems Contracts Review. Meeting Date 1978 (CONF-781142), pp 119–130
183.
go back to reference Hammache A, Bilgen E (1992) Nuclear hydrogen production based on sulfuric acid decomposition process. J Energy Res Technol 114(3):227–234CrossRef Hammache A, Bilgen E (1992) Nuclear hydrogen production based on sulfuric acid decomposition process. J Energy Res Technol 114(3):227–234CrossRef
184.
go back to reference Kubo S, Nakajima H, Kasahara S, Higashi S, Masaki T, Abe H, Onuki K (2004) A demonstration study on a closed-cycle hydrogen production by the thermochemical water-splitting iodine-sulfur process. Nucl Eng Des 233(1–3):347–354CrossRef Kubo S, Nakajima H, Kasahara S, Higashi S, Masaki T, Abe H, Onuki K (2004) A demonstration study on a closed-cycle hydrogen production by the thermochemical water-splitting iodine-sulfur process. Nucl Eng Des 233(1–3):347–354CrossRef
185.
go back to reference Sakurai M, Nakajima H, Amir R, Onuki K, Shimizu S (2000) Experimental study on side-reaction occurrence condition in the iodine-sulfur thermochemical hydrogen production process. Int J Hydrogen Energy 25(7):613–619CrossRef Sakurai M, Nakajima H, Amir R, Onuki K, Shimizu S (2000) Experimental study on side-reaction occurrence condition in the iodine-sulfur thermochemical hydrogen production process. Int J Hydrogen Energy 25(7):613–619CrossRef
186.
go back to reference Sakurai M, Nakajima H, Onuki K, Shimizu S (2000) Investigation of 2 liquid phase separation characteristics on the iodine-sulfur thermochemical hydrogen production process. Int J Hydrogen Energy 25(7):605–611CrossRef Sakurai M, Nakajima H, Onuki K, Shimizu S (2000) Investigation of 2 liquid phase separation characteristics on the iodine-sulfur thermochemical hydrogen production process. Int J Hydrogen Energy 25(7):605–611CrossRef
187.
go back to reference Banerjee AM, Bhattacharyya K, Pai MR, Tripathi AK, Kamble VS, Bharadwaj SR, Kulshreshtha SK (2007) Studies on sulfur-iodine thermochemical cycle for hydrogen production. BARC Newsl 285:67–72 Banerjee AM, Bhattacharyya K, Pai MR, Tripathi AK, Kamble VS, Bharadwaj SR, Kulshreshtha SK (2007) Studies on sulfur-iodine thermochemical cycle for hydrogen production. BARC Newsl 285:67–72
188.
go back to reference Cerri G, Salvini C, Corgnale C, Giovannelli A, De Lorenzo MD, Martinez AO, Le Duigou A, Borgard J-M, Mansilla C (2010) Sulfur-Iodine plant for large scale hydrogen production by nuclear power. Int J Hydrogen Energy 35(9):4002–4014CrossRef Cerri G, Salvini C, Corgnale C, Giovannelli A, De Lorenzo MD, Martinez AO, Le Duigou A, Borgard J-M, Mansilla C (2010) Sulfur-Iodine plant for large scale hydrogen production by nuclear power. Int J Hydrogen Energy 35(9):4002–4014CrossRef
189.
go back to reference Leybros J, Gilardi T, Saturnin A, Mansilla C, Carles P (2010) Plant sizing and evaluation of hydrogen production costs from advanced processes coupled to a nuclear heat source. Part I: sulphur-iodine cycle. Int J Hydrogen Energy 35(3):1008–1018 Leybros J, Gilardi T, Saturnin A, Mansilla C, Carles P (2010) Plant sizing and evaluation of hydrogen production costs from advanced processes coupled to a nuclear heat source. Part I: sulphur-iodine cycle. Int J Hydrogen Energy 35(3):1008–1018
190.
go back to reference Norman JH, Basenbruch GE, O’Keefe DR (1981) Thermochemical water-splitting for hydrogen production. General Atomic Co., San Diego Norman JH, Basenbruch GE, O’Keefe DR (1981) Thermochemical water-splitting for hydrogen production. General Atomic Co., San Diego
191.
go back to reference Norman JH, Mysels KJ, Sharp R, Williamson D (1981) Studies of the sulfur-iodine thermochemical water-splitting cycle. Advances in Hydrogen Energy 2(Hydrogen Energy Program, vol 1): 257–275 Norman JH, Mysels KJ, Sharp R, Williamson D (1981) Studies of the sulfur-iodine thermochemical water-splitting cycle. Advances in Hydrogen Energy 2(Hydrogen Energy Program, vol 1): 257–275
192.
go back to reference Norman JH, Mysels KJ, Sharp R, Williamson D (1982) Studies of the sulfur-iodine thermochemical water-splitting cycle. Int J Hydrogen Energy 7(7):545–556CrossRef Norman JH, Mysels KJ, Sharp R, Williamson D (1982) Studies of the sulfur-iodine thermochemical water-splitting cycle. Int J Hydrogen Energy 7(7):545–556CrossRef
193.
go back to reference Onuki K, Kubo S, Terada A, Sakaba N, Hino R (2009) Thermochemical water-splitting cycle using iodine and sulfur. Energy Environ Sci 2(5):491–497CrossRef Onuki K, Kubo S, Terada A, Sakaba N, Hino R (2009) Thermochemical water-splitting cycle using iodine and sulfur. Energy Environ Sci 2(5):491–497CrossRef
194.
go back to reference Onuki K, Nakajima H, Kubo S, Futakawa M, Higashi S, Hwang GJ, Masaki T, Ikenoya K, Ishiyama S, Akino N, Shimizu S (2003) Thermochemical hydrogen production by iodine-sulfur cycle. Hydrogen planet, 14th world hydrogen energy conference, Montreal, QC, Canada, 9–13 June 2002, pp 1196–1204 Onuki K, Nakajima H, Kubo S, Futakawa M, Higashi S, Hwang GJ, Masaki T, Ikenoya K, Ishiyama S, Akino N, Shimizu S (2003) Thermochemical hydrogen production by iodine-sulfur cycle. Hydrogen planet, 14th world hydrogen energy conference, Montreal, QC, Canada, 9–13 June 2002, pp 1196–1204
195.
go back to reference Rosen MA (2010) Advances in hydrogen production by thermochemical water decomposition: a review. Energy (Oxford, UK) 35(2):1068–1076 Rosen MA (2010) Advances in hydrogen production by thermochemical water decomposition: a review. Energy (Oxford, UK) 35(2):1068–1076
196.
go back to reference Sakurai M, Nakajima H, Onuki K, Ikenoya K, Shimizu S (1999) Preliminary process analysis for the closed cycle operation of the iodine-sulfur thermochemical hydrogen production process. Int J Hydrogen Energy 24(7):603–612CrossRef Sakurai M, Nakajima H, Onuki K, Ikenoya K, Shimizu S (1999) Preliminary process analysis for the closed cycle operation of the iodine-sulfur thermochemical hydrogen production process. Int J Hydrogen Energy 24(7):603–612CrossRef
197.
go back to reference Vitart X, Borgard JM, Goldstein S, Colette S (2004) Investigation of the I-S cycle for massive hydrogen production. Nuclear production of hydrogen, information exchange meeting, 2nd, Argonne, IL, United States, 2–3 Oct 2003, pp 99–109 Vitart X, Borgard JM, Goldstein S, Colette S (2004) Investigation of the I-S cycle for massive hydrogen production. Nuclear production of hydrogen, information exchange meeting, 2nd, Argonne, IL, United States, 2–3 Oct 2003, pp 99–109
198.
go back to reference Zhang P, Chen SZ, Wang LJ, Xu JM (2010) Overview of nuclear hydrogen production research through iodine sulfur process at INET. Int J Hydrogen Energy 35(7):2883–2887CrossRef Zhang P, Chen SZ, Wang LJ, Xu JM (2010) Overview of nuclear hydrogen production research through iodine sulfur process at INET. Int J Hydrogen Energy 35(7):2883–2887CrossRef
199.
go back to reference Brown LC (2007) Evolution of the sulfur-iodine flowsheet. AIChE Annual Meeting, 7 Nov 2007, Salt lake City, Utah USA Brown LC (2007) Evolution of the sulfur-iodine flowsheet. AIChE Annual Meeting, 7 Nov 2007, Salt lake City, Utah USA
200.
go back to reference Brown LC, Lentsch RD, Besenbruch GE, Schultz KR, Funk JE (2003) Alternative flowsheets for the sulfur-iodine thermochemical hydrogen cycle. Spring national meeting of AIChE, New Orleans, Louisiana, 30 Mar–3 Apr 2003, Report No. GA–A24266, p 33 Brown LC, Lentsch RD, Besenbruch GE, Schultz KR, Funk JE (2003) Alternative flowsheets for the sulfur-iodine thermochemical hydrogen cycle. Spring national meeting of AIChE, New Orleans, Louisiana, 30 Mar–3 Apr 2003, Report No. GA–A24266, p 33
201.
go back to reference Pickard P (2005) Sulfur-iodine thermochemical cycle. 2005 DOE Hydrogen Program review. PD 27 Pickard P (2005) Sulfur-iodine thermochemical cycle. 2005 DOE Hydrogen Program review. PD 27
202.
go back to reference Banerjee AM, Pai MR, Bhattacharya K, Tripathi AK, Kamble VS, Bharadwaj SR, Kulshreshtha SK (2008) Catalytic decomposition of sulfuric acid on mixed Cr/Fe oxide samples and its application in sulfur-iodine cycle for hydrogen production. Int J Hydrogen Energy 33(1):319–326CrossRef Banerjee AM, Pai MR, Bhattacharya K, Tripathi AK, Kamble VS, Bharadwaj SR, Kulshreshtha SK (2008) Catalytic decomposition of sulfuric acid on mixed Cr/Fe oxide samples and its application in sulfur-iodine cycle for hydrogen production. Int J Hydrogen Energy 33(1):319–326CrossRef
203.
go back to reference Bai Y, Zhang P, Guo H, Chen S, Wang L, Xu J (2009) Purification of sulfuric and hydriodic acids phases in the iodine-sulfur process. Chin J Chem Eng 17(1):160–166CrossRef Bai Y, Zhang P, Guo H, Chen S, Wang L, Xu J (2009) Purification of sulfuric and hydriodic acids phases in the iodine-sulfur process. Chin J Chem Eng 17(1):160–166CrossRef
204.
go back to reference Barbarossa V, Brutti S, Diamanti M, Sau S, De Maria G (2006) Catalytic thermal decomposition of sulphuric acid in sulphur-iodine cycle for hydrogen production. Int J Hydrogen Energy 31(7):883–890CrossRef Barbarossa V, Brutti S, Diamanti M, Sau S, De Maria G (2006) Catalytic thermal decomposition of sulphuric acid in sulphur-iodine cycle for hydrogen production. Int J Hydrogen Energy 31(7):883–890CrossRef
205.
go back to reference Burch KC, Ginosar DM, Petkovic LM, Houghton TP (2007) Activated carbon catalysts for the production of hydrogen via the sulfur-iodine thermochemical water splitting cycle. Abstracts, 62nd northwest regional meeting of the American Chemical Society, Boise, ID, United States, June 17–20 June, NW-012 Burch KC, Ginosar DM, Petkovic LM, Houghton TP (2007) Activated carbon catalysts for the production of hydrogen via the sulfur-iodine thermochemical water splitting cycle. Abstracts, 62nd northwest regional meeting of the American Chemical Society, Boise, ID, United States, June 17–20 June, NW-012
206.
go back to reference Chen Y, Wang Z, Zhang Y, Zhou J, Cen K (2010) Platinum-ceria-zirconia catalysts for hydrogen production in sulfur-iodine cycle. Int J Hydrogen Energy 35(2):445–451CrossRef Chen Y, Wang Z, Zhang Y, Zhou J, Cen K (2010) Platinum-ceria-zirconia catalysts for hydrogen production in sulfur-iodine cycle. Int J Hydrogen Energy 35(2):445–451CrossRef
207.
go back to reference Kim J, Chang J, Park BH, Shin Y, Lee K, Lee W, Chang J (2008) A study on the dynamic behavior of a sulfur trioxide decomposer for a nuclear hydrogen production. Int J Hydrogen Energy 33(24):7361–7370CrossRef Kim J, Chang J, Park BH, Shin Y, Lee K, Lee W, Chang J (2008) A study on the dynamic behavior of a sulfur trioxide decomposer for a nuclear hydrogen production. Int J Hydrogen Energy 33(24):7361–7370CrossRef
208.
go back to reference Lanchi M, Caputo G, Liberatore R, Marrelli L, Sau S, Spadoni A, Tarquini P (2009) Use of metallic Ni for H2 production in S-I thermochemical cycle: experimental and theoretical analysis. Int J Hydrogen Energy 34(3):1200–1207CrossRef Lanchi M, Caputo G, Liberatore R, Marrelli L, Sau S, Spadoni A, Tarquini P (2009) Use of metallic Ni for H2 production in S-I thermochemical cycle: experimental and theoretical analysis. Int J Hydrogen Energy 34(3):1200–1207CrossRef
209.
go back to reference Nagaraja BM, Jung KD, Ahn BS, Abimanyu H, Yoo KS (2009) Catalytic decomposition of SO3 over Pt/BaSO4 materials in sulfur-iodine cycle for hydrogen production. Ind Eng Chem Res 48(3):1451–1457CrossRef Nagaraja BM, Jung KD, Ahn BS, Abimanyu H, Yoo KS (2009) Catalytic decomposition of SO3 over Pt/BaSO4 materials in sulfur-iodine cycle for hydrogen production. Ind Eng Chem Res 48(3):1451–1457CrossRef
210.
go back to reference Nagaraja BM, Jung KD, Yoo KS (2009) Synthesis of Cu/Fe/Ti/Al2O3 composite granules for SO3 decomposition in SI cycle. Catal Lett 128(1–2):248–252CrossRef Nagaraja BM, Jung KD, Yoo KS (2009) Synthesis of Cu/Fe/Ti/Al2O3 composite granules for SO3 decomposition in SI cycle. Catal Lett 128(1–2):248–252CrossRef
211.
go back to reference Onstott EI (1990) Cerium dioxide as a recycle reagent for thermochemical hydrogen production by modification of the sulfur dioxide-iodine cycle. Advances in Hydrogen Energy 8 (Hydrogen Energy Program 8, vol. 2): 531–538 Onstott EI (1990) Cerium dioxide as a recycle reagent for thermochemical hydrogen production by modification of the sulfur dioxide-iodine cycle. Advances in Hydrogen Energy 8 (Hydrogen Energy Program 8, vol. 2): 531–538
212.
go back to reference Ozturk IT, Hammache A, Bilgen E (1995) An improved process for H2SO4 decomposition step of the sulfur-iodine cycle. Energy Convers Manage 36(1):11–21CrossRef Ozturk IT, Hammache A, Bilgen E (1995) An improved process for H2SO4 decomposition step of the sulfur-iodine cycle. Energy Convers Manage 36(1):11–21CrossRef
213.
go back to reference Petkovic LM, Ginosar DM, Rollins HW, Burch KC, Deiana C, Silva HS, Sardella MF, Granados D (2009) Activated carbon catalysts for the production of hydrogen via the sulfur-iodine thermochemical water splitting cycle. Int J Hydrogen Energy 34(9):4057–4064CrossRef Petkovic LM, Ginosar DM, Rollins HW, Burch KC, Deiana C, Silva HS, Sardella MF, Granados D (2009) Activated carbon catalysts for the production of hydrogen via the sulfur-iodine thermochemical water splitting cycle. Int J Hydrogen Energy 34(9):4057–4064CrossRef
214.
go back to reference Rodriguez SB, Louie D, Gauntt RO, Gelbard F, Cole R, McFadden K, Drennen T, Martin B, Archuleta L, Revankar ST, Vierow K (2007) MELCOR-H2 transient analysis of sulfur-iodine cycle experiments. International topical meeting on safety and technology of nuclear hydrogen production, control, and management, Boston, MA, United States, 24–28 June 2007, pp 140–146 Rodriguez SB, Louie D, Gauntt RO, Gelbard F, Cole R, McFadden K, Drennen T, Martin B, Archuleta L, Revankar ST, Vierow K (2007) MELCOR-H2 transient analysis of sulfur-iodine cycle experiments. International topical meeting on safety and technology of nuclear hydrogen production, control, and management, Boston, MA, United States, 24–28 June 2007, pp 140–146
215.
go back to reference Zhang Y, Wang Z, Zhou J, Cen K (2009) Ceria as a catalyst for hydrogen iodide decomposition in sulfur-iodine cycle for hydrogen production. Int J Hydrogen Energy 34(4):1688–1695CrossRef Zhang Y, Wang Z, Zhou J, Cen K (2009) Ceria as a catalyst for hydrogen iodide decomposition in sulfur-iodine cycle for hydrogen production. Int J Hydrogen Energy 34(4):1688–1695CrossRef
216.
go back to reference Zhang Y, Wang Z, Zhou J, Liu J, Cen K (2009) Experimental study of Ni/CeO2 catalytic properties and performance for hydrogen production in sulfur-iodine cycle. Int J Hydrogen Energy 34(14):5637–5644CrossRef Zhang Y, Wang Z, Zhou J, Liu J, Cen K (2009) Experimental study of Ni/CeO2 catalytic properties and performance for hydrogen production in sulfur-iodine cycle. Int J Hydrogen Energy 34(14):5637–5644CrossRef
217.
go back to reference Liu H, Kantor I, Elkamel A, Fowler M (2009) Optimal synthesis of heat exchanger network for thermochemical S-I cycle. J Therm Anal Calorim 96(1):27–33CrossRef Liu H, Kantor I, Elkamel A, Fowler M (2009) Optimal synthesis of heat exchanger network for thermochemical S-I cycle. J Therm Anal Calorim 96(1):27–33CrossRef
218.
go back to reference Peck MS, Allen JM, Mendez AE, Velez AL, Ghosh TK, Viswanath DS, Prelas MA (2007) Sulfuric acid decomposer materials study for the thermochemical hydrogen cycle. International topical meeting on safety and technology of nuclear hydrogen production, control, and management, Boston, MA, United States, 24–28 June 2007, pp 198–201 Peck MS, Allen JM, Mendez AE, Velez AL, Ghosh TK, Viswanath DS, Prelas MA (2007) Sulfuric acid decomposer materials study for the thermochemical hydrogen cycle. International topical meeting on safety and technology of nuclear hydrogen production, control, and management, Boston, MA, United States, 24–28 June 2007, pp 198–201
219.
go back to reference Wong B, Buckingham RT, Brown LC, Russ BE, Besenbruch GE, Kaiparambil A, Santhanakrishnan R, Roy A (2007) Construction materials development in sulfur-iodine thermochemical water-splitting process for hydrogen production. Int J Hydrogen Energy 32(4):497–504CrossRef Wong B, Buckingham RT, Brown LC, Russ BE, Besenbruch GE, Kaiparambil A, Santhanakrishnan R, Roy A (2007) Construction materials development in sulfur-iodine thermochemical water-splitting process for hydrogen production. Int J Hydrogen Energy 32(4):497–504CrossRef
220.
go back to reference Trester PW, Liang SS (1979) Material corrosion investigations for the General Atomic sulfur-iodine thermochemical water-splitting cycle. Advances in Hydrogen Energy 1(Hydrogen Energy System, vol 4): 2113–2159 Trester PW, Liang SS (1979) Material corrosion investigations for the General Atomic sulfur-iodine thermochemical water-splitting cycle. Advances in Hydrogen Energy 1(Hydrogen Energy System, vol 4): 2113–2159
221.
go back to reference Pickard P (2006) Sulfur-iodine thermochemical cycle. 2005 DOE Hydrogen Program review. PD 15 Pickard P (2006) Sulfur-iodine thermochemical cycle. 2005 DOE Hydrogen Program review. PD 15
222.
go back to reference Evans B (2007) Thermiochemical systems overview Advanced reactor fuel cycle and energy products workshop for universities. Gaithersburg, Maryland, 20 Mar 2007 Evans B (2007) Thermiochemical systems overview Advanced reactor fuel cycle and energy products workshop for universities. Gaithersburg, Maryland, 20 Mar 2007
223.
go back to reference Giaconia A, Caputo G, Sau S, Prosini PP, Pozio A, De Francesco M, Tarquini P, Nardi L (2009) Survey of Bunsen reaction routes to improve the sulfur-iodine thermochemical water-splitting cycle. Int J Hydrogen Energy 34(9):4041–4048CrossRef Giaconia A, Caputo G, Sau S, Prosini PP, Pozio A, De Francesco M, Tarquini P, Nardi L (2009) Survey of Bunsen reaction routes to improve the sulfur-iodine thermochemical water-splitting cycle. Int J Hydrogen Energy 34(9):4041–4048CrossRef
224.
go back to reference Lee BJ, No HC, Yoon HJ, Jin HG, Kim YS, Lee JI (2009) Development of a flowsheet for iodine-sulfur thermo-chemical cycle based on optimized Bunsen reaction. Int J Hydrogen Energy 34(5):2133–2143CrossRef Lee BJ, No HC, Yoon HJ, Jin HG, Kim YS, Lee JI (2009) Development of a flowsheet for iodine-sulfur thermo-chemical cycle based on optimized Bunsen reaction. Int J Hydrogen Energy 34(5):2133–2143CrossRef
225.
go back to reference Barbarossa V, Vanga G, Diamanti M, Cali M, Doddi G (2009) Chemically enhanced separation of H2S04/HI mixtures from the Bunsen reaction in the sulfur-iodine thermochemical cycle. Ind Eng Chem Res 48(19):9040–9044CrossRef Barbarossa V, Vanga G, Diamanti M, Cali M, Doddi G (2009) Chemically enhanced separation of H2S04/HI mixtures from the Bunsen reaction in the sulfur-iodine thermochemical cycle. Ind Eng Chem Res 48(19):9040–9044CrossRef
226.
go back to reference Elder RH, Priestman GH, Allen RWK, Orme CJ, Stewart FF (2009) The feasibility of membrane separations in the HIx processing section of the sulphur iodine thermochemical cycle. Int J Hydrogen Energy 34(16):6614–6624CrossRef Elder RH, Priestman GH, Allen RWK, Orme CJ, Stewart FF (2009) The feasibility of membrane separations in the HIx processing section of the sulphur iodine thermochemical cycle. Int J Hydrogen Energy 34(16):6614–6624CrossRef
227.
go back to reference Favuzza P, Felici C, Lanchi M, Liberatore R, Mazzocchia CV, Spadoni A, Hadj-Kali MK, Gerbaud V, Lovera P, Baudouin O, Floquet P, Joulia X, Borgard J-M, Carles P (2009) Bunsen section thermodynamic model for hydrogen production by the sulfur-iodine cycle. Int J Hydrogen Energy 34(16):6625–6635CrossRef Favuzza P, Felici C, Lanchi M, Liberatore R, Mazzocchia CV, Spadoni A, Hadj-Kali MK, Gerbaud V, Lovera P, Baudouin O, Floquet P, Joulia X, Borgard J-M, Carles P (2009) Bunsen section thermodynamic model for hydrogen production by the sulfur-iodine cycle. Int J Hydrogen Energy 34(16):6625–6635CrossRef
228.
go back to reference Lanchi M, Laria F, Liberatore R, Marrelli L, Sau S, Spadoni A, Tarquini P (2009) HI extraction by H3PO4 in the Sulfur-Iodine thermochemical water splitting cycle: composition optimization of the HI/H2O/H3PO4/I2 biphasic quaternary system. Int J Hydrogen Energy 34(15):6120–6128CrossRef Lanchi M, Laria F, Liberatore R, Marrelli L, Sau S, Spadoni A, Tarquini P (2009) HI extraction by H3PO4 in the Sulfur-Iodine thermochemical water splitting cycle: composition optimization of the HI/H2O/H3PO4/I2 biphasic quaternary system. Int J Hydrogen Energy 34(15):6120–6128CrossRef
229.
go back to reference Larousse B, Lovera P, Borgard JM, Roehrich G, Mokrani N, Maillault C, Doizi D, Dauvois V, Roujou JL, Lorin V, Fauvet P, Carles P, Hartmann JM (2009) Experimental study of the vapor-liquid equilibria of HI-I2-H2O ternary mixtures, Part 2: experimental results at high temperature and pressure. Int J Hydrogen Energy 34(8):3258–3266CrossRef Larousse B, Lovera P, Borgard JM, Roehrich G, Mokrani N, Maillault C, Doizi D, Dauvois V, Roujou JL, Lorin V, Fauvet P, Carles P, Hartmann JM (2009) Experimental study of the vapor-liquid equilibria of HI-I2-H2O ternary mixtures, Part 2: experimental results at high temperature and pressure. Int J Hydrogen Energy 34(8):3258–3266CrossRef
230.
go back to reference Liberatore R, Ceroli A, Lanchi M, Spadoni A, Tarquini P (2008) Experimental vapour-liquid equilibrium data of HI-H2O-I2 mixtures for hydrogen production by Sulphur-Iodine thermochemical cycle. Int J Hydrogen Energy 33(16):4283–4290CrossRef Liberatore R, Ceroli A, Lanchi M, Spadoni A, Tarquini P (2008) Experimental vapour-liquid equilibrium data of HI-H2O-I2 mixtures for hydrogen production by Sulphur-Iodine thermochemical cycle. Int J Hydrogen Energy 33(16):4283–4290CrossRef
231.
go back to reference Mena SE, Cervo EG, Crosthwaite JM, Thies MC (2010) Phase equilibrium measurements for the I2-H2O and I2-HI-H2O systems of the sulfur-iodine cycle using a continuous-flow apparatus. Int J Hydrogen Energy 35(8):3347–3357CrossRef Mena SE, Cervo EG, Crosthwaite JM, Thies MC (2010) Phase equilibrium measurements for the I2-H2O and I2-HI-H2O systems of the sulfur-iodine cycle using a continuous-flow apparatus. Int J Hydrogen Energy 35(8):3347–3357CrossRef
232.
go back to reference Tarquini P, Tito AC (2009) Decomposition of hydrogen iodide in the S-I thermochemical cycle over Ni catalyst systems. Int J Hydrogen Energy 34(9):4049–4056CrossRef Tarquini P, Tito AC (2009) Decomposition of hydrogen iodide in the S-I thermochemical cycle over Ni catalyst systems. Int J Hydrogen Energy 34(9):4049–4056CrossRef
233.
go back to reference Roth M, Knoche KF (1989) Thermochemical water splitting through direct hydrogen iodide decomposition from water/hydrogen iodide/molecular iodine solutions. Int J Hydrogen Energy 14(8):545–549CrossRef Roth M, Knoche KF (1989) Thermochemical water splitting through direct hydrogen iodide decomposition from water/hydrogen iodide/molecular iodine solutions. Int J Hydrogen Energy 14(8):545–549CrossRef
234.
go back to reference O’Keefe DR, Norman JH (1983) Hydrogen iodide decomposition. United States Patent 4410505 O’Keefe DR, Norman JH (1983) Hydrogen iodide decomposition. United States Patent 4410505
235.
go back to reference Russ B, Buckingham B, Brown L, Wong B, Besenbruch G (2005) HI decomposition-a comparison of reactive and extractive distillation techniques for the sulfur-iodine process. In: AIChE spring national meeting, conference proceedings, Atlanta, GA, United States, 10–14 Apr 2005, 75E/1-75E/2 Russ B, Buckingham B, Brown L, Wong B, Besenbruch G (2005) HI decomposition-a comparison of reactive and extractive distillation techniques for the sulfur-iodine process. In: AIChE spring national meeting, conference proceedings, Atlanta, GA, United States, 10–14 Apr 2005, 75E/1-75E/2
236.
go back to reference Zhang Y, Wang Z, Zhou J, Liu J, Cen K (2009) Catalytic decomposition of hydrogen iodide over pre-treated Ni/CeO2 catalysts for hydrogen production in the sulfur-iodine cycle. Int J Hydrogen Energy 34(21):8792–8798CrossRef Zhang Y, Wang Z, Zhou J, Liu J, Cen K (2009) Catalytic decomposition of hydrogen iodide over pre-treated Ni/CeO2 catalysts for hydrogen production in the sulfur-iodine cycle. Int J Hydrogen Energy 34(21):8792–8798CrossRef
237.
go back to reference Zhang Y, Zhou J, Chen Y, Wang Z, Liu J, Cen K (2008) Hydrogen iodide decomposition over nickel-ceria catalysts for hydrogen production in the sulfur-iodine cycle. Int J Hydrogen Energy 33(20):5477–5483CrossRef Zhang Y, Zhou J, Chen Y, Wang Z, Liu J, Cen K (2008) Hydrogen iodide decomposition over nickel-ceria catalysts for hydrogen production in the sulfur-iodine cycle. Int J Hydrogen Energy 33(20):5477–5483CrossRef
238.
go back to reference Belaissaoui B, Thery R, Meyer XM, Meyer M, Gerbaud V, Joulia X (2005) Vapour reactive distillation process for hydrogen production by HI decomposition from H2O/HI/I2 solutions. In: 7th World congress of chemical engineering, Glasgow, United Kingdom, 10–14 July 2005, 83134/1-83134/9 Belaissaoui B, Thery R, Meyer XM, Meyer M, Gerbaud V, Joulia X (2005) Vapour reactive distillation process for hydrogen production by HI decomposition from H2O/HI/I2 solutions. In: 7th World congress of chemical engineering, Glasgow, United Kingdom, 10–14 July 2005, 83134/1-83134/9
239.
go back to reference Goldstein S, Borgard J-M, Vitart X (2005) Upper bound and best estimate of the efficiency of the iodine sulphur cycle. Int J Hydrogen Energy 30(6):619–626CrossRef Goldstein S, Borgard J-M, Vitart X (2005) Upper bound and best estimate of the efficiency of the iodine sulphur cycle. Int J Hydrogen Energy 30(6):619–626CrossRef
240.
go back to reference Goldstein S, Vitart X, Borgard JM (2004) General comments about the efficiency of the iodine-sulphur cycle coupled to a high temperature gas-cooled reactor. In: Nuclear production of hydrogen, information exchange meeting, 2nd, Argonne, IL, United States, Oct 2–3, 2003. OECD, Paris, pp 85–98 Goldstein S, Vitart X, Borgard JM (2004) General comments about the efficiency of the iodine-sulphur cycle coupled to a high temperature gas-cooled reactor. In: Nuclear production of hydrogen, information exchange meeting, 2nd, Argonne, IL, United States, Oct 2–3, 2003. OECD, Paris, pp 85–98
241.
go back to reference Kameyama H, Yoshida K (1979) Bromine-calcium-iron water-decomposition cycles for hydrogen production. Advances in Hydrogen Energy 1(Hydrogen Energy System, vol 2): 829–850 Kameyama H, Yoshida K (1979) Bromine-calcium-iron water-decomposition cycles for hydrogen production. Advances in Hydrogen Energy 1(Hydrogen Energy System, vol 2): 829–850
242.
go back to reference Kameyama H, Yoshida K (1981) Reactor design for the ”UT-3” thermochemical hydrogen production process. Advances in Hydrogen Energy 2(Hydrogen Energy Program, vol 4): 1939–1948 Kameyama H, Yoshida K (1981) Reactor design for the ”UT-3” thermochemical hydrogen production process. Advances in Hydrogen Energy 2(Hydrogen Energy Program, vol 4): 1939–1948
243.
go back to reference Yoshioka H, Nakayama T, Kameyama H, Yoshida K (1984) Operation of a bench-scale plant for hydrogen production by the UT-3 cycle. Advances in Hydrogen Energy 4(Hydrogen Energy Program 5, vol 2): 413–420 Yoshioka H, Nakayama T, Kameyama H, Yoshida K (1984) Operation of a bench-scale plant for hydrogen production by the UT-3 cycle. Advances in Hydrogen Energy 4(Hydrogen Energy Program 5, vol 2): 413–420
244.
go back to reference Aihara M, Sakurai M, Tsutsumi A, Yoshida K (1992) Reactivity improvement in the UT-3 thermochemical hydrogen production process. Int J Hydrogen Energy 17(9):719–723CrossRef Aihara M, Sakurai M, Tsutsumi A, Yoshida K (1992) Reactivity improvement in the UT-3 thermochemical hydrogen production process. Int J Hydrogen Energy 17(9):719–723CrossRef
245.
go back to reference Aihara M, Sakurai M, Yoshida K (1990) Reaction improvement in the UT-3 thermochemical hydrogen production process. Advances in Hydrogen Energy 8(Hydrogen Energy Program 8, vol 2): 493–502 Aihara M, Sakurai M, Yoshida K (1990) Reaction improvement in the UT-3 thermochemical hydrogen production process. Advances in Hydrogen Energy 8(Hydrogen Energy Program 8, vol 2): 493–502
246.
go back to reference Aihara M, Umida H, Tsutsumi A, Yoshida K (1990) Kinetic study of UT-3 thermochemical hydrogen production process. Int J Hydrogen Energy 15(1):7–11CrossRef Aihara M, Umida H, Tsutsumi A, Yoshida K (1990) Kinetic study of UT-3 thermochemical hydrogen production process. Int J Hydrogen Energy 15(1):7–11CrossRef
247.
go back to reference Amir R, Sato T, Yamamoto KY, Kabe T, Kameyama H (1992) Design of solid reactants and reaction kinetics concerning the iron compounds in the UT-3 thermochemical cycle. Int J Hydrogen Energy 17(10):783–788CrossRef Amir R, Sato T, Yamamoto KY, Kabe T, Kameyama H (1992) Design of solid reactants and reaction kinetics concerning the iron compounds in the UT-3 thermochemical cycle. Int J Hydrogen Energy 17(10):783–788CrossRef
248.
go back to reference Aochi A, Tadokoro T, Yoshida K, Kameyama H, Nobue M, Yamaguchi T (1989) Economical and technical evaluation of UT-3 thermochemical hydrogen production process for an industrial scale plant. Int J Hydrogen Energy 14(7):421–429CrossRef Aochi A, Tadokoro T, Yoshida K, Kameyama H, Nobue M, Yamaguchi T (1989) Economical and technical evaluation of UT-3 thermochemical hydrogen production process for an industrial scale plant. Int J Hydrogen Energy 14(7):421–429CrossRef
249.
go back to reference Besenbruch GE, Brown LC, Funk JF, Showalter SK (2001) High efficiency generation of hydrogen fuels using nuclear power. In: Nuclear production of hydrogen, information exchange meeting, 1st, Paris, France, Oct 2–3, 2000. OECD, Paris, pp 205–219 Besenbruch GE, Brown LC, Funk JF, Showalter SK (2001) High efficiency generation of hydrogen fuels using nuclear power. In: Nuclear production of hydrogen, information exchange meeting, 1st, Paris, France, Oct 2–3, 2000. OECD, Paris, pp 205–219
250.
go back to reference Doctor RD, Marshall CL, Wade DC (2002) Hydrogen cycle employing calcium-bromine and electrolysis. Abstracts of papers, 224th ACS national meeting, Boston, MA, United States, 18–22 Aug 2002, FUEL-142 Doctor RD, Marshall CL, Wade DC (2002) Hydrogen cycle employing calcium-bromine and electrolysis. Abstracts of papers, 224th ACS national meeting, Boston, MA, United States, 18–22 Aug 2002, FUEL-142
251.
go back to reference Doctor RD, Matonis DT, Wade DC (2004) Hydrogen generation using a calcium-bromine thermochemical water-splitting cycle. In: Nuclear production of hydrogen, information exchange meeting, 2nd, Argonne, IL, United States, Oct 2–3, 2003. OECD, Paris, pp 119–130 Doctor RD, Matonis DT, Wade DC (2004) Hydrogen generation using a calcium-bromine thermochemical water-splitting cycle. In: Nuclear production of hydrogen, information exchange meeting, 2nd, Argonne, IL, United States, Oct 2–3, 2003. OECD, Paris, pp 119–130
252.
go back to reference Kameyama H, Sato T, Amir R, Yoshida K, Aihara M, Sakurai M, Tadokoro Y, Kajiyama T, Yamaguchi T, Sakai N (1992) Cycle simulation of the UT-3 thermochemical hydrogen production process. Int J Hydrogen Energy 17(10):789–794CrossRef Kameyama H, Sato T, Amir R, Yoshida K, Aihara M, Sakurai M, Tadokoro Y, Kajiyama T, Yamaguchi T, Sakai N (1992) Cycle simulation of the UT-3 thermochemical hydrogen production process. Int J Hydrogen Energy 17(10):789–794CrossRef
253.
go back to reference Kameyama H, Tomino Y, Orihara A, Yoshida K (1986) Process simulation of the MASCOT plant using the UT-3 thermochemical cycle for hydrogen production. Advances in Hydrogen Energy 5(Hydrogen Energy Prog. 6, vol 2): 688–695 Kameyama H, Tomino Y, Orihara A, Yoshida K (1986) Process simulation of the MASCOT plant using the UT-3 thermochemical cycle for hydrogen production. Advances in Hydrogen Energy 5(Hydrogen Energy Prog. 6, vol 2): 688–695
254.
go back to reference Kameyama H, Tomino Y, Sato T, Amir R, Orihara A, Aihara M, Yoshida K (1989) Process simulation of “MASCOT” plant using the UT-3 thermochemical cycle for hydrogen production. Int J Hydrogen Energy 14(5):323–330CrossRef Kameyama H, Tomino Y, Sato T, Amir R, Orihara A, Aihara M, Yoshida K (1989) Process simulation of “MASCOT” plant using the UT-3 thermochemical cycle for hydrogen production. Int J Hydrogen Energy 14(5):323–330CrossRef
255.
go back to reference Lemort F, Charvin P, Lafon C, Romnicianu M (2006) Technological and chemical assessment of various thermochemical cycles: from the UT3 cycle up to the two steps iron oxide cycle. Int J Hydrogen Energy 31(14):2063–2075CrossRef Lemort F, Charvin P, Lafon C, Romnicianu M (2006) Technological and chemical assessment of various thermochemical cycles: from the UT3 cycle up to the two steps iron oxide cycle. Int J Hydrogen Energy 31(14):2063–2075CrossRef
256.
go back to reference Lemort F, Lafon C, Dedryvere R, Gonbeau D (2006) Physicochemical and thermodynamic investigation of the UT-3 hydrogen production cycle: a new technological assessment. Int J Hydrogen Energy 31(7):906–918CrossRef Lemort F, Lafon C, Dedryvere R, Gonbeau D (2006) Physicochemical and thermodynamic investigation of the UT-3 hydrogen production cycle: a new technological assessment. Int J Hydrogen Energy 31(7):906–918CrossRef
257.
go back to reference Nakayama T, Yoshioka H, Furutani H, Kameyama H, Yoshida K (1984) MASCOT – a bench-scale plant for producing hydrogen by the UT-3 thermochemical decomposition cycle. Int J Hydrogen Energy 9(3):187–190CrossRef Nakayama T, Yoshioka H, Furutani H, Kameyama H, Yoshida K (1984) MASCOT – a bench-scale plant for producing hydrogen by the UT-3 thermochemical decomposition cycle. Int J Hydrogen Energy 9(3):187–190CrossRef
258.
go back to reference Sakurai M, Akimoto K, Yokota M, Tsutsumi A, Yoshida K (1996) Reactivity improvement of Ca-reactant in the UT-3 thermochemical hydrogen production cycle. In: Hydrogen energy progress XI, Proceedings of the world hydrogen energy conference, 11th, Stuttgart, 23–28 June 1996, vol 1, pp 831–836 Sakurai M, Akimoto K, Yokota M, Tsutsumi A, Yoshida K (1996) Reactivity improvement of Ca-reactant in the UT-3 thermochemical hydrogen production cycle. In: Hydrogen energy progress XI, Proceedings of the world hydrogen energy conference, 11th, Stuttgart, 23–28 June 1996, vol 1, pp 831–836
259.
go back to reference Sakurai M, Bilgen E, Tsutsumi A, Yoshida K (1996) Adiabatic UT-3 thermochemical process for hydrogen production. Int J Hydrogen Energy 21(10):865–870CrossRef Sakurai M, Bilgen E, Tsutsumi A, Yoshida K (1996) Adiabatic UT-3 thermochemical process for hydrogen production. Int J Hydrogen Energy 21(10):865–870CrossRef
260.
go back to reference Sakurai M, Bilgen E, Tsutsumi A, Yoshida K (1996) Solar UT-3 thermochemical cycle for hydrogen production. Sol Energy 57(1):51–58CrossRef Sakurai M, Bilgen E, Tsutsumi A, Yoshida K (1996) Solar UT-3 thermochemical cycle for hydrogen production. Sol Energy 57(1):51–58CrossRef
261.
go back to reference Sakurai M, Bilgen E, Tsutsumi A, Yoshida K, Tadokoro Y, Yamaguchi T (1996) Nuclear hydrogen production by adiabatic UT-3 thermochemical process. In: Hydrogen energy progress XI, Proceedings of the world hydrogen energy conference, 11th, Stuttgart, 23–28 June 1996, vol 1, pp 837–842 Sakurai M, Bilgen E, Tsutsumi A, Yoshida K, Tadokoro Y, Yamaguchi T (1996) Nuclear hydrogen production by adiabatic UT-3 thermochemical process. In: Hydrogen energy progress XI, Proceedings of the world hydrogen energy conference, 11th, Stuttgart, 23–28 June 1996, vol 1, pp 837–842
262.
go back to reference Sakurai M, Miyake N, Tsutsumi A, Yoshida K (1996) Analysis of a reaction mechanism in the UT-3 thermochemical hydrogen production cycle. Int J Hydrogen Energy 21(10):871–875CrossRef Sakurai M, Miyake N, Tsutsumi A, Yoshida K (1996) Analysis of a reaction mechanism in the UT-3 thermochemical hydrogen production cycle. Int J Hydrogen Energy 21(10):871–875CrossRef
263.
go back to reference Sakurai M, Ogiwara J, Kameyama H (2006) Reactivity improvement of Fe-compounds for the UT-3 thermochemical hydrogen production process. J Chem Eng Jpn 39(5):553–558CrossRef Sakurai M, Ogiwara J, Kameyama H (2006) Reactivity improvement of Fe-compounds for the UT-3 thermochemical hydrogen production process. J Chem Eng Jpn 39(5):553–558CrossRef
264.
go back to reference Sakurai M, Tsutsumi A, Yoshida K (1994) Analysis of a reaction mechanism in the UT-3 thermochemical hydrogen production cycle. In: Hydrogen energy progress X, Procedings of the world hydrogen energy conference, 10th, vol 2 pp 813–822 Sakurai M, Tsutsumi A, Yoshida K (1994) Analysis of a reaction mechanism in the UT-3 thermochemical hydrogen production cycle. In: Hydrogen energy progress X, Procedings of the world hydrogen energy conference, 10th, vol 2 pp 813–822
265.
go back to reference Sakurai M, Tsutsumi A, Yoshida K (1995) Improvement of Ca-pellet reactivity in UT-3 thermochemical hydrogen production cycle. Int J Hydrogen Energy 20(4):297–301CrossRef Sakurai M, Tsutsumi A, Yoshida K (1995) Improvement of Ca-pellet reactivity in UT-3 thermochemical hydrogen production cycle. Int J Hydrogen Energy 20(4):297–301CrossRef
266.
go back to reference Sato T, Sakurai M, Matsumura Y, Tsutsumi A, Yoshida K (1998) Preparation, structure and reactivity of Ca pellets for the UT-3 thermochemical hydrogen production cycle. In: Hydrogen energy progress XII, Proceedings of the world hydrogen energy conference, 12th, Buenos Aires, 21–26 June 1998, vol 1 pp 581–588 Sato T, Sakurai M, Matsumura Y, Tsutsumi A, Yoshida K (1998) Preparation, structure and reactivity of Ca pellets for the UT-3 thermochemical hydrogen production cycle. In: Hydrogen energy progress XII, Proceedings of the world hydrogen energy conference, 12th, Buenos Aires, 21–26 June 1998, vol 1 pp 581–588
267.
go back to reference Tadokoro Y, Kajiyama T, Yamaguchi T, Sakai N, Yoshida K, Aihara M, Sakurai M, Kameyama H, Sato T, Amir R (1990) Cycle simulation of the “UT-3” thermochemical hydrogen production process. Advances in Hydrogen Energy 8(Hydrogen Energy Prog. 8, vol 2): 513–521 Tadokoro Y, Kajiyama T, Yamaguchi T, Sakai N, Yoshida K, Aihara M, Sakurai M, Kameyama H, Sato T, Amir R (1990) Cycle simulation of the “UT-3” thermochemical hydrogen production process. Advances in Hydrogen Energy 8(Hydrogen Energy Prog. 8, vol 2): 513–521
268.
go back to reference Teo ED, Brandon NP, Vos E, Kramer GJ (2005) A critical pathway energy efficiency analysis of the thermochemical UT-3 cycle. Int J Hydrogen Energy 30(5):559–564CrossRef Teo ED, Brandon NP, Vos E, Kramer GJ (2005) A critical pathway energy efficiency analysis of the thermochemical UT-3 cycle. Int J Hydrogen Energy 30(5):559–564CrossRef
269.
go back to reference Yang J, Panchal CB, Doctor RD (2009) CaBr2 hydrolysis for HBr production using a direct sparging contactor. Int J Hydrogen Energy 34(18):7585–7591CrossRef Yang J, Panchal CB, Doctor RD (2009) CaBr2 hydrolysis for HBr production using a direct sparging contactor. Int J Hydrogen Energy 34(18):7585–7591CrossRef
270.
go back to reference Yoshida K, Kameyama H, Aochi T, Nobue M, Aihara M, Amir R, Kondo H, Sato T, Tadokoro Y et al (1990) A simulation study of the UT-3 thermochemical hydrogen production process. Int J Hydrogen Energy 15(3):171–178CrossRef Yoshida K, Kameyama H, Aochi T, Nobue M, Aihara M, Amir R, Kondo H, Sato T, Tadokoro Y et al (1990) A simulation study of the UT-3 thermochemical hydrogen production process. Int J Hydrogen Energy 15(3):171–178CrossRef
271.
go back to reference Doctor RD, Marshall CL, Wade DC (2002) Hydrogen cycle employing calcium bromine and electrolysis. Fuel Chem Div 47(2):755–756 Doctor RD, Marshall CL, Wade DC (2002) Hydrogen cycle employing calcium bromine and electrolysis. Fuel Chem Div 47(2):755–756
272.
go back to reference Daggupati VN, Naterer GF, Gabriel KS, Gravelsins RJ, Wang ZL (2009) Equilibrium conversion in Cu-Cl cycle multiphase processes of hydrogen production. Thermochim Acta 496(1–2):117–123CrossRef Daggupati VN, Naterer GF, Gabriel KS, Gravelsins RJ, Wang ZL (2009) Equilibrium conversion in Cu-Cl cycle multiphase processes of hydrogen production. Thermochim Acta 496(1–2):117–123CrossRef
273.
go back to reference Ferrandon M, Lewis M, Tatterson D, Zdunek A (2008) Status of the development effort for the thermochemical Cu-Cl cycle. In: AIChE annual meeting, conference proceedings, Cincinnati, OH, United States, 30 Oct–4 Nov 2005, 87/1-87/11 Ferrandon M, Lewis M, Tatterson D, Zdunek A (2008) Status of the development effort for the thermochemical Cu-Cl cycle. In: AIChE annual meeting, conference proceedings, Cincinnati, OH, United States, 30 Oct–4 Nov 2005, 87/1-87/11
274.
go back to reference Gong Y, Chalkova E, Akinfiev NN, Balashov VN, Fedkin MV, Lvov SN (2009) CuCl-HCl electrolyzer for hydrogen production via Cu-Cl thermochemical cycle. ECS Transactions 19(10, Hydrogen Production, Transport, and Storage 3): 21–32 Gong Y, Chalkova E, Akinfiev NN, Balashov VN, Fedkin MV, Lvov SN (2009) CuCl-HCl electrolyzer for hydrogen production via Cu-Cl thermochemical cycle. ECS Transactions 19(10, Hydrogen Production, Transport, and Storage 3): 21–32
275.
go back to reference Lewis M, Masin J (2005) An assessment of the efficiency of the hybrid copper-chloride thermochemical cycle. In: AIChE annual meeting, conference proceedings, Cincinnati, OH, United States, 30 Oct–4 Nov 2005, 348f/1-348f/3 Lewis M, Masin J (2005) An assessment of the efficiency of the hybrid copper-chloride thermochemical cycle. In: AIChE annual meeting, conference proceedings, Cincinnati, OH, United States, 30 Oct–4 Nov 2005, 348f/1-348f/3
276.
go back to reference Lewis MA, Ferrandon MS, Tatterson DF, Mathias P (2009) Evaluation of alternative thermochemical cycles – Part III further development of the Cu-Cl cycle. Int J Hydrogen Energy 34(9):4136–4145CrossRef Lewis MA, Ferrandon MS, Tatterson DF, Mathias P (2009) Evaluation of alternative thermochemical cycles – Part III further development of the Cu-Cl cycle. Int J Hydrogen Energy 34(9):4136–4145CrossRef
277.
go back to reference Lewis MA, Serban M, Basco JK (2004) Hydrogen production at < 550 DegC using a low temperature thermochemical cycle. Nuclear production of hydrogen, information exchange meeting, 2nd, Argonne, IL, United States, 2–3 Oct 2003, pp 145–156 Lewis MA, Serban M, Basco JK (2004) Hydrogen production at < 550 DegC using a low temperature thermochemical cycle. Nuclear production of hydrogen, information exchange meeting, 2nd, Argonne, IL, United States, 2–3 Oct 2003, pp 145–156
278.
go back to reference Masin JG, Lewis MA (2006) Development of the low temperature hybrid Cu-Cl thermochemical cycle. In: AIChE annual meeting, conference proceedings, Cincinnati, OH, United States, 30 Oct–4 Nov 2005, 275b/1-275b/10 Masin JG, Lewis MA (2006) Development of the low temperature hybrid Cu-Cl thermochemical cycle. In: AIChE annual meeting, conference proceedings, Cincinnati, OH, United States, 30 Oct–4 Nov 2005, 275b/1-275b/10
279.
go back to reference Naterer G, Suppiah S, Lewis M, Gabriel K, Dincer I, Rosen MA, Fowler M, Rizvi G, Easton EB, Ikeda BM, Kaye MH, Lu L, Pioro I, Spekkens P, Tremaine P, Mostaghimi J, Avsec J, Jiang J (2009) Recent Canadian advances in nuclear-based hydrogen production and the thermochemical Cu-Cl cycle. Int J Hydrogen Energy 34(7):2901–2917CrossRef Naterer G, Suppiah S, Lewis M, Gabriel K, Dincer I, Rosen MA, Fowler M, Rizvi G, Easton EB, Ikeda BM, Kaye MH, Lu L, Pioro I, Spekkens P, Tremaine P, Mostaghimi J, Avsec J, Jiang J (2009) Recent Canadian advances in nuclear-based hydrogen production and the thermochemical Cu-Cl cycle. Int J Hydrogen Energy 34(7):2901–2917CrossRef
280.
go back to reference Naterer GF, Daggupati VN, Marin G, Gabriel KS, Wang ZL (2008) Thermochemical hydrogen production with a copper-chlorine cycle, II: flashing and drying of aqueous cupric chloride. Int J Hydrogen Energy 33(20):5451–5459CrossRef Naterer GF, Daggupati VN, Marin G, Gabriel KS, Wang ZL (2008) Thermochemical hydrogen production with a copper-chlorine cycle, II: flashing and drying of aqueous cupric chloride. Int J Hydrogen Energy 33(20):5451–5459CrossRef
281.
go back to reference Naterer GF, Gabriel K, Lu L, Wang Z, Zhang Y (2009) Recent advances in nuclear based hydrogen production with the thermochemical copper-chlorine cycle. J Eng Gas Turbine and Power 131(3):032905/1–032905/10 Naterer GF, Gabriel K, Lu L, Wang Z, Zhang Y (2009) Recent advances in nuclear based hydrogen production with the thermochemical copper-chlorine cycle. J Eng Gas Turbine and Power 131(3):032905/1–032905/10
282.
go back to reference Orhan MF, Dincer I, Naterer GF (2008) Cost analysis of a thermochemical Cu-Cl pilot plant for nuclear-based hydrogen production. Int J Hydrogen Energy 33(21):6006–6020CrossRef Orhan MF, Dincer I, Naterer GF (2008) Cost analysis of a thermochemical Cu-Cl pilot plant for nuclear-based hydrogen production. Int J Hydrogen Energy 33(21):6006–6020CrossRef
283.
go back to reference Orhan MF, Dincer I, Rosen MA (2009) Efficiency analysis of a hybrid copper-chlorine (Cu-Cl) cycle for nuclear-based hydrogen production. Chem Eng J (Amsterdam, Neth) 155(1–2):132–137 Orhan MF, Dincer I, Rosen MA (2009) Efficiency analysis of a hybrid copper-chlorine (Cu-Cl) cycle for nuclear-based hydrogen production. Chem Eng J (Amsterdam, Neth) 155(1–2):132–137
284.
go back to reference Wang Z, Naterer GF, Gabriel K (2008) Multiphase reactor scale-up for Cu-Cl thermochemical hydrogen production. Int J Hydrogen Energy 33(23):6934–6946CrossRef Wang Z, Naterer GF, Gabriel K (2008) Multiphase reactor scale-up for Cu-Cl thermochemical hydrogen production. Int J Hydrogen Energy 33(23):6934–6946CrossRef
285.
go back to reference Wang ZL, Naterer GF, Gabriel KS, Gravelsins R, Daggupati VN (2009) New Cu-Cl thermochemical cycle for hydrogen production with reduced excess steam requirements. Int J Green Energy 6(6):616–626CrossRef Wang ZL, Naterer GF, Gabriel KS, Gravelsins R, Daggupati VN (2009) New Cu-Cl thermochemical cycle for hydrogen production with reduced excess steam requirements. Int J Green Energy 6(6):616–626CrossRef
286.
go back to reference Zamfirescu C, Dincer I, Naterer GF (2010) Thermophysical properties of copper compounds in copper-chlorine thermochemical water splitting cycles. Int J Hydrogen Energy 35(10):4839–4852CrossRef Zamfirescu C, Dincer I, Naterer GF (2010) Thermophysical properties of copper compounds in copper-chlorine thermochemical water splitting cycles. Int J Hydrogen Energy 35(10):4839–4852CrossRef
287.
go back to reference Wang ZL, Naterer GF, Gabriel KS, Gravelsins R, Daggupati VN (2010) Comparison of sulfur-iodine and copper-chlorine thermochemical hydrogen production cycles. Int J Hydrogen Energy 35(10):4820–4830CrossRef Wang ZL, Naterer GF, Gabriel KS, Gravelsins R, Daggupati VN (2010) Comparison of sulfur-iodine and copper-chlorine thermochemical hydrogen production cycles. Int J Hydrogen Energy 35(10):4820–4830CrossRef
288.
go back to reference Suppiah S, Li J, Sadhankar R, Kutchcoskie KJ, Lewis M (2006) Study of the hybrid Cu-Cl cycle for nuclear hydrogen production. Nuclear production of hydrogen: third information exchange meeting. Nuclear Energy Agency Organisation for Economic Co-operation and Development Oarai, 5–7 Japan Oct 2005 Suppiah S, Li J, Sadhankar R, Kutchcoskie KJ, Lewis M (2006) Study of the hybrid Cu-Cl cycle for nuclear hydrogen production. Nuclear production of hydrogen: third information exchange meeting. Nuclear Energy Agency Organisation for Economic Co-operation and Development Oarai, 5–7 Japan Oct 2005
290.
go back to reference Mathias P (2006) Modeling of the copper chloride thermochemical cycle. Argonne National Laboratory, Argonne Mathias P (2006) Modeling of the copper chloride thermochemical cycle. Argonne National Laboratory, Argonne
292.
go back to reference Lewis M (2008) Part I. Summary of alternative cycle evaluation and down selection Part II. R&D status for the Cu-Cl thermochemical cycle. Argonne National Laboratory, Report PD-28 Lewis M (2008) Part I. Summary of alternative cycle evaluation and down selection Part II. R&D status for the Cu-Cl thermochemical cycle. Argonne National Laboratory, Report PD-28
294.
go back to reference Kim YW, Kim CS, Hong SD, Lee WJ, Chang J (2009) A high temperature gas loop to simulate VHTR and nuclear hydrogen production system. VTT Symp 257:428–430 Kim YW, Kim CS, Hong SD, Lee WJ, Chang J (2009) A high temperature gas loop to simulate VHTR and nuclear hydrogen production system. VTT Symp 257:428–430
295.
go back to reference Onuki K (2009) Nuclear hydrogen production using HTGR. Shokubai 51(4):270–274 Onuki K (2009) Nuclear hydrogen production using HTGR. Shokubai 51(4):270–274
296.
go back to reference Onuki K, Inagaki Y, Hino R, Tachibana Y (2005) Research and development on nuclear hydrogen production using HTGR at JAERI. Prog Nucl Energy 47(1–4):496–503CrossRef Onuki K, Inagaki Y, Hino R, Tachibana Y (2005) Research and development on nuclear hydrogen production using HTGR at JAERI. Prog Nucl Energy 47(1–4):496–503CrossRef
297.
go back to reference Reza SMM (2007) Design modification for the modular helium reactor for higher temperature operation and reliability studies for nuclear hydrogen production processes. Ph.D. dissertation, Texas A&M University, TX, USA Reza SMM (2007) Design modification for the modular helium reactor for higher temperature operation and reliability studies for nuclear hydrogen production processes. Ph.D. dissertation, Texas A&M University, TX, USA
298.
go back to reference Sato H, Kubo S, Sakaba N, Ohashi H, Tachibana Y, Kunitomi K (2009) Development of an evaluation method for the HTTR-IS nuclear hydrogen production system. Ann Nucl Energy 36(7):956–965CrossRef Sato H, Kubo S, Sakaba N, Ohashi H, Tachibana Y, Kunitomi K (2009) Development of an evaluation method for the HTTR-IS nuclear hydrogen production system. Ann Nucl Energy 36(7):956–965CrossRef
299.
go back to reference Sato H, Ohashi H, Sakaba N, Nishihara T, Kunitomi K (2008) Thermal load control methods for the HTTR-IS nuclear hydrogen production system. Nihon Genshiryoku Gakkai Wabun Ronbunshu 7(4):328–337 Sato H, Ohashi H, Sakaba N, Nishihara T, Kunitomi K (2008) Thermal load control methods for the HTTR-IS nuclear hydrogen production system. Nihon Genshiryoku Gakkai Wabun Ronbunshu 7(4):328–337
300.
go back to reference Verfondern K, Nishihara T (2005) Safety aspects of the combined HTTR/steam reforming complex for nuclear hydrogen production. Prog Nucl Energy 47(1–4):527–534CrossRef Verfondern K, Nishihara T (2005) Safety aspects of the combined HTTR/steam reforming complex for nuclear hydrogen production. Prog Nucl Energy 47(1–4):527–534CrossRef
301.
go back to reference Vitart X, Le Duigou A, Carles P (2006) Hydrogen production using the sulfur-iodine cycle coupled to a VHTR: an overview. Energy Convers Manage 47(17):2740–2747CrossRef Vitart X, Le Duigou A, Carles P (2006) Hydrogen production using the sulfur-iodine cycle coupled to a VHTR: an overview. Energy Convers Manage 47(17):2740–2747CrossRef
302.
go back to reference Schultz KR, Brown LC, Besenbruch GE, Hamilton CJ (2003) Large-scale production of hydrogen by nuclear energy for the hydrogen economy. Report No. GA –A24265 Schultz KR, Brown LC, Besenbruch GE, Hamilton CJ (2003) Large-scale production of hydrogen by nuclear energy for the hydrogen economy. Report No. GA –A24265
303.
go back to reference Patterson M, Park C (2008) Hydrogen production from the next generation nuclear plant. Report No. INL/CON-08-14016 Patterson M, Park C (2008) Hydrogen production from the next generation nuclear plant. Report No. INL/CON-08-14016
304.
go back to reference Farbman GH (1976) The conceptual design of an integrated nuclear hydrogen production plant using the sulfur cycle water decomposition system. Westinghouse Astronucl Lab, Pittsburgh Farbman GH (1976) The conceptual design of an integrated nuclear hydrogen production plant using the sulfur cycle water decomposition system. Westinghouse Astronucl Lab, Pittsburgh
305.
go back to reference Shiozawa S, Saito S, Okano K, Uotani M, Ogawa M, Hino R (2006) Infrastructure for future hydrogen economy and nuclear hydrogen production. Nihon Genshiryoku Gakkaishi 48(11):835–852 Shiozawa S, Saito S, Okano K, Uotani M, Ogawa M, Hino R (2006) Infrastructure for future hydrogen economy and nuclear hydrogen production. Nihon Genshiryoku Gakkaishi 48(11):835–852
306.
go back to reference Brown NR, Oh S, Revankar ST, Kane C, Rodriguez S, Cole R Jr, Gauntt R (2009) Analysis model for sulfur-iodine and hybrid sulfur thermochemical cycles. Nucl Technol 166(1):43–55 Brown NR, Oh S, Revankar ST, Kane C, Rodriguez S, Cole R Jr, Gauntt R (2009) Analysis model for sulfur-iodine and hybrid sulfur thermochemical cycles. Nucl Technol 166(1):43–55
307.
go back to reference Brown NR, Oh S, Revankar ST, Vierow K, Rodriguez S, Cole R Jr, Gauntt R (2009) Simulation of sulfur-iodine thermochemical hydrogen production plant coupled to high-temperature heat source. Nucl Technol 167(1):95–106 Brown NR, Oh S, Revankar ST, Vierow K, Rodriguez S, Cole R Jr, Gauntt R (2009) Simulation of sulfur-iodine thermochemical hydrogen production plant coupled to high-temperature heat source. Nucl Technol 167(1):95–106
308.
go back to reference Richards MB, Shenoy AS, Schultz KR (2004) Coupling the modular helium reactor to hydrogen production processes. In: Nuclear production of hydrogen, information exchange meeting, 2nd, Argonne, IL, United States, Oct 2–3, 2003. OECD, Paris, pp 203–215 Richards MB, Shenoy AS, Schultz KR (2004) Coupling the modular helium reactor to hydrogen production processes. In: Nuclear production of hydrogen, information exchange meeting, 2nd, Argonne, IL, United States, Oct 2–3, 2003. OECD, Paris, pp 203–215
309.
go back to reference Southworth FH, MacDonald PE, Harrell DJ, Shaber EL, Park CV, Holbrook MR, Petti DA (2003) The next generation nuclear plant (NGNP) project. Idaho National Engineering and Environmental Laboratory. Report No. INEEL/CON-03-01150 Southworth FH, MacDonald PE, Harrell DJ, Shaber EL, Park CV, Holbrook MR, Petti DA (2003) The next generation nuclear plant (NGNP) project. Idaho National Engineering and Environmental Laboratory. Report No. INEEL/CON-03-01150
310.
go back to reference Harvego EA, Reza SMM, Richards M, Shenoy A (2006) An evaluation of reactor cooling and coupled hydrogen production processes using the modular helium reactor. Nucl Eng Des 236(14–16):1481–1489CrossRef Harvego EA, Reza SMM, Richards M, Shenoy A (2006) An evaluation of reactor cooling and coupled hydrogen production processes using the modular helium reactor. Nucl Eng Des 236(14–16):1481–1489CrossRef
311.
go back to reference Elder R, Allen R (2009) Nuclear heat for hydrogen production: coupling a very high/high temperature reactor to a hydrogen production plant. Prog Nucl Energy 51(3):500–525CrossRef Elder R, Allen R (2009) Nuclear heat for hydrogen production: coupling a very high/high temperature reactor to a hydrogen production plant. Prog Nucl Energy 51(3):500–525CrossRef
312.
go back to reference Gauthier J-C, Brinkmann G, Copsey B, Lecomte M (2006) ANTARES: the HTR/VHTR project at Framatome ANP. Nucl Eng Des 236(5–6):526–533CrossRef Gauthier J-C, Brinkmann G, Copsey B, Lecomte M (2006) ANTARES: the HTR/VHTR project at Framatome ANP. Nucl Eng Des 236(5–6):526–533CrossRef
313.
go back to reference MacDonald PE, Bayless PD, Gougar HD, Moore RL, Ougouag AM, Sant RL, Sterbentz JW, Terry WK (2004) The next generation nuclear plant – insights gained from the INEEL point design studies. Idaho National Engineering and Environmental Laboratory. Report No. INEEL/CON-04-01563 MacDonald PE, Bayless PD, Gougar HD, Moore RL, Ougouag AM, Sant RL, Sterbentz JW, Terry WK (2004) The next generation nuclear plant – insights gained from the INEEL point design studies. Idaho National Engineering and Environmental Laboratory. Report No. INEEL/CON-04-01563
314.
go back to reference Petri MC (2005) U.S. work on hydrogen production using light water reactor. IAEA technical meeting on advanced applications of water-cooled nuclear power plants, 11–14 Oct 2005, Vienna, Austria Petri MC (2005) U.S. work on hydrogen production using light water reactor. IAEA technical meeting on advanced applications of water-cooled nuclear power plants, 11–14 Oct 2005, Vienna, Austria
315.
go back to reference Wong BY, Brown L, Besenbruch G, Roy A, Pal J, Koripelli RS, Hasan MH (2009) General and stress corrosion behavior of construction materials for HI gaseous decomposition. NHI-UNLV HTHX program. Report No. IFT—PB2007-102 Wong BY, Brown L, Besenbruch G, Roy A, Pal J, Koripelli RS, Hasan MH (2009) General and stress corrosion behavior of construction materials for HI gaseous decomposition. NHI-UNLV HTHX program. Report No. IFT—PB2007-102
316.
go back to reference Monnerie N, Mueller-Steinhagen H, Roeb M, Sattler C, Schmitz M (2005) Hydrogen production by solar thermo-chemical water splitting. World congress of chemical engineering, 7th, Glasgow, United Kingdom, 10–14 July 2005, 83387/1–83387/11 Monnerie N, Mueller-Steinhagen H, Roeb M, Sattler C, Schmitz M (2005) Hydrogen production by solar thermo-chemical water splitting. World congress of chemical engineering, 7th, Glasgow, United Kingdom, 10–14 July 2005, 83387/1–83387/11
317.
go back to reference Bilgen E (1984) Solar hydrogen production by direct water decomposition process: a preliminary engineering assessment. Int J Hydrogen Energy 9(1–2):53–58CrossRef Bilgen E (1984) Solar hydrogen production by direct water decomposition process: a preliminary engineering assessment. Int J Hydrogen Energy 9(1–2):53–58CrossRef
318.
go back to reference Bilgen E (1988) Solar hydrogen production by hybrid thermochemical processes. Sol Energy 41(2):199–206CrossRef Bilgen E (1988) Solar hydrogen production by hybrid thermochemical processes. Sol Energy 41(2):199–206CrossRef
319.
go back to reference Bilgen E, Bilgen C (1982) Solar hydrogen production using two-step thermochemical cycles. Int J Hydrogen Energy 7(8):637–644CrossRef Bilgen E, Bilgen C (1982) Solar hydrogen production using two-step thermochemical cycles. Int J Hydrogen Energy 7(8):637–644CrossRef
320.
go back to reference Hoagland W (1979) Solar hydrogen production. Sol Energy Res Inst, Golden, pp 211–214 Hoagland W (1979) Solar hydrogen production. Sol Energy Res Inst, Golden, pp 211–214
321.
go back to reference Bilgen E, Bilgen C (1981) Solar hydrogen production. Advances in Hydrogen Energy 2(Hydrogen Energy Program, vol 2): 719–734 Bilgen E, Bilgen C (1981) Solar hydrogen production. Advances in Hydrogen Energy 2(Hydrogen Energy Program, vol 2): 719–734
322.
go back to reference Bilgen E, Bilgen C (1983) An assessment of large-scale solar hydrogen production in Canada. Int J Hydrogen Energy 8(6):441–451CrossRef Bilgen E, Bilgen C (1983) An assessment of large-scale solar hydrogen production in Canada. Int J Hydrogen Energy 8(6):441–451CrossRef
323.
go back to reference Garcia-Conde AG, Rosa F (1993) Solar hydrogen production: a Spanish experience. Int J Hydrogen Energy 18(12):995–1000CrossRef Garcia-Conde AG, Rosa F (1993) Solar hydrogen production: a Spanish experience. Int J Hydrogen Energy 18(12):995–1000CrossRef
324.
go back to reference Guo LJ, Zhao L, Jing DW, Lu YJ, Yang HH, Bai BF, Zhang XM, Ma LJ, Wu XM (2009) Solar hydrogen production and its development in China. Energy (Oxford, UK) 34(9):1073–1090 Guo LJ, Zhao L, Jing DW, Lu YJ, Yang HH, Bai BF, Zhang XM, Ma LJ, Wu XM (2009) Solar hydrogen production and its development in China. Energy (Oxford, UK) 34(9):1073–1090
325.
go back to reference Veziroglu TN, Barbir F (1991) Solar–hydrogen energy system: the choice of the future. Environ Conserv 18:304–312CrossRef Veziroglu TN, Barbir F (1991) Solar–hydrogen energy system: the choice of the future. Environ Conserv 18:304–312CrossRef
326.
go back to reference Wilhelm E, Fowler M (2006) A technical and economic review of solar hydrogen production technologies. Bull Sci Technol Soc 26(4):278–287CrossRef Wilhelm E, Fowler M (2006) A technical and economic review of solar hydrogen production technologies. Bull Sci Technol Soc 26(4):278–287CrossRef
327.
go back to reference Milbrandt A, Mann M (2007) Potential for hydrogen production from key renewable resources in the United States. National Renewable Energy Laboratory, Golden, CO, TP-640-41134, 2007 Milbrandt A, Mann M (2007) Potential for hydrogen production from key renewable resources in the United States. National Renewable Energy Laboratory, Golden, CO, TP-640-41134, 2007
328.
go back to reference Pregger T, Graf D, Krewitt W, Sattler C, Roeb M, Moller S (2009) Prospects of solar thermal hydrogen production processes. Int J Hydrogen Energy 34:4256–4267CrossRef Pregger T, Graf D, Krewitt W, Sattler C, Roeb M, Moller S (2009) Prospects of solar thermal hydrogen production processes. Int J Hydrogen Energy 34:4256–4267CrossRef
329.
go back to reference Abanades S, Flamant G (2006) Solar hydrogen production from the thermal splitting of methane in a high temperature solar chemical reactor. Sol Energy 80(10):1321–1332CrossRef Abanades S, Flamant G (2006) Solar hydrogen production from the thermal splitting of methane in a high temperature solar chemical reactor. Sol Energy 80(10):1321–1332CrossRef
330.
go back to reference Berman A, Karn RK, Epstein M (2007) Steam reforming of methane on a Ru/Al2O3 catalyst promoted with Mn oxides for solar hydrogen production. Green Chem 9(6):626–631CrossRef Berman A, Karn RK, Epstein M (2007) Steam reforming of methane on a Ru/Al2O3 catalyst promoted with Mn oxides for solar hydrogen production. Green Chem 9(6):626–631CrossRef
331.
go back to reference Hirsch D, Steinfeld A (2004) Solar hydrogen production by thermal decomposition of natural gas using a vortex-flow reactor. Int J Hydrogen Energy 29(1):47–55CrossRef Hirsch D, Steinfeld A (2004) Solar hydrogen production by thermal decomposition of natural gas using a vortex-flow reactor. Int J Hydrogen Energy 29(1):47–55CrossRef
332.
go back to reference Hong H, Liu Q, Jin H (2009) Solar hydrogen production integrating low-grade solar thermal energy and methanol steam reforming. J Energy Resour Technol 131(1):012601/1–012601/10 Hong H, Liu Q, Jin H (2009) Solar hydrogen production integrating low-grade solar thermal energy and methanol steam reforming. J Energy Resour Technol 131(1):012601/1–012601/10
333.
go back to reference Weimer AW, Dahl J, BuechlerK, Lewandowski A, Pitts R, Bingham C, Glatzmaier GC (2001) Thermal dissociation of methane using a solar coupled aerosol flow reactor. In: Proceedings of the 2001 DOE Hydrogen Program Review NREL/CP-570-30535 Weimer AW, Dahl J, BuechlerK, Lewandowski A, Pitts R, Bingham C, Glatzmaier GC (2001) Thermal dissociation of methane using a solar coupled aerosol flow reactor. In: Proceedings of the 2001 DOE Hydrogen Program Review NREL/CP-570-30535
334.
go back to reference Dahl JK, Tamburini J, Weimer AW (2001) Solar-thermal processing of methane to produce hydrogen and syngas. Energy Fuels 15(5):1227–1232CrossRef Dahl JK, Tamburini J, Weimer AW (2001) Solar-thermal processing of methane to produce hydrogen and syngas. Energy Fuels 15(5):1227–1232CrossRef
335.
go back to reference Muir JF, Hogan Jr RE, Skocypec RD, Buck R (1990) Solar reforming of methane in a direct absorption catalytic reactor on a parabolic dish. SAND-90-2674C; CONF-910318–13 Muir JF, Hogan Jr RE, Skocypec RD, Buck R (1990) Solar reforming of methane in a direct absorption catalytic reactor on a parabolic dish. SAND-90-2674C; CONF-910318–13
336.
go back to reference Huder K (1991) Investigation of methane reforming with energy supplied by direct absorption of concentrated radiation. Sol Energy Mater 24(1–2):696–706CrossRef Huder K (1991) Investigation of methane reforming with energy supplied by direct absorption of concentrated radiation. Sol Energy Mater 24(1–2):696–706CrossRef
337.
go back to reference Dahl JK, Barocas VH, Clough DE, Weimer AW (2002) Intrinsic kinetics for rapid decomposition of methane in an aerosol flow reactor. Int J Hydrogen Energy 27:377–386CrossRef Dahl JK, Barocas VH, Clough DE, Weimer AW (2002) Intrinsic kinetics for rapid decomposition of methane in an aerosol flow reactor. Int J Hydrogen Energy 27:377–386CrossRef
338.
go back to reference Dahl J, Buechler K, Finley R, Stanislaus T, Weimer A, Lewandowski A, Bingham C, Smeets A, Schneider A (2002) Rapid solar-thermal dissociation of natural gas in an aerosol reactor. In: Proceedings of the 2002 US DOE Hydrogen Review Program. Report No. NREL/CP-610-32405 Dahl J, Buechler K, Finley R, Stanislaus T, Weimer A, Lewandowski A, Bingham C, Smeets A, Schneider A (2002) Rapid solar-thermal dissociation of natural gas in an aerosol reactor. In: Proceedings of the 2002 US DOE Hydrogen Review Program. Report No. NREL/CP-610-32405
339.
go back to reference Lewandowski A, Weimer A (2003) High temperature solar splitting of methane to hydrogen and carbon. 2003 Hydrogen and fuel cells merit review meeting, National Renewable Energy Laboratory, 19–22 May, Berkeley, CA Lewandowski A, Weimer A (2003) High temperature solar splitting of methane to hydrogen and carbon. 2003 Hydrogen and fuel cells merit review meeting, National Renewable Energy Laboratory, 19–22 May, Berkeley, CA
340.
go back to reference Epstein M, Spiewak I (1996) Solar experiments with a tubular reformer. In: Proceedings of the 8th international symposium on solar thermal concentrating technologies, Cologne, Germany. Meuller Verlag, Heidelberg, pp 1209–1229 Epstein M, Spiewak I (1996) Solar experiments with a tubular reformer. In: Proceedings of the 8th international symposium on solar thermal concentrating technologies, Cologne, Germany. Meuller Verlag, Heidelberg, pp 1209–1229
341.
go back to reference Moeller S, Buck R, Tamme R, Epstein M, Liebermann D, Moshe M, Fisher U, Rotstein A, Sugarmen C (2002) Solar production of syngas for electricity generation: SOLASYS project test-phase. In: Steinfeld A (ed) Proceedings of the 11th solar PACES international symposium on concentrated solar power and chemical energy technologies, Zurich, Switzerland. Paul Scherrer Institut, Villigen, pp 231–237 Moeller S, Buck R, Tamme R, Epstein M, Liebermann D, Moshe M, Fisher U, Rotstein A, Sugarmen C (2002) Solar production of syngas for electricity generation: SOLASYS project test-phase. In: Steinfeld A (ed) Proceedings of the 11th solar PACES international symposium on concentrated solar power and chemical energy technologies, Zurich, Switzerland. Paul Scherrer Institut, Villigen, pp 231–237
342.
go back to reference Epstein M, Ehrensberger K, Yogev A (2002) Ferro-reduction of ZnO using concentrated solar energy. In: Steinfeld A (ed) Proceedings of the 11th solar PACES symposium on concentrated solar power and chemical energy technologies, Zurich, Switzerland. Paul Scherrer Institut, Villigen, pp 261–269 Epstein M, Ehrensberger K, Yogev A (2002) Ferro-reduction of ZnO using concentrated solar energy. In: Steinfeld A (ed) Proceedings of the 11th solar PACES symposium on concentrated solar power and chemical energy technologies, Zurich, Switzerland. Paul Scherrer Institut, Villigen, pp 261–269
343.
go back to reference Dahl JK, Weimer AW, Lewandowski A, Bingham C, Bruetsch F, Steinfeld A (2004) Dry reforming of methane using a solar-thermal aerosol flow reactor. Ind Eng Chem Res 43(18):5489–5495CrossRef Dahl JK, Weimer AW, Lewandowski A, Bingham C, Bruetsch F, Steinfeld A (2004) Dry reforming of methane using a solar-thermal aerosol flow reactor. Ind Eng Chem Res 43(18):5489–5495CrossRef
344.
go back to reference Steinfeld A (2005) Solar thermochemical production of hydrogen: a review. Sol Energy 78:603–615CrossRef Steinfeld A (2005) Solar thermochemical production of hydrogen: a review. Sol Energy 78:603–615CrossRef
345.
go back to reference Kodama T, Gokon N (2007) Thermochemical cycles for high-temperature solar hydrogen production. Chem Rev 107:4048–4077CrossRef Kodama T, Gokon N (2007) Thermochemical cycles for high-temperature solar hydrogen production. Chem Rev 107:4048–4077CrossRef
346.
go back to reference Perkins C, Weimer AW (2004) Likely near-term solar-thermal water splitting technologies. Int J Hydrogen Energy 29(15):1587–1599CrossRef Perkins C, Weimer AW (2004) Likely near-term solar-thermal water splitting technologies. Int J Hydrogen Energy 29(15):1587–1599CrossRef
347.
go back to reference Steinfeld A (2002) Solar hydrogen production via a 2-step water-splitting thermochemical cycle based on Zn/ZnO redox reactions. Int J Hydrogen Energy 27:611–619CrossRef Steinfeld A (2002) Solar hydrogen production via a 2-step water-splitting thermochemical cycle based on Zn/ZnO redox reactions. Int J Hydrogen Energy 27:611–619CrossRef
348.
go back to reference Abanades S, Charvin P, Flamant G, Neveu P (2006) Screening of water-splitting thermo cycles potentially attractive for hydrogen production by concentrated solar energy. Energy 31(14):2805–2822CrossRef Abanades S, Charvin P, Flamant G, Neveu P (2006) Screening of water-splitting thermo cycles potentially attractive for hydrogen production by concentrated solar energy. Energy 31(14):2805–2822CrossRef
349.
go back to reference Haueter P, Moeller S, Palumbo R, Steinfeld A (1999) The production of zinc by thermal dissociation of zinc oxide-solar chemical reactor design. Sol Energy 67:161–167CrossRef Haueter P, Moeller S, Palumbo R, Steinfeld A (1999) The production of zinc by thermal dissociation of zinc oxide-solar chemical reactor design. Sol Energy 67:161–167CrossRef
350.
go back to reference Perkins C, Weimer AW (2009) Solar-thermal production of renewable hydrogen. AlChE J 55(2):286–293CrossRef Perkins C, Weimer AW (2009) Solar-thermal production of renewable hydrogen. AlChE J 55(2):286–293CrossRef
351.
go back to reference Allendorf MD, Diver RB, Siegel NP, Miller JE (2008) Two-step water splitting using mixed-metal ferrites: thermodynamic analysis and characterization of synthesized materials. Energy Fuels 22:4115–4124CrossRef Allendorf MD, Diver RB, Siegel NP, Miller JE (2008) Two-step water splitting using mixed-metal ferrites: thermodynamic analysis and characterization of synthesized materials. Energy Fuels 22:4115–4124CrossRef
352.
go back to reference Kodama T, Nakamuro Y, Mizuno TJ (2006) A two-step thermochemical water splitting by iron-oxide on stabilized zirconia. J Sol Energy Eng 128(1):3–7CrossRef Kodama T, Nakamuro Y, Mizuno TJ (2006) A two-step thermochemical water splitting by iron-oxide on stabilized zirconia. J Sol Energy Eng 128(1):3–7CrossRef
353.
go back to reference Roeb M, Sattler C, Kluser R, Monnerie N, Oliveira LD, Konstandopoulos AG, Agrafiotis C, Zaspalis V, Nalbandian L, Steele A, Stobbe PJ (2006) Sol Energy Eng 128(2):125–133CrossRef Roeb M, Sattler C, Kluser R, Monnerie N, Oliveira LD, Konstandopoulos AG, Agrafiotis C, Zaspalis V, Nalbandian L, Steele A, Stobbe PJ (2006) Sol Energy Eng 128(2):125–133CrossRef
354.
go back to reference Abanades S, Charvin P, Lemont F, Flamant G (2008) Novel two-step SnO2/SnO water splitting cycle for solar thermochemical production of hydrogen. Int J Hydrogen Energy 33(21):6021–6030CrossRef Abanades S, Charvin P, Lemont F, Flamant G (2008) Novel two-step SnO2/SnO water splitting cycle for solar thermochemical production of hydrogen. Int J Hydrogen Energy 33(21):6021–6030CrossRef
355.
go back to reference Stamatiou A, Loutzenhiser PG, Steinfeld A (2010) Solar syngas production via H2O/CO2-splitting thermochemical cycles with Zn/ZnO and FeO/Fe3O4 redox reactions. Chem Mater 22:851–859CrossRef Stamatiou A, Loutzenhiser PG, Steinfeld A (2010) Solar syngas production via H2O/CO2-splitting thermochemical cycles with Zn/ZnO and FeO/Fe3O4 redox reactions. Chem Mater 22:851–859CrossRef
356.
go back to reference Müller R, Steinfeld A (2008) H2O-splitting thermochemical cycle based on ZnO/Zn-redox: quenching the effluents from the ZnO dissociation. Chem Eng Sci 63(1):217–227CrossRef Müller R, Steinfeld A (2008) H2O-splitting thermochemical cycle based on ZnO/Zn-redox: quenching the effluents from the ZnO dissociation. Chem Eng Sci 63(1):217–227CrossRef
357.
go back to reference Elorza-Ricart E, Martin PY, Ferrer M, Lédé J (1999) Direct thermal splitting of ZnO followed by a quench: experimental measurements of mass balances. J Phys IV France 9:325–330CrossRef Elorza-Ricart E, Martin PY, Ferrer M, Lédé J (1999) Direct thermal splitting of ZnO followed by a quench: experimental measurements of mass balances. J Phys IV France 9:325–330CrossRef
358.
go back to reference Fletcher EA (1999) Solar-thermal and solar quasi-electrolytic processing and separations: zinc from zinc oxide as an example. Ind Eng Chem Res 38:2275–2282CrossRef Fletcher EA (1999) Solar-thermal and solar quasi-electrolytic processing and separations: zinc from zinc oxide as an example. Ind Eng Chem Res 38:2275–2282CrossRef
359.
go back to reference Kräupl S, Steinfeld A (2003) Operational performance of a 5kW solar chemical reactor for the co-production of zinc and syngas. J Sol Energy Eng 125:124–126CrossRef Kräupl S, Steinfeld A (2003) Operational performance of a 5kW solar chemical reactor for the co-production of zinc and syngas. J Sol Energy Eng 125:124–126CrossRef
360.
go back to reference Lédé J, Elorza-Ricart E, Ferrer M (2001) Solar thermal splitting of zinc oxide: a review of some of the rate controlling factors. J Sol Energy Eng 123(2):91–97CrossRef Lédé J, Elorza-Ricart E, Ferrer M (2001) Solar thermal splitting of zinc oxide: a review of some of the rate controlling factors. J Sol Energy Eng 123(2):91–97CrossRef
361.
go back to reference Osinga T, Frommherz U, Steinfeld A, Wieckert C (2004) Experimental investigation of the solar carbothermic reduction of ZnO using a two cavity solar reactor. J Sol Energy Eng 126:633–637CrossRef Osinga T, Frommherz U, Steinfeld A, Wieckert C (2004) Experimental investigation of the solar carbothermic reduction of ZnO using a two cavity solar reactor. J Sol Energy Eng 126:633–637CrossRef
362.
go back to reference Müller R, Haeberling P, Palumbo RD (2006) Further advances toward the development of a direct heating solar thermal chemical reactor for the thermal dissociation of ZnO(s). Sol Energy 80(5):500–511CrossRef Müller R, Haeberling P, Palumbo RD (2006) Further advances toward the development of a direct heating solar thermal chemical reactor for the thermal dissociation of ZnO(s). Sol Energy 80(5):500–511CrossRef
363.
go back to reference Steinfeld A, Sanders S, Palumbo R (1999) Design aspects of solar thermochemical engineering- a case study: two-step water-splitting cycle using the FeO/FeO redox system. Sol Energy 65(1):43–53CrossRef Steinfeld A, Sanders S, Palumbo R (1999) Design aspects of solar thermochemical engineering- a case study: two-step water-splitting cycle using the FeO/FeO redox system. Sol Energy 65(1):43–53CrossRef
364.
go back to reference Charvin P, Abanades S, Flamant G, Lemort F (2007) Two-step water splitting thermochemical cycle based on iron oxide redox pair for solar hydrogen production. Energy (Oxford, UK) 32(7):1124–1133 Charvin P, Abanades S, Flamant G, Lemort F (2007) Two-step water splitting thermochemical cycle based on iron oxide redox pair for solar hydrogen production. Energy (Oxford, UK) 32(7):1124–1133
365.
go back to reference Alvani C, Bellusci M, La Barbera A, Padella F, Pentimalli M, Seralessandri L, Varsano F (2009) Reactive pellets for improved solar hydrogen production based on sodium manganese ferrite thermochemical cycle. J Sol Energy Eng 131(3):031015/1–031015/5 Alvani C, Bellusci M, La Barbera A, Padella F, Pentimalli M, Seralessandri L, Varsano F (2009) Reactive pellets for improved solar hydrogen production based on sodium manganese ferrite thermochemical cycle. J Sol Energy Eng 131(3):031015/1–031015/5
366.
go back to reference Alvani C, La Barbera A, Ennas G, Padella F, Varsano F (2006) Hydrogen production by using manganese ferrite: evidences and benefits of a multi-step reaction mechanism. Int J Hydrogen Energy 31(15):2217–2222CrossRef Alvani C, La Barbera A, Ennas G, Padella F, Varsano F (2006) Hydrogen production by using manganese ferrite: evidences and benefits of a multi-step reaction mechanism. Int J Hydrogen Energy 31(15):2217–2222CrossRef
367.
go back to reference Hwang G-J, Park C-S, Lee S-H, Seo I-T, Kim J-W (2004) Ni-ferrite-based thermochemical cycle for solar hydrogen production. J Ind Eng Chem(Seoul, Republic of Korea) 10(6):889–893 Hwang G-J, Park C-S, Lee S-H, Seo I-T, Kim J-W (2004) Ni-ferrite-based thermochemical cycle for solar hydrogen production. J Ind Eng Chem(Seoul, Republic of Korea) 10(6):889–893
368.
go back to reference Ishihara H, Kaneko H, Hasegawa N, Tamaura Y (2008) Two-step water splitting process with solid solution of YSZ and Ni-ferrite for solar hydrogen production (ISEC 2005-76151). J Sol Energy Eng 130(4):044501/1–044501/3 Ishihara H, Kaneko H, Hasegawa N, Tamaura Y (2008) Two-step water splitting process with solid solution of YSZ and Ni-ferrite for solar hydrogen production (ISEC 2005-76151). J Sol Energy Eng 130(4):044501/1–044501/3
369.
go back to reference Kodama T, Gokon N, Yamamoto R (2008) Thermochemical two-step water splitting by ZrO2-supported NixFe3-xO4 for solar hydrogen production. Sol Energy 82(1):73–79CrossRef Kodama T, Gokon N, Yamamoto R (2008) Thermochemical two-step water splitting by ZrO2-supported NixFe3-xO4 for solar hydrogen production. Sol Energy 82(1):73–79CrossRef
370.
go back to reference Tamaura Y, Ueda Y, Matsunami J, Hasegawa N, Nezuka M, Sano T, Tsuji M (1998) Solar hydrogen production by using ferrites. Sol Energy 65(1):55–57CrossRef Tamaura Y, Ueda Y, Matsunami J, Hasegawa N, Nezuka M, Sano T, Tsuji M (1998) Solar hydrogen production by using ferrites. Sol Energy 65(1):55–57CrossRef
371.
go back to reference Fresno F, Fernandez-Saavedra R, Belen Gomez-Mancebo M, Vidal A, Sanchez M, Isabel Rucandio M, Quejido AJ, Romero M (2009) Solar hydrogen production by two-step thermochemical cycles: evaluation of the activity of commercial ferrites. Int J Hydrogen Energy 34(7):2918–2924CrossRef Fresno F, Fernandez-Saavedra R, Belen Gomez-Mancebo M, Vidal A, Sanchez M, Isabel Rucandio M, Quejido AJ, Romero M (2009) Solar hydrogen production by two-step thermochemical cycles: evaluation of the activity of commercial ferrites. Int J Hydrogen Energy 34(7):2918–2924CrossRef
372.
go back to reference Kodama T, Kondoh Y, Yamamoto R, Andou H, Satou N (2005) Thermochemical hydrogen production by a redox system of ZrO2-supported Co(II)-ferrite. Sol Energy 78:623–631CrossRef Kodama T, Kondoh Y, Yamamoto R, Andou H, Satou N (2005) Thermochemical hydrogen production by a redox system of ZrO2-supported Co(II)-ferrite. Sol Energy 78:623–631CrossRef
373.
go back to reference Miller JE, Allendorf MD, Diver RB, Evans LR, Siegel NP, Stuecker JN (2008) Metal oxide composites and structures for ultra-high temperature solar thermochemical cycles. J Mater Sci 43(14):4714–4728CrossRef Miller JE, Allendorf MD, Diver RB, Evans LR, Siegel NP, Stuecker JN (2008) Metal oxide composites and structures for ultra-high temperature solar thermochemical cycles. J Mater Sci 43(14):4714–4728CrossRef
374.
go back to reference Gokon N, Murayama H, Nagasaki A, Kodama T (2009) Thermochemical two-step water splitting cycles by monoclinic ZrO2-supported NiFe2O4 and Fe3O4 powders and ceramic foam devices. Sol Energy 83(4):527–537CrossRef Gokon N, Murayama H, Nagasaki A, Kodama T (2009) Thermochemical two-step water splitting cycles by monoclinic ZrO2-supported NiFe2O4 and Fe3O4 powders and ceramic foam devices. Sol Energy 83(4):527–537CrossRef
375.
go back to reference Hwang GJ, Park CS, Lee SH, Seo IT, Kim JW (2004) Ni-ferrite-based thermochemical cycle for solar hydrogen production. J Ind Eng Chem 10(6):889–893 Hwang GJ, Park CS, Lee SH, Seo IT, Kim JW (2004) Ni-ferrite-based thermochemical cycle for solar hydrogen production. J Ind Eng Chem 10(6):889–893
376.
go back to reference Kodama T, Gokon N (2010) Two-step thermochemical cycles for high temperature solar hydrogen production. Adv Sci Technol 72:119–128CrossRef Kodama T, Gokon N (2010) Two-step thermochemical cycles for high temperature solar hydrogen production. Adv Sci Technol 72:119–128CrossRef
377.
go back to reference Agrafiotis C, Roeb M, Konstandopoulos AG, Nalbandian L, Zaspalis VT, Sattler C, Stobbe P, Steele AM (2005) Solar water splitting for hydrogen production with monolithic reactors. Sol Energy 79(4):409–421CrossRef Agrafiotis C, Roeb M, Konstandopoulos AG, Nalbandian L, Zaspalis VT, Sattler C, Stobbe P, Steele AM (2005) Solar water splitting for hydrogen production with monolithic reactors. Sol Energy 79(4):409–421CrossRef
378.
go back to reference Roeb M, Sattler C, Kluser R, Monnerie N, de Oliveira L, Konstandopoulos AG, Agrafiotis C, Zaspalis VT, Nalbandian L (2006) Solar hydrogen production by a two-step cycle based on mixed iron oxides. J Sol Energy Eng Trans ASME 128(2):125–134CrossRef Roeb M, Sattler C, Kluser R, Monnerie N, de Oliveira L, Konstandopoulos AG, Agrafiotis C, Zaspalis VT, Nalbandian L (2006) Solar hydrogen production by a two-step cycle based on mixed iron oxides. J Sol Energy Eng Trans ASME 128(2):125–134CrossRef
379.
go back to reference Aoki H, Kaneko H, Hasegawa N, Ishihara H, Suzuki A, Tamaura Y (2004) The ZnFe2O4/(ZnO + Fe3O4) system for H-2 production using concentrated solar energy. Solid State Ionics 172(1–4):113–116CrossRef Aoki H, Kaneko H, Hasegawa N, Ishihara H, Suzuki A, Tamaura Y (2004) The ZnFe2O4/(ZnO + Fe3O4) system for H-2 production using concentrated solar energy. Solid State Ionics 172(1–4):113–116CrossRef
380.
go back to reference Tamaura Y, Kaneko H (2005) Oxygen-releasing step of ZnFe2O4/(ZnO + Fe3O4)-system in air using concentrated solar energy for solar hydrogen production. Sol Energy 78(5):616–622CrossRef Tamaura Y, Kaneko H (2005) Oxygen-releasing step of ZnFe2O4/(ZnO + Fe3O4)-system in air using concentrated solar energy for solar hydrogen production. Sol Energy 78(5):616–622CrossRef
381.
go back to reference Kaneko H, Kojima N, Hasegawa N, Inoue M, Uehara R, Gokon N, Tamaura Y, Sano T (2002) Reaction mechanism of H2 generation for H2O/Zn/Fe3O4 system. Int J Hydrogen Energy 27(10):1023–1028CrossRef Kaneko H, Kojima N, Hasegawa N, Inoue M, Uehara R, Gokon N, Tamaura Y, Sano T (2002) Reaction mechanism of H2 generation for H2O/Zn/Fe3O4 system. Int J Hydrogen Energy 27(10):1023–1028CrossRef
382.
go back to reference Gokon N, Murayama H, Umeda J, Hatamachi T, Kodama T (2009) Monoclinic zirconia-supported Fe3O4 for the two-step water-splitting thermochemical cycle at high thermal reduction temperatures of 1400–1600 ∘ C. Int J Hydrogen Energy 34(3):1208–1217CrossRef Gokon N, Murayama H, Umeda J, Hatamachi T, Kodama T (2009) Monoclinic zirconia-supported Fe3O4 for the two-step water-splitting thermochemical cycle at high thermal reduction temperatures of 1400–1600 ∘ C. Int J Hydrogen Energy 34(3):1208–1217CrossRef
383.
go back to reference Scheffe JR, Li J, Weimer AW (2010) A spinel ferrite/hercynite water-splitting redox cycle. Int J Hydrogen Energy 35(8):3333–3340CrossRef Scheffe JR, Li J, Weimer AW (2010) A spinel ferrite/hercynite water-splitting redox cycle. Int J Hydrogen Energy 35(8):3333–3340CrossRef
384.
go back to reference Diver RB, Miller JE, Allendorf MD, Siegel NP, Hogan RE (2008) Solar thermochemical water-splitting ferrite-cycle heat engines. J Sol Energy Eng 130(4):041001–041008CrossRef Diver RB, Miller JE, Allendorf MD, Siegel NP, Hogan RE (2008) Solar thermochemical water-splitting ferrite-cycle heat engines. J Sol Energy Eng 130(4):041001–041008CrossRef
385.
go back to reference Kodama T, Shimizu T, Satoh T, Nakata M, Shimizu KI (2002) Stepwise production of CO-rich syngas and hydrogen via solar methane reforming by using a Ni(II)-ferrite redox system. Sol Energy 73(5):363–374CrossRef Kodama T, Shimizu T, Satoh T, Nakata M, Shimizu KI (2002) Stepwise production of CO-rich syngas and hydrogen via solar methane reforming by using a Ni(II)-ferrite redox system. Sol Energy 73(5):363–374CrossRef
386.
go back to reference Lorentzou S, Agrafiotis C, Konstandopoulos A (2008) Aerosol spray pyrolysis synthesis of water-splitting ferrites for solar hydrogen production. Granular Matter 10(2):113–122CrossRef Lorentzou S, Agrafiotis C, Konstandopoulos A (2008) Aerosol spray pyrolysis synthesis of water-splitting ferrites for solar hydrogen production. Granular Matter 10(2):113–122CrossRef
387.
go back to reference Han SB, Kang TB, Joo OS, Jung KD (2007) Water splitting for hydrogen production with ferrites. Sol Energy 81(5):623–628CrossRef Han SB, Kang TB, Joo OS, Jung KD (2007) Water splitting for hydrogen production with ferrites. Sol Energy 81(5):623–628CrossRef
388.
go back to reference Galvez ME, Frei A, Albisetti G, Lunardi G, Steinfeld A (2008) Solar hydrogen production via a two-step thermochemical process based on MgO/Mg redox reactions-Thermodynamic and kinetic analyses. Int J Hydrogen Energy 33(12):2880–2890CrossRef Galvez ME, Frei A, Albisetti G, Lunardi G, Steinfeld A (2008) Solar hydrogen production via a two-step thermochemical process based on MgO/Mg redox reactions-Thermodynamic and kinetic analyses. Int J Hydrogen Energy 33(12):2880–2890CrossRef
389.
go back to reference Vishnevetsky I, Epstein M (2009) Tin as a possible candidate for solar thermochemical redox process for hydrogen production. J Sol Energy Eng 131(2):021007–021008CrossRef Vishnevetsky I, Epstein M (2009) Tin as a possible candidate for solar thermochemical redox process for hydrogen production. J Sol Energy Eng 131(2):021007–021008CrossRef
390.
go back to reference Charvin P, Abanades S, Lemont F, Flamant G (2008) Experimental study on SnO2/SnO/Sn thermochemical systems for solar production of hydrogen. AlChE J 54(10):2759–2767CrossRef Charvin P, Abanades S, Lemont F, Flamant G (2008) Experimental study on SnO2/SnO/Sn thermochemical systems for solar production of hydrogen. AlChE J 54(10):2759–2767CrossRef
391.
go back to reference Abanades S, Flamant G (2006) Thermochemical hydrogen production from a two-step solar-driven water-splitting cycle based on cerium oxides. Sol Energy 80(12):1611–1623CrossRef Abanades S, Flamant G (2006) Thermochemical hydrogen production from a two-step solar-driven water-splitting cycle based on cerium oxides. Sol Energy 80(12):1611–1623CrossRef
392.
go back to reference Huang C, T-Raissi A (2005) Analysis of sulfur-iodine thermochemical cycle for solar hydrogen production. Part I: decomposition of sulfuric acid. Sol Energy 78(5):632–646 Huang C, T-Raissi A (2005) Analysis of sulfur-iodine thermochemical cycle for solar hydrogen production. Part I: decomposition of sulfuric acid. Sol Energy 78(5):632–646
393.
go back to reference Leach JW, Copeland RJ (1986) Solar hydrogen production: the sulfur-iodine cycle versus water vapor electrolysis. In: Proceedings of the 21st Intersociety Energy Conversion Engineering Conference,vol 2, pp 702–707 Leach JW, Copeland RJ (1986) Solar hydrogen production: the sulfur-iodine cycle versus water vapor electrolysis. In: Proceedings of the 21st Intersociety Energy Conversion Engineering Conference,vol 2, pp 702–707
394.
go back to reference Leach JW, Copeland RJ (1990) Solar hydrogen production: the sulfur-iodine cycle versus water vapor electrolysis. Int J Energy Syst 10(1):55–59 Leach JW, Copeland RJ (1990) Solar hydrogen production: the sulfur-iodine cycle versus water vapor electrolysis. Int J Energy Syst 10(1):55–59
395.
go back to reference Norman JH, Besenbruch G, Brown L (1982) Solar production of hydrogen using the sulfur-iodine thermochemical water-splitting cycle. Gen. Atomic Co. San Diego, CA, USA, GA-A16493 Norman JH, Besenbruch G, Brown L (1982) Solar production of hydrogen using the sulfur-iodine thermochemical water-splitting cycle. Gen. Atomic Co. San Diego, CA, USA, GA-A16493
396.
go back to reference Prosini PP, Cento C, Giaconia A, Caputo G, Sau S (2009) A modified sulphur-iodine cycle for efficient solar hydrogen production. Int J Hydrogen Energy 34(3):1218–1225CrossRef Prosini PP, Cento C, Giaconia A, Caputo G, Sau S (2009) A modified sulphur-iodine cycle for efficient solar hydrogen production. Int J Hydrogen Energy 34(3):1218–1225CrossRef
397.
go back to reference Bilgen C, Bilgen E (1984) Solar hydrogen production using the sulfur-iodine thermochemical process. Advances in Hydrogen Energy 4(Hydrogen Energy Progress 5, vol 2), pp 517–528 Bilgen C, Bilgen E (1984) Solar hydrogen production using the sulfur-iodine thermochemical process. Advances in Hydrogen Energy 4(Hydrogen Energy Progress 5, vol 2), pp 517–528
398.
go back to reference Graf D, Monnerie N, Roeb M, Schmitz M, Sattler C (2008) Economic comparison of solar hydrogen generation by means of thermochemical cycles and electrolysis. Int J Hydrogen Energy 33(17):4511–4519CrossRef Graf D, Monnerie N, Roeb M, Schmitz M, Sattler C (2008) Economic comparison of solar hydrogen generation by means of thermochemical cycles and electrolysis. Int J Hydrogen Energy 33(17):4511–4519CrossRef
399.
go back to reference Lewis MA, Basco JK (2004) Kinetic study of the hydrogen and oxygen production reactions in the copper-chloride thermochemical cycle, Serban, Manuela (Argonne National Laboratory, Chemical Engineering Division). In: 2004 AIChE Spring National Meeting, Conference Proceedings, pp 2690–2698 Lewis MA, Basco JK (2004) Kinetic study of the hydrogen and oxygen production reactions in the copper-chloride thermochemical cycle, Serban, Manuela (Argonne National Laboratory, Chemical Engineering Division). In: 2004 AIChE Spring National Meeting, Conference Proceedings, pp 2690–2698
400.
go back to reference Fletcher EA (2001) Solar thermal processing: a review. J Solar Energy Eng 123:63–74CrossRef Fletcher EA (2001) Solar thermal processing: a review. J Solar Energy Eng 123:63–74CrossRef
401.
go back to reference Fletcher EA, Macdonald F, Kunnerth D (1985) High temperature solar electrothermal processing II. Zinc from zinc oxide. Energy 10:1255–1272 Fletcher EA, Macdonald F, Kunnerth D (1985) High temperature solar electrothermal processing II. Zinc from zinc oxide. Energy 10:1255–1272
402.
go back to reference Steinfeld A, Brack M, Meier A, Weidenkaff A, Wuillemin D (1998) A solar chemical reactor for the Co-production of zinc and synthesis gas. Energy 23:803–814CrossRef Steinfeld A, Brack M, Meier A, Weidenkaff A, Wuillemin D (1998) A solar chemical reactor for the Co-production of zinc and synthesis gas. Energy 23:803–814CrossRef
403.
go back to reference Kraupl S, Steinfeld A (2003) Operational performance of a 5 kW solar chemical reactor for the Co-production of zinc and syngas. ASME J Sol Energy Eng 125:124–126CrossRef Kraupl S, Steinfeld A (2003) Operational performance of a 5 kW solar chemical reactor for the Co-production of zinc and syngas. ASME J Sol Energy Eng 125:124–126CrossRef
404.
go back to reference Steinfeld A, Kuhn P, Reller A, Palumbo R, Murray JP, Tamaura Y (1998) Solar-processed metals as clean energy carriers and water-splitters. Int J Hydrogen Energy 23:767–774CrossRef Steinfeld A, Kuhn P, Reller A, Palumbo R, Murray JP, Tamaura Y (1998) Solar-processed metals as clean energy carriers and water-splitters. Int J Hydrogen Energy 23:767–774CrossRef
405.
go back to reference International Energy Agency (2006) Hydrogen production and storage R&D priorities and gaps. IEA-Hydrogen Coordination Group. OECD/IEA-2006. IEA, Paris, France. International Energy Agency (2006) Hydrogen production and storage R&D priorities and gaps. IEA-Hydrogen Coordination Group. OECD/IEA-2006. IEA, Paris, France.
406.
go back to reference Agbossou K, Chahine R, Hamelin J, Laurencelle F, Anouar A, St-Arnaud JM, Bose TK (2001) Renewable energy systems based on hydrogen for remote applications. J Power Sources 96(1):168–172CrossRef Agbossou K, Chahine R, Hamelin J, Laurencelle F, Anouar A, St-Arnaud JM, Bose TK (2001) Renewable energy systems based on hydrogen for remote applications. J Power Sources 96(1):168–172CrossRef
407.
go back to reference Aguado M, Ayerbe E, Azcarate C, Blanco R, Garde R, Mallor F, Rivas DM (2009) Economical assessment of a wind-hydrogen energy system using WindHyGen software. Int J Hydrogen Energy 34(7):2845–2854CrossRef Aguado M, Ayerbe E, Azcarate C, Blanco R, Garde R, Mallor F, Rivas DM (2009) Economical assessment of a wind-hydrogen energy system using WindHyGen software. Int J Hydrogen Energy 34(7):2845–2854CrossRef
408.
go back to reference Altmann M, Gamallo F (1998) Design of an isolated wind-hydrogen energy supply system. In: Hydrogen energy progress XII, Proceedings of the world hydrogen energy conference, 12th, Buenos Aires, 21–26 June 1998 vol 2, pp 1699–1706 Altmann M, Gamallo F (1998) Design of an isolated wind-hydrogen energy supply system. In: Hydrogen energy progress XII, Proceedings of the world hydrogen energy conference, 12th, Buenos Aires, 21–26 June 1998 vol 2, pp 1699–1706
409.
go back to reference Bechrakis DA, Varkaraki E (2009) Chapter 5: Hydrogen production from wind energy. In: Gupta RB (ed) Hydrogen fuel production transport, and storage. CRC, Boca Raton, pp 161–183 Bechrakis DA, Varkaraki E (2009) Chapter 5: Hydrogen production from wind energy. In: Gupta RB (ed) Hydrogen fuel production transport, and storage. CRC, Boca Raton, pp 161–183
410.
go back to reference Bernal-Agustin JL, Dufo-Lopez R (2008) Hourly energy management for grid-connected wind-hydrogen systems. Int J Hydrogen Energy 33(22):6401–6413CrossRef Bernal-Agustin JL, Dufo-Lopez R (2008) Hourly energy management for grid-connected wind-hydrogen systems. Int J Hydrogen Energy 33(22):6401–6413CrossRef
411.
go back to reference Calderon M, Calderon AJ, Ramiro A, Gonzalez JF (2010) Automatic management of energy flows of a stand-alone renewable energy supply with hydrogen support. Int J Hydrogen Energy 35(6):2226–2235CrossRef Calderon M, Calderon AJ, Ramiro A, Gonzalez JF (2010) Automatic management of energy flows of a stand-alone renewable energy supply with hydrogen support. Int J Hydrogen Energy 35(6):2226–2235CrossRef
412.
go back to reference El-Osta W, Mussa M, Yagob A (1996) Harnessing the wind for hydrogen production: a possible strategic program for Libya. In: Hydrogen energy progress XI, Proceedings of the world hydrogen energy conference, 11th, Stuttgart, 23–28 June 1996, vol 1, pp 435–441 El-Osta W, Mussa M, Yagob A (1996) Harnessing the wind for hydrogen production: a possible strategic program for Libya. In: Hydrogen energy progress XI, Proceedings of the world hydrogen energy conference, 11th, Stuttgart, 23–28 June 1996, vol 1, pp 435–441
413.
go back to reference Fairlie M, Mazaika DM, Scott PB (2003) Wind generated hydrogen fueling station. Hydrogen planet, 14th world hydrogen energy conference, Montreal, QC, Canada, 9–13 June 2002, pp 381–389 Fairlie M, Mazaika DM, Scott PB (2003) Wind generated hydrogen fueling station. Hydrogen planet, 14th world hydrogen energy conference, Montreal, QC, Canada, 9–13 June 2002, pp 381–389
414.
go back to reference Fingersh LJ (2004) Optimization of utility-scale wind-hydrogen-battery systems. World renewable energy congress VIII: linking the world with renewable energy, 8th, Denver, CO, United States, 29 Aug–3 Sept 2004, pp 909–913 Fingersh LJ (2004) Optimization of utility-scale wind-hydrogen-battery systems. World renewable energy congress VIII: linking the world with renewable energy, 8th, Denver, CO, United States, 29 Aug–3 Sept 2004, pp 909–913
415.
go back to reference Giatrakos GP, Tsoutsos TD, Mouchtaropoulos PG, Naxakis GD, Stavrakakis G (2009) Sustainable energy planning based on a stand-alone hybrid renewableenergy/hydrogen power system: application in Karpathos island, Greece. Renewable Energy 34(12):2562–2570CrossRef Giatrakos GP, Tsoutsos TD, Mouchtaropoulos PG, Naxakis GD, Stavrakakis G (2009) Sustainable energy planning based on a stand-alone hybrid renewableenergy/hydrogen power system: application in Karpathos island, Greece. Renewable Energy 34(12):2562–2570CrossRef
416.
go back to reference Glazkov VA, Solovey VV, Pishuk VK, Lotosky MV, Aliyev AM (2005) Autonomous wind-hydrogen stations. Hydrogen materials science and chemistry of carbon nanomaterials, international conference, 9th, Sevastopol, Ukraine, 5–11 Sept 2005 pp 1168–1171 Glazkov VA, Solovey VV, Pishuk VK, Lotosky MV, Aliyev AM (2005) Autonomous wind-hydrogen stations. Hydrogen materials science and chemistry of carbon nanomaterials, international conference, 9th, Sevastopol, Ukraine, 5–11 Sept 2005 pp 1168–1171
417.
go back to reference Glockner R, Kloed C, Nyhammer F, Ulleberg O (2003) Wind/hydrogen systems for remote areas – a Norwegian case study. Hydrogen planet, World hydrogen energy conference, 14th, Montreal, QC, Canada, 9–13 June 2002, pp 398–409 Glockner R, Kloed C, Nyhammer F, Ulleberg O (2003) Wind/hydrogen systems for remote areas – a Norwegian case study. Hydrogen planet, World hydrogen energy conference, 14th, Montreal, QC, Canada, 9–13 June 2002, pp 398–409
418.
go back to reference Greiner CJ, Korpaas M, Gjengedal T (2008) Dimensioning and operating wind-hydrogen plants in power markets. In: New aspects of circuits, Proceedings of the WSEAS international conference on circuits, 12th, Heraklion, Greece, 22–24 July 2008, pp 405–414 Greiner CJ, Korpaas M, Gjengedal T (2008) Dimensioning and operating wind-hydrogen plants in power markets. In: New aspects of circuits, Proceedings of the WSEAS international conference on circuits, 12th, Heraklion, Greece, 22–24 July 2008, pp 405–414
419.
go back to reference Greiner CJ, Korpas M, Holen AT (2007) A Norwegian case study on the production of hydrogen from wind power. Int J Hydrogen Energy 32(10–11):1500–1507CrossRef Greiner CJ, Korpas M, Holen AT (2007) A Norwegian case study on the production of hydrogen from wind power. Int J Hydrogen Energy 32(10–11):1500–1507CrossRef
420.
go back to reference Harrison KW, Martin G (2010) The wind-to-hydrogen project: results and lessons learned. Am Chem Soc Div Pet Chem Prepr 55(1):64 Harrison KW, Martin G (2010) The wind-to-hydrogen project: results and lessons learned. Am Chem Soc Div Pet Chem Prepr 55(1):64
421.
go back to reference Hart D (2000) Hydrogen storage – technically viable and economically sensible? IMechE Seminar Publication (7, Renewable Energy Storage), pp 51–54 Hart D (2000) Hydrogen storage – technically viable and economically sensible? IMechE Seminar Publication (7, Renewable Energy Storage), pp 51–54
422.
go back to reference Hexeberg I, Hagen EF (2005) Renewable hydrogen energy systems. In: Proceedings of the world petroleum congress,18th, HEXE1-HEXE8 Hexeberg I, Hagen EF (2005) Renewable hydrogen energy systems. In: Proceedings of the world petroleum congress,18th, HEXE1-HEXE8
423.
go back to reference Honnery D, Moriarty P (2009) Estimating global hydrogen production from wind. Int J Hydrogen Energy 34(2):727–736CrossRef Honnery D, Moriarty P (2009) Estimating global hydrogen production from wind. Int J Hydrogen Energy 34(2):727–736CrossRef
424.
go back to reference Infield D (2004) Hydrogen from renewable energy sources. In: Fuel cells for automotive applications, pp 75–88 Infield D (2004) Hydrogen from renewable energy sources. In: Fuel cells for automotive applications, pp 75–88
425.
go back to reference Ipsakis D, Voutetakis S, Seferlis P, Stergiopoulos F, Elmasides C (2009) Power management strategies for a stand-alone power system using renewable energy sources and hydrogen storage. Int J Hydrogen Energy 34(16):7081–7095CrossRef Ipsakis D, Voutetakis S, Seferlis P, Stergiopoulos F, Elmasides C (2009) Power management strategies for a stand-alone power system using renewable energy sources and hydrogen storage. Int J Hydrogen Energy 34(16):7081–7095CrossRef
426.
go back to reference Jensen SH, Larsen PH, Mogensen M (2007) Hydrogen and synthetic fuel production from renewable energy sources. Int J Hydrogen Energy 32(15):3253–3257CrossRef Jensen SH, Larsen PH, Mogensen M (2007) Hydrogen and synthetic fuel production from renewable energy sources. Int J Hydrogen Energy 32(15):3253–3257CrossRef
427.
go back to reference Khan MJ, Iqbal MT (2009) Analysis of a small wind-hydrogen stand-alone hybrid energy system. Appl Energy 86(11):2429–2442CrossRef Khan MJ, Iqbal MT (2009) Analysis of a small wind-hydrogen stand-alone hybrid energy system. Appl Energy 86(11):2429–2442CrossRef
428.
go back to reference Kottenstette R, Cotrell J (2004) Hydrogen storage in wind turbine towers. Int J Hydrogen Energy 29(12):1277–1288CrossRef Kottenstette R, Cotrell J (2004) Hydrogen storage in wind turbine towers. Int J Hydrogen Energy 29(12):1277–1288CrossRef
429.
go back to reference Lee J-Y, An S, Cha K, Hur T (2010) Life cycle environmental and economic analyses of a hydrogen station with wind energy. Int J Hydrogen Energy 35(6):2213–2225CrossRef Lee J-Y, An S, Cha K, Hur T (2010) Life cycle environmental and economic analyses of a hydrogen station with wind energy. Int J Hydrogen Energy 35(6):2213–2225CrossRef
430.
go back to reference Levene JI, Mann MK, Margolis RM, Milbrandt A (2007) An analysis of hydrogen production from renewable electricity sources. Sol Energy 81(6):773–780CrossRef Levene JI, Mann MK, Margolis RM, Milbrandt A (2007) An analysis of hydrogen production from renewable electricity sources. Sol Energy 81(6):773–780CrossRef
431.
go back to reference Linnemann J, Steinberger-Wilckens R (2007) Realistic costs of wind-hydrogen vehicle fuel production. Int J Hydrogen Energy 32(10–11):1492–1499CrossRef Linnemann J, Steinberger-Wilckens R (2007) Realistic costs of wind-hydrogen vehicle fuel production. Int J Hydrogen Energy 32(10–11):1492–1499CrossRef
432.
go back to reference Mantz RJ, De Battista H (2008) Hydrogen production from idle generation capacity of wind turbines. Int J Hydrogen Energy 33(16):4291–4300CrossRef Mantz RJ, De Battista H (2008) Hydrogen production from idle generation capacity of wind turbines. Int J Hydrogen Energy 33(16):4291–4300CrossRef
433.
go back to reference Matera FV, Sapienza C, Andaloro L, Dispensa G, Ferraro M, Antonucci V (2009) An integrated approach to hydrogen economy in Sicilian islands. Int J Hydrogen Energy 34(16):7009–7014CrossRef Matera FV, Sapienza C, Andaloro L, Dispensa G, Ferraro M, Antonucci V (2009) An integrated approach to hydrogen economy in Sicilian islands. Int J Hydrogen Energy 34(16):7009–7014CrossRef
434.
go back to reference Menzl F, Wenske M, Lehmann J (1998) Hydrogen production by a windmill powered electrolyser. In: Hydrogen energy progress XII, Proceedings of the world hydrogen energy conference, 12th, Buenos Aires, 21–26 June 1998, vol 1, pp 757–765 Menzl F, Wenske M, Lehmann J (1998) Hydrogen production by a windmill powered electrolyser. In: Hydrogen energy progress XII, Proceedings of the world hydrogen energy conference, 12th, Buenos Aires, 21–26 June 1998, vol 1, pp 757–765
435.
go back to reference Neill DR, Yu C, Guo Q, Huang N (1992) HNEI wind-hydrogen program. Sol World Congr Proc Bienn Congr Int Sol Energy Soc 1(Pt. 2):745–750 Neill DR, Yu C, Guo Q, Huang N (1992) HNEI wind-hydrogen program. Sol World Congr Proc Bienn Congr Int Sol Energy Soc 1(Pt. 2):745–750
436.
go back to reference Perez-Herranz V, Perez-Page M, Beneito R (2010) Monitoring and control of a hydrogen production and storage system consisting of water electrolysis and metal hydrides. Int J Hydrogen Energy 35(3):912–919CrossRef Perez-Herranz V, Perez-Page M, Beneito R (2010) Monitoring and control of a hydrogen production and storage system consisting of water electrolysis and metal hydrides. Int J Hydrogen Energy 35(3):912–919CrossRef
437.
go back to reference Shahbazov SS, Usubov IM (1996) Hydrogen obtained by using wind energy. In: Hydrogen energy progress XI, Proceedings of the world hydrogen energy conference, 11th, Stuttgart, 23–28 June 1996 vol 1, pp 955–958 Shahbazov SS, Usubov IM (1996) Hydrogen obtained by using wind energy. In: Hydrogen energy progress XI, Proceedings of the world hydrogen energy conference, 11th, Stuttgart, 23–28 June 1996 vol 1, pp 955–958
438.
go back to reference Sherif SA, Barbir F, Veziroglu TN (2005) Wind energy and the hydrogen economy – review of the technology. Sol Energy 78(5):647–660CrossRef Sherif SA, Barbir F, Veziroglu TN (2005) Wind energy and the hydrogen economy – review of the technology. Sol Energy 78(5):647–660CrossRef
439.
go back to reference Sopian K, Fudholi A, Ruslan MH, Sulaiman MY, Alghoul MA, Yahya M, Amin N, Haw LC, Zaharim A (2009) Hydrogen production from combined wind/PV energy hybrid system in Malaysia. In: Recent advances in energy and environment, Proceedings of the IASME/WSEAS international conference on energy & environment, 4th, Cambridge, United Kingdom, 24–26 Feb 2009, pp 431–434 Sopian K, Fudholi A, Ruslan MH, Sulaiman MY, Alghoul MA, Yahya M, Amin N, Haw LC, Zaharim A (2009) Hydrogen production from combined wind/PV energy hybrid system in Malaysia. In: Recent advances in energy and environment, Proceedings of the IASME/WSEAS international conference on energy & environment, 4th, Cambridge, United Kingdom, 24–26 Feb 2009, pp 431–434
440.
go back to reference Sopian K, Ibrahim MZ, Daud WRW, Othman MY, Yatim B, Amin N (2009) Performance of a PV-wind hybrid system for hydrogen production. Renewable Energy 34(8):1973–1978CrossRef Sopian K, Ibrahim MZ, Daud WRW, Othman MY, Yatim B, Amin N (2009) Performance of a PV-wind hybrid system for hydrogen production. Renewable Energy 34(8):1973–1978CrossRef
441.
go back to reference Ulleberg O, Nakken T, Ete A (2010) The wind/hydrogen demonstration system at Utsira in Norway: evaluation of system performance using operational data and updated hydrogen energy system modeling tools. Int J Hydrogen Energy 35(5):1841–1852CrossRef Ulleberg O, Nakken T, Ete A (2010) The wind/hydrogen demonstration system at Utsira in Norway: evaluation of system performance using operational data and updated hydrogen energy system modeling tools. Int J Hydrogen Energy 35(5):1841–1852CrossRef
442.
go back to reference Venturini NR (1996) Wind-hydrogen energy demonstration plant in Argentina: preliminary economic analysis. In: Hydrogen energy progress XI, Proceedings of the world hydrogen energy conference, 11th, Stuttgart, 23–28 June 1996, vol 1, pp 373–378 Venturini NR (1996) Wind-hydrogen energy demonstration plant in Argentina: preliminary economic analysis. In: Hydrogen energy progress XI, Proceedings of the world hydrogen energy conference, 11th, Stuttgart, 23–28 June 1996, vol 1, pp 373–378
443.
go back to reference Yang W-J, Aydin O (2001) Wind energy-hydrogen storage hybrid power generation. Int J Energy Res 25(5):449–463CrossRef Yang W-J, Aydin O (2001) Wind energy-hydrogen storage hybrid power generation. Int J Energy Res 25(5):449–463CrossRef
444.
go back to reference Milbrandt A, Mann M (2007) Potential for hydrogen production from key renewable resources in the United States. National Renewable Energy Laboratory, Golden, CO, Report No. TP-640-41134 Milbrandt A, Mann M (2007) Potential for hydrogen production from key renewable resources in the United States. National Renewable Energy Laboratory, Golden, CO, Report No. TP-640-41134
445.
go back to reference Saxena RC, Seal D, Kumar S, Goyal HB (2008) Thermo-chemical routes for hydrogen rich gas from biomass: a review. Renew Sustain Energy Rev 12(7):1909–1927CrossRef Saxena RC, Seal D, Kumar S, Goyal HB (2008) Thermo-chemical routes for hydrogen rich gas from biomass: a review. Renew Sustain Energy Rev 12(7):1909–1927CrossRef
446.
go back to reference Ni M, Leung DYC, Leung MKH, Sumathy K (2006) An overview of hydrogen production from biomass. Fuel Process Technol 87(5):461–472CrossRef Ni M, Leung DYC, Leung MKH, Sumathy K (2006) An overview of hydrogen production from biomass. Fuel Process Technol 87(5):461–472CrossRef
447.
go back to reference Milne TA, Elam CC, Evans RJ (2002) Hydrogen from biomass, State of the art and research challenges. A report for the international energy agency. Agreement on the production and utilization of hydrogen task 16, hydrogen from carbon-containing materials, IEA/H2/TR-02/001 Milne TA, Elam CC, Evans RJ (2002) Hydrogen from biomass, State of the art and research challenges. A report for the international energy agency. Agreement on the production and utilization of hydrogen task 16, hydrogen from carbon-containing materials, IEA/H2/TR-02/001
448.
go back to reference Esswein AJ, Nocera DG (2007) Hydrogen production by molecular photocatalysis. Chem Rev(Washington, DC, USA) 107(10):4022–4407 Esswein AJ, Nocera DG (2007) Hydrogen production by molecular photocatalysis. Chem Rev(Washington, DC, USA) 107(10):4022–4407
449.
go back to reference Kudo A (2007) Photocatalysis and solar hydrogen production. Pure Appl Chem 79(11):1917–1927CrossRef Kudo A (2007) Photocatalysis and solar hydrogen production. Pure Appl Chem 79(11):1917–1927CrossRef
450.
go back to reference Lee M-T, Hwang DJ, Greif R, Grigoropoulos CP (2009) Nanocatalyst fabrication and the production of hydrogen by using photon energy. Int J Hydrogen Energy 34(4):1835–1843CrossRef Lee M-T, Hwang DJ, Greif R, Grigoropoulos CP (2009) Nanocatalyst fabrication and the production of hydrogen by using photon energy. Int J Hydrogen Energy 34(4):1835–1843CrossRef
451.
go back to reference Rangan K, Arachchige SM, Brown JR, Brewer KJ (2009) Solar energy conversion using photochemical molecular devices: photocatalytic hydrogen production from water using mixed-metal supramolecular complexes. Energy Environ Sci 2(4):410–419CrossRef Rangan K, Arachchige SM, Brown JR, Brewer KJ (2009) Solar energy conversion using photochemical molecular devices: photocatalytic hydrogen production from water using mixed-metal supramolecular complexes. Energy Environ Sci 2(4):410–419CrossRef
452.
go back to reference Ryu SY, Choi J, Balcerski W, Lee TK, Hoffmann MR (2007) Photocatalytic production of H2 on nanocomposite catalysts. Ind Eng Chem Res 46(23):7476–7488CrossRef Ryu SY, Choi J, Balcerski W, Lee TK, Hoffmann MR (2007) Photocatalytic production of H2 on nanocomposite catalysts. Ind Eng Chem Res 46(23):7476–7488CrossRef
453.
go back to reference Wang X, Shih K, Li XY (2010) Photocatalytic hydrogen generation from water under visible light using core/shell nano-catalysts. Water Sci Technol 61(9):2303–2308CrossRef Wang X, Shih K, Li XY (2010) Photocatalytic hydrogen generation from water under visible light using core/shell nano-catalysts. Water Sci Technol 61(9):2303–2308CrossRef
454.
go back to reference Ni M, Leung MKH, Leung DYC, Sumathy K (2007) A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sustain Energy Rev 11(3):401–425CrossRef Ni M, Leung MKH, Leung DYC, Sumathy K (2007) A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sustain Energy Rev 11(3):401–425CrossRef
455.
go back to reference Wolcott A, Kuykendall T, Smith WA, Zhao Y, Zhang JZ (2008) Photoelectrochemical hydrogen production utilizing metal oxide nanomaterials. Abstracts of papers, 235th ACS national meeting, New Orleans, LA, United States, 6–10 Apr 2008, PHYS-504 Wolcott A, Kuykendall T, Smith WA, Zhao Y, Zhang JZ (2008) Photoelectrochemical hydrogen production utilizing metal oxide nanomaterials. Abstracts of papers, 235th ACS national meeting, New Orleans, LA, United States, 6–10 Apr 2008, PHYS-504
456.
go back to reference Menth A, Stucki S (1979) Present state and outlook of the electrolytic hydrogen production route. Advances in Hydrogen Energy 1(Hydrogen Energy Syst., vol 1) pp 55–63 Menth A, Stucki S (1979) Present state and outlook of the electrolytic hydrogen production route. Advances in Hydrogen Energy 1(Hydrogen Energy Syst., vol 1) pp 55–63
457.
go back to reference Willner I, Steinberger-Willner B (1988) Solar hydrogen production through photobiological, photochemical, and photoelectrochemical assemblies. Int J Hydrogen Energy 13(10):593–604CrossRef Willner I, Steinberger-Willner B (1988) Solar hydrogen production through photobiological, photochemical, and photoelectrochemical assemblies. Int J Hydrogen Energy 13(10):593–604CrossRef
458.
go back to reference Benemann JR (1997) Feasibility analysis of photobiological hydrogen production. Int J Hydrogen Energy 22(10–11):979–987CrossRef Benemann JR (1997) Feasibility analysis of photobiological hydrogen production. Int J Hydrogen Energy 22(10–11):979–987CrossRef
459.
go back to reference Hallenbeck PC, Benemann JR (2002) Biological hydrogen production; fundamentals and limiting processes. Int J Hydrogen Energy 27(11–12):1185–1193CrossRef Hallenbeck PC, Benemann JR (2002) Biological hydrogen production; fundamentals and limiting processes. Int J Hydrogen Energy 27(11–12):1185–1193CrossRef
460.
go back to reference Das D, Khanna N, Veziroglu TN (2008) Recent developments in biological hydrogen production processes. Chem Ind Chem Eng Q 14(2):57–67CrossRef Das D, Khanna N, Veziroglu TN (2008) Recent developments in biological hydrogen production processes. Chem Ind Chem Eng Q 14(2):57–67CrossRef
461.
go back to reference Das D, Veziroglu TN (2007) Advances in biological hydrogen production processes. Al’ternativnaya Energetika i Ekologiya 7:72–84 Das D, Veziroglu TN (2007) Advances in biological hydrogen production processes. Al’ternativnaya Energetika i Ekologiya 7:72–84
462.
go back to reference Akano T, Miura Y, Fukatsu K, Miyasaka H, Ikuta Y, Matsumoto H, Hamasaki A, Shioji N, Mizoguchi T, et al. (1996) Hydrogen production by photosynthetic microorganisms. Applied Biochemistry and Biotechnology 57/58(Seventeenth Symposium on Biotechnology for Fuels and Chemicals, 1995), pp 677–688 Akano T, Miura Y, Fukatsu K, Miyasaka H, Ikuta Y, Matsumoto H, Hamasaki A, Shioji N, Mizoguchi T, et al. (1996) Hydrogen production by photosynthetic microorganisms. Applied Biochemistry and Biotechnology 57/58(Seventeenth Symposium on Biotechnology for Fuels and Chemicals, 1995), pp 677–688
463.
go back to reference Akkerman I, Janssen M, Rocha J, Wijffels RH (2002) Photobiological hydrogen production: photochemical efficiency and bioreactor design. Int J Hydrogen Energy 27(11–12): 1195–1208CrossRef Akkerman I, Janssen M, Rocha J, Wijffels RH (2002) Photobiological hydrogen production: photochemical efficiency and bioreactor design. Int J Hydrogen Energy 27(11–12): 1195–1208CrossRef
464.
go back to reference Anon (2009) An improved photobioreactor design for photobiological hydrogen production. Biotechnol Bioeng 104(1): fmv Anon (2009) An improved photobioreactor design for photobiological hydrogen production. Biotechnol Bioeng 104(1): fmv
465.
go back to reference Asada Y (1996) Photobiological hydrogen production-state of the art with special reference to IEA’s hydrogen program. In: Hydrogen energy progress XI, Proceedings of the world hydrogen energy conference, 11th, Stuttgart, 23–28 June 1996, vol 1, pp 403–406 Asada Y (1996) Photobiological hydrogen production-state of the art with special reference to IEA’s hydrogen program. In: Hydrogen energy progress XI, Proceedings of the world hydrogen energy conference, 11th, Stuttgart, 23–28 June 1996, vol 1, pp 403–406
466.
go back to reference Asada Y, Miyake J (1999) Photobiological hydrogen production. J Biosci Bioeng 88(1):1–6CrossRef Asada Y, Miyake J (1999) Photobiological hydrogen production. J Biosci Bioeng 88(1):1–6CrossRef
467.
go back to reference Benemann JR (1994) Feasibility analysis of photobiological hydrogen production. In: Hydrogen energy progress X, Proceedings of the world hydrogen energy conference, 10th, vol 2, pp 931–940 Benemann JR (1994) Feasibility analysis of photobiological hydrogen production. In: Hydrogen energy progress X, Proceedings of the world hydrogen energy conference, 10th, vol 2, pp 931–940
468.
go back to reference Benemann JR (1994) Photobiological hydrogen production. In: Proceedings of the intersociety energy conversion engineering conference 29TH(PT. 4), pp 1636–1640 Benemann JR (1994) Photobiological hydrogen production. In: Proceedings of the intersociety energy conversion engineering conference 29TH(PT. 4), pp 1636–1640
469.
go back to reference Blake DM, Amos WA, Ghirardi ML, Seibert M (2008) Materials requirements for photobiological hydrogen production. In: Thomas GJ, Jones RH (eds) Materials for the hydrogen economy. CRC, Boca Raton, pp 123–145 Blake DM, Amos WA, Ghirardi ML, Seibert M (2008) Materials requirements for photobiological hydrogen production. In: Thomas GJ, Jones RH (eds) Materials for the hydrogen economy. CRC, Boca Raton, pp 123–145
470.
go back to reference Carlozzi P, Lambardi M (2009) Fed-batch operation for bio-H2 production by Rhodopseudomonas palustris (strain 42OL). Renewable Energy 34(12):2577–2584CrossRef Carlozzi P, Lambardi M (2009) Fed-batch operation for bio-H2 production by Rhodopseudomonas palustris (strain 42OL). Renewable Energy 34(12):2577–2584CrossRef
471.
go back to reference Dawar S, Masukawa H, Mohanty P, Sakurai H (2006) Prospects of biohydrogen production using cyanobacteria – an overview. Proc Indian Natl Sci Acad 72(4):213–223 Dawar S, Masukawa H, Mohanty P, Sakurai H (2006) Prospects of biohydrogen production using cyanobacteria – an overview. Proc Indian Natl Sci Acad 72(4):213–223
472.
go back to reference Dickson DJ, Page CJ, Ely RL (2009) Photobiological hydrogen production from Synechocystis sp. PCC 6803 encapsulated in silica sol-gel. Int J Hydrogen Energy 34(1):204–215 Dickson DJ, Page CJ, Ely RL (2009) Photobiological hydrogen production from Synechocystis sp. PCC 6803 encapsulated in silica sol-gel. Int J Hydrogen Energy 34(1):204–215
473.
go back to reference Gaudernack B (1998) Photoproduction of hydrogen. Annex 10 of the IEA Hydrogen Program. In: Hydrogen energy progress XII, Proceedings of the world hydrogen energy conference, 12th, Buenos Aires, 21–26 June 1998, vol 3, pp 2011–2023 Gaudernack B (1998) Photoproduction of hydrogen. Annex 10 of the IEA Hydrogen Program. In: Hydrogen energy progress XII, Proceedings of the world hydrogen energy conference, 12th, Buenos Aires, 21–26 June 1998, vol 3, pp 2011–2023
474.
go back to reference Ghirardi ML (2007) Hydrogenases as catalysts for renewable hydrogen production. Abstracts of papers, 233rd ACS national meeting, Chicago, IL, United States, 25–29 Mar 2007, INOR-482 Ghirardi ML (2007) Hydrogenases as catalysts for renewable hydrogen production. Abstracts of papers, 233rd ACS national meeting, Chicago, IL, United States, 25–29 Mar 2007, INOR-482
475.
go back to reference Ghirardi ML (2007) Photobiological and bio-hybrid hydrogen production based on the activity of hydrogenase enzymes. Abstracts of papers, 233rd ACS national meeting, Chicago, IL, United States, 25–29 March 2007, PHYS-114 Ghirardi ML (2007) Photobiological and bio-hybrid hydrogen production based on the activity of hydrogenase enzymes. Abstracts of papers, 233rd ACS national meeting, Chicago, IL, United States, 25–29 March 2007, PHYS-114
476.
go back to reference Ghirardi ML, Cohen J, King P, Schulten K, Kim K, Seibert M (2006) [FeFe]-hydrogenases and photobiological hydrogen production. In: Proceedings of SPIE-The International Society for Optical Engineering 6340(Solar Hydrogen and Nanotechnology): 63400X/1-63400X/6 Ghirardi ML, Cohen J, King P, Schulten K, Kim K, Seibert M (2006) [FeFe]-hydrogenases and photobiological hydrogen production. In: Proceedings of SPIE-The International Society for Optical Engineering 6340(Solar Hydrogen and Nanotechnology): 63400X/1-63400X/6
477.
go back to reference Ghirardi ML, Dubini A, Yu J, Maness P-C (2009) Photobiological hydrogen-producing systems. Chem Soc Rev 38(1):52–61CrossRef Ghirardi ML, Dubini A, Yu J, Maness P-C (2009) Photobiological hydrogen-producing systems. Chem Soc Rev 38(1):52–61CrossRef
478.
go back to reference Ghirardi ML, Kosourov S, Seibert M (2001) Cyclic photobiological algal H2-production. In: Proceedings of the 2001 US DOE hydrogen program review, Baltimore, MD, United States, 17–19 Apr 2001, pp 67–76 Ghirardi ML, Kosourov S, Seibert M (2001) Cyclic photobiological algal H2-production. In: Proceedings of the 2001 US DOE hydrogen program review, Baltimore, MD, United States, 17–19 Apr 2001, pp 67–76
479.
go back to reference Hemschemeier A, Melis A, Happe T (2009) Analytical approaches to photobiological hydrogen production in unicellular green algae. Photosynth Res 102(2–3):523–540CrossRef Hemschemeier A, Melis A, Happe T (2009) Analytical approaches to photobiological hydrogen production in unicellular green algae. Photosynth Res 102(2–3):523–540CrossRef
480.
go back to reference Ikuta Y, Akano T, Shioji N, Maeda I (1998) Hydrogen production by photosynthetic microorganisms. In: BioHydrogen, [Proceedings of an international conference on biological hydrogen production], Waikoloa, HI, 23–26 June 1997, pp 319–328 Ikuta Y, Akano T, Shioji N, Maeda I (1998) Hydrogen production by photosynthetic microorganisms. In: BioHydrogen, [Proceedings of an international conference on biological hydrogen production], Waikoloa, HI, 23–26 June 1997, pp 319–328
481.
go back to reference Juantorena AU, Sebastian PJ, Santoyo E, Gamboa SA, Lastres OD, Sanchez-Escamilla D, Bustos A, Eapen D (2007) Hydrogen production employing Spirulina maxima 2342: a chemical analysis. Int J Hydrogen Energy 32(15):3133–3136CrossRef Juantorena AU, Sebastian PJ, Santoyo E, Gamboa SA, Lastres OD, Sanchez-Escamilla D, Bustos A, Eapen D (2007) Hydrogen production employing Spirulina maxima 2342: a chemical analysis. Int J Hydrogen Energy 32(15):3133–3136CrossRef
482.
go back to reference Masukawa H, Nakamura K, Mochimaru M, Sakurai H (2001) Photobiological hydrogen production and nitrogenase activity in some heterocystous cyanobacteria. Biohydrogen II: an approach to environmentally acceptable technology [Workshop on Biohydrogen], 2nd, Tsukuba, Japan, June 1999, pp 63–66 Masukawa H, Nakamura K, Mochimaru M, Sakurai H (2001) Photobiological hydrogen production and nitrogenase activity in some heterocystous cyanobacteria. Biohydrogen II: an approach to environmentally acceptable technology [Workshop on Biohydrogen], 2nd, Tsukuba, Japan, June 1999, pp 63–66
483.
go back to reference Melandri BA, Zannoni D, Casadio R, De Santis A (1985) Photobiological hydrogen production by facultative photosynthetic bacteria. Inst. Bot Univ Bologna, Bologna Melandri BA, Zannoni D, Casadio R, De Santis A (1985) Photobiological hydrogen production by facultative photosynthetic bacteria. Inst. Bot Univ Bologna, Bologna
484.
go back to reference Melis A, Melnicki MR (2006) Integrated biological hydrogen production. Int J Hydrogen Energy 31(11):1563–1573CrossRef Melis A, Melnicki MR (2006) Integrated biological hydrogen production. Int J Hydrogen Energy 31(11):1563–1573CrossRef
485.
go back to reference Ogbonna JC, Tanaka H (2001) Photobioreactor design for photobiological production of hydrogen. Biohydrogen II: an approach to environmentally acceptable technology, [Workshop on Biohydrogen], 2nd, Tsukuba, Japan, June 1999, pp 245–261 Ogbonna JC, Tanaka H (2001) Photobioreactor design for photobiological production of hydrogen. Biohydrogen II: an approach to environmentally acceptable technology, [Workshop on Biohydrogen], 2nd, Tsukuba, Japan, June 1999, pp 245–261
486.
go back to reference Prince R, Kheshgi H (2005) The photobiological production of hydrogen: potential efficiency and effectiveness as a renewable fuel. Crit Rev Microbiol 31(1):19–31CrossRef Prince R, Kheshgi H (2005) The photobiological production of hydrogen: potential efficiency and effectiveness as a renewable fuel. Crit Rev Microbiol 31(1):19–31CrossRef
487.
go back to reference Raghavendra AS, Vallejos RH (1980) Photobiological production of hydrogen. Proc Int Symp Biol Appl Sol Energy: 193–195 Raghavendra AS, Vallejos RH (1980) Photobiological production of hydrogen. Proc Int Symp Biol Appl Sol Energy: 193–195
488.
go back to reference Rai AN, Soderback E, Bergman B (2000) Tansley review no. 116: Cyanobacterium-plant symbioses. New Phytol 147(3):449–481 Rai AN, Soderback E, Bergman B (2000) Tansley review no. 116: Cyanobacterium-plant symbioses. New Phytol 147(3):449–481
489.
go back to reference Sakurai H, Masukawa H, Dawar S, Yoshino F (2004) Photobiological hydrogen production by cyanobacteria utilizing nitrogenase systems: present status and future development. Biohydrogen III: renewable energy system by biological solar energy conversion, [International Symposium on Biohydrogen], 3rd, Kyoto, Japan, Oct 2002, pp 83–92 Sakurai H, Masukawa H, Dawar S, Yoshino F (2004) Photobiological hydrogen production by cyanobacteria utilizing nitrogenase systems: present status and future development. Biohydrogen III: renewable energy system by biological solar energy conversion, [International Symposium on Biohydrogen], 3rd, Kyoto, Japan, Oct 2002, pp 83–92
490.
go back to reference Sasikala C, Ramana CV, Rao PR, Venkataraman LV (1996) Hydrogen by bio-routes: a perspective. Proc Natl Acad Sci India B Biol Sci 66(1):1–20 Sasikala C, Ramana CV, Rao PR, Venkataraman LV (1996) Hydrogen by bio-routes: a perspective. Proc Natl Acad Sci India B Biol Sci 66(1):1–20
491.
go back to reference Schutz K, Happe T, Troshina O, Lindblad P, Leitao E, Oliveira P, Tamagnini P (2004) Cyanobacterial H(2) production – a comparative analysis. Planta 218(3):350–359CrossRef Schutz K, Happe T, Troshina O, Lindblad P, Leitao E, Oliveira P, Tamagnini P (2004) Cyanobacterial H(2) production – a comparative analysis. Planta 218(3):350–359CrossRef
492.
go back to reference Seibert M, Lien S, Weaver PF (1979) Photobiological hydrogen production. Sol Energy Res Inst, Golden Seibert M, Lien S, Weaver PF (1979) Photobiological hydrogen production. Sol Energy Res Inst, Golden
493.
go back to reference Seibert M, Lien S, Weaver PF (1980) Photobiological hydrogen production. Proc Jt US/USSR Conf Microb Enzyme React Proj US/USSR Jt Work Group Prod Subst Microbiol Means, 5th, pp 480–498 Seibert M, Lien S, Weaver PF (1980) Photobiological hydrogen production. Proc Jt US/USSR Conf Microb Enzyme React Proj US/USSR Jt Work Group Prod Subst Microbiol Means, 5th, pp 480–498
494.
go back to reference Seibert M, Lien S, Weaver PF, Janzen AF (1981) Photobiological production of hydrogen and electricity. Sol Energy Convers 2 [Two], Sel Lect Int Symp Sol Energy Util, pp 273–292 Seibert M, Lien S, Weaver PF, Janzen AF (1981) Photobiological production of hydrogen and electricity. Sol Energy Convers 2 [Two], Sel Lect Int Symp Sol Energy Util, pp 273–292
495.
go back to reference Tramm-Werner S, Hackethal M, Weng M, Hartmeier W (1996) Photobiological hydrogen production using a new plate loop reactor. In: Hydrogen energy progress XI, Proceedings of the world hydrogen energy conference, 11th, Stuttgart, 23–28 June 1996, vol 3, pp 2407–2416 Tramm-Werner S, Hackethal M, Weng M, Hartmeier W (1996) Photobiological hydrogen production using a new plate loop reactor. In: Hydrogen energy progress XI, Proceedings of the world hydrogen energy conference, 11th, Stuttgart, 23–28 June 1996, vol 3, pp 2407–2416
496.
go back to reference Tramm-Werner S, Weng M, Hartmeier W, Modigell M (1996) Photobiological hydrogen production using immobilized Rhodobacteria: biofilm formation in a loop reactor. In: Biomass for energy and the environment, Proceedings of the European Bioenergy Conference, 9th, Copenhagen, 24–27 June 1996, vol 3, pp 1674–1679 Tramm-Werner S, Weng M, Hartmeier W, Modigell M (1996) Photobiological hydrogen production using immobilized Rhodobacteria: biofilm formation in a loop reactor. In: Biomass for energy and the environment, Proceedings of the European Bioenergy Conference, 9th, Copenhagen, 24–27 June 1996, vol 3, pp 1674–1679
497.
go back to reference Weaver P, Lien S, Seibert M (1979) Photobiological production of hydrogen: a solar energy conversion option. Sol Energy Res Inst Golden, CO, USA, Report No. SERI/TR-33-122 Weaver P, Lien S, Seibert M (1979) Photobiological production of hydrogen: a solar energy conversion option. Sol Energy Res Inst Golden, CO, USA, Report No. SERI/TR-33-122
498.
go back to reference Weaver PF, Lien S, Seibert M (1980) Photobiological production of hydrogen. Sol Energy 24(1):3–45CrossRef Weaver PF, Lien S, Seibert M (1980) Photobiological production of hydrogen. Sol Energy 24(1):3–45CrossRef
499.
go back to reference Wuenschiers R (2003) Photobiological hydrogen metabolism and hydrogenases from green algae. In: Nalwa HS (ed) Handbook of photochemistry and photobiology, vol 4. American Scientific Publishers, North Lewis Way, pp 353–382 Wuenschiers R (2003) Photobiological hydrogen metabolism and hydrogenases from green algae. In: Nalwa HS (ed) Handbook of photochemistry and photobiology, vol 4. American Scientific Publishers, North Lewis Way, pp 353–382
500.
go back to reference Gaffron H, Rubin J (1942) Fermentative and photochemical production of hydrogen in algae. The Journal of General Physiology 26(2):219–240CrossRef Gaffron H, Rubin J (1942) Fermentative and photochemical production of hydrogen in algae. The Journal of General Physiology 26(2):219–240CrossRef
501.
go back to reference Miyamoto K (1997) Renewable biological systems for alternative sustainable energy production (FAO agricultural services bulletin - 128). FAO – Food and Agriculture Organization of the United Nations, Rome. ISBN 92-5-104059-1 Miyamoto K (1997) Renewable biological systems for alternative sustainable energy production (FAO agricultural services bulletin - 128). FAO – Food and Agriculture Organization of the United Nations, Rome. ISBN 92-5-104059-1
502.
go back to reference Fujishima A, Honda K (1971) Verification of the photo senitized electrolytic oxidation of TiO2 electrode by pH measurement. J Chem Soc Japan 74:355–360 Fujishima A, Honda K (1971) Verification of the photo senitized electrolytic oxidation of TiO2 electrode by pH measurement. J Chem Soc Japan 74:355–360
503.
go back to reference Arakawa H, Shiraishi C, Takeuchi A, Yamaguchi T (2006) Solar hydrogen production by water splitting using TiO2 based photoelectrodes. In: Proceedings of SPIE-The International Society for Optical Engineering 6340(Solar Hydrogen and Nanotechnology): 63400G/1-63400G/14 Arakawa H, Shiraishi C, Takeuchi A, Yamaguchi T (2006) Solar hydrogen production by water splitting using TiO2 based photoelectrodes. In: Proceedings of SPIE-The International Society for Optical Engineering 6340(Solar Hydrogen and Nanotechnology): 63400G/1-63400G/14
504.
go back to reference Augustynski J, Calzaferri G, Courvoisier JC, Gratzel M (1996) Photoelectrochemical hydrogen production: state of the art with special reference to IEA’s Hydrogen Program. In: Hydrogen Energy Progress XI, Proceedings of the World Hydrogen Energy Conference, 11th, Stuttgart, 23–28 June 1996 vol 3, pp 2379–2387 Augustynski J, Calzaferri G, Courvoisier JC, Gratzel M (1996) Photoelectrochemical hydrogen production: state of the art with special reference to IEA’s Hydrogen Program. In: Hydrogen Energy Progress XI, Proceedings of the World Hydrogen Energy Conference, 11th, Stuttgart, 23–28 June 1996 vol 3, pp 2379–2387
505.
go back to reference Bandara J, Udawatta CPK, Rajapakse CSK (2005) Highly stable CuO incorporated TiO2 catalyst for photocatalytic hydrogen production from H2O. Photochem Photobiol Sci 4(11):857–861CrossRef Bandara J, Udawatta CPK, Rajapakse CSK (2005) Highly stable CuO incorporated TiO2 catalyst for photocatalytic hydrogen production from H2O. Photochem Photobiol Sci 4(11):857–861CrossRef
506.
go back to reference Best JP, Dunstan DE (2009) Nanotechnology for photolytic hydrogen production: colloidal anodic oxidation. Int J Hydrogen Energy 34(18):7562–7578CrossRef Best JP, Dunstan DE (2009) Nanotechnology for photolytic hydrogen production: colloidal anodic oxidation. Int J Hydrogen Energy 34(18):7562–7578CrossRef
507.
go back to reference Broda E (1978) Hydrogen production through solar radiation by means of water photolysis in membranes. Int J Hydrogen Energy 3(1):119–121CrossRef Broda E (1978) Hydrogen production through solar radiation by means of water photolysis in membranes. Int J Hydrogen Energy 3(1):119–121CrossRef
508.
go back to reference Caramori S, Cristino V, Argazzi R, Meda L, Bignozzi CA (2010) Photoelectrochemical behavior of sensitized TiO2 photoanodes in an aqueous environment: application to hydrogen production. Inorg Chem (Washington, DC, USA) 49(7):3320–3328 Caramori S, Cristino V, Argazzi R, Meda L, Bignozzi CA (2010) Photoelectrochemical behavior of sensitized TiO2 photoanodes in an aqueous environment: application to hydrogen production. Inorg Chem (Washington, DC, USA) 49(7):3320–3328
509.
go back to reference Chiarello GL, Forni L, Selli E (2009) Photocatalytic hydrogen production by liquid- and gas-phase reforming of CH3OH over flame-made TiO2 and Au/TiO2. Catal Today 144(1–2): 69–74CrossRef Chiarello GL, Forni L, Selli E (2009) Photocatalytic hydrogen production by liquid- and gas-phase reforming of CH3OH over flame-made TiO2 and Au/TiO2. Catal Today 144(1–2): 69–74CrossRef
510.
go back to reference Chung K-H, Park D-C (1996) Water photolysis reaction on cerium oxide photocatalysts. Catal Today 30(1–3):157–162CrossRef Chung K-H, Park D-C (1996) Water photolysis reaction on cerium oxide photocatalysts. Catal Today 30(1–3):157–162CrossRef
511.
go back to reference Dholam R, Patel N, Adami M, Miotello A (2009) Hydrogen production by photocatalytic water-splitting using Cr- or Fe-doped TiO2 composite thin films photocatalyst. Int J Hydrogen Energy 34(13):5337–5346CrossRef Dholam R, Patel N, Adami M, Miotello A (2009) Hydrogen production by photocatalytic water-splitting using Cr- or Fe-doped TiO2 composite thin films photocatalyst. Int J Hydrogen Energy 34(13):5337–5346CrossRef
512.
go back to reference Berr M, Vaneski A, Susha A, Rodriguez-Fernandez J, Doblinger M, Jackel F, Rogach AL, Feldmann J (2010) Colloidal CdS nanorods decorated with subnanometer sized Pt clusters for photocatalyti hydrogen generation. Appl Phys Lett 97(9):093108–093111CrossRef Berr M, Vaneski A, Susha A, Rodriguez-Fernandez J, Doblinger M, Jackel F, Rogach AL, Feldmann J (2010) Colloidal CdS nanorods decorated with subnanometer sized Pt clusters for photocatalyti hydrogen generation. Appl Phys Lett 97(9):093108–093111CrossRef
513.
go back to reference Girginer B, Galli G, Chiellini E, Bicak N (2009) Preparation of stable CdS nanoparticles in aqueous medium and their hydrogen generation efficiencies in photolysis of water. Int J Hydrogen Energy 34(3):1176–1184CrossRef Girginer B, Galli G, Chiellini E, Bicak N (2009) Preparation of stable CdS nanoparticles in aqueous medium and their hydrogen generation efficiencies in photolysis of water. Int J Hydrogen Energy 34(3):1176–1184CrossRef
514.
go back to reference Ikuma Y, Bessho H (2007) Effect of Pt concentration on the production of hydrogen by a TiO2 photocatalyst. Int J Hydrogen Energy 32(14):2689–2692CrossRef Ikuma Y, Bessho H (2007) Effect of Pt concentration on the production of hydrogen by a TiO2 photocatalyst. Int J Hydrogen Energy 32(14):2689–2692CrossRef
515.
go back to reference Ingler WB Jr, Naseem A (2010) Indium oxide/indium iron oxide thin films for photoelectrochemical hydrogen production with a-silicon solar cells. J Mater Res 25(1):25–31CrossRef Ingler WB Jr, Naseem A (2010) Indium oxide/indium iron oxide thin films for photoelectrochemical hydrogen production with a-silicon solar cells. J Mater Res 25(1):25–31CrossRef
516.
go back to reference Jang JS, Choi SH, Kim DH, Jang JW, Lee KS, Lee JS (2009) Enhanced photocatalytic hydrogen production from water-methanol solution by nickel intercalated into titanate nanotube. J Phys Chem C 113(20):8990–8996CrossRef Jang JS, Choi SH, Kim DH, Jang JW, Lee KS, Lee JS (2009) Enhanced photocatalytic hydrogen production from water-methanol solution by nickel intercalated into titanate nanotube. J Phys Chem C 113(20):8990–8996CrossRef
517.
go back to reference Jang JS, Hwang DW, Lee JS (2007) CdS-AgGaS2 photocatalytic diodes for hydrogen production from aqueous Na2S/Na2SO3 electrolyte solution under visible light (l > = 420 nm). Catal Today 120(2):174–181CrossRef Jang JS, Hwang DW, Lee JS (2007) CdS-AgGaS2 photocatalytic diodes for hydrogen production from aqueous Na2S/Na2SO3 electrolyte solution under visible light (l > = 420 nm). Catal Today 120(2):174–181CrossRef
518.
go back to reference Jang JS, Ji SM, Bae SW, Son HC, Lee JS (2007) Optimization of CdS/TiO2 nano-bulk composite photocatalysts for hydrogen production from Na2S/Na2SO3 aqueous electrolyte solution under visible light (l > = 420 nm). J Photochem Photobiol, A 188(1):112–119CrossRef Jang JS, Ji SM, Bae SW, Son HC, Lee JS (2007) Optimization of CdS/TiO2 nano-bulk composite photocatalysts for hydrogen production from Na2S/Na2SO3 aqueous electrolyte solution under visible light (l > = 420 nm). J Photochem Photobiol, A 188(1):112–119CrossRef
519.
go back to reference Jang JS, Kim HG, Joshi UA, Jang JW, Lee JS (2008) Fabrication of CdS nanowires decorated with TiO2 nanoparticles for photocatalytic hydrogen production under visible light irradiation. Int J Hydrogen Energy 33(21):5975–5980CrossRef Jang JS, Kim HG, Joshi UA, Jang JW, Lee JS (2008) Fabrication of CdS nanowires decorated with TiO2 nanoparticles for photocatalytic hydrogen production under visible light irradiation. Int J Hydrogen Energy 33(21):5975–5980CrossRef
520.
go back to reference Jing D, Guo L (2007) WS2 sensitized mesoporous TiO2 for efficient photocatalytic hydrogen production from water under visible light irradiation. Catal Commun 8(5):795–799MathSciNetCrossRef Jing D, Guo L (2007) WS2 sensitized mesoporous TiO2 for efficient photocatalytic hydrogen production from water under visible light irradiation. Catal Commun 8(5):795–799MathSciNetCrossRef
521.
go back to reference Kanade KG, Baeg J-O, Kong K-j, Kale BB, Lee SM, Moon S-J (2008) A novel nanostructured semiconductor photocatalyst for solar hydrogen production. In: Proceedings of SPIE 7044(Solar Hydrogen and Nanotechnology III): 70440O/1-70440O/11 Kanade KG, Baeg J-O, Kong K-j, Kale BB, Lee SM, Moon S-J (2008) A novel nanostructured semiconductor photocatalyst for solar hydrogen production. In: Proceedings of SPIE 7044(Solar Hydrogen and Nanotechnology III): 70440O/1-70440O/11
522.
go back to reference Kanade KG, Kale BB, Baeg J-O, Lee SM, Lee CW, Moon S-J, Chang H (2007) Self-assembled aligned Cu doped ZnO nanoparticles for photocatalytic hydrogen production under visible light irradiation. Mater Chem Phys 102(1):98–104CrossRef Kanade KG, Kale BB, Baeg J-O, Lee SM, Lee CW, Moon S-J, Chang H (2007) Self-assembled aligned Cu doped ZnO nanoparticles for photocatalytic hydrogen production under visible light irradiation. Mater Chem Phys 102(1):98–104CrossRef
523.
go back to reference Kawai T, Sakata T (1980) Photocatalytic hydrogen production from liquid methanol and water. J Chem Soc, Chem Commun 15:694–695CrossRef Kawai T, Sakata T (1980) Photocatalytic hydrogen production from liquid methanol and water. J Chem Soc, Chem Commun 15:694–695CrossRef
524.
go back to reference Kiwi J (1980) Hydrogen and oxygen production via redox catalysis in colloidal systems. Isr J Chem 18(3–4):369–374 Kiwi J (1980) Hydrogen and oxygen production via redox catalysis in colloidal systems. Isr J Chem 18(3–4):369–374
525.
go back to reference Kiwi J, Gratzel M (1979) Hydrogen evolution from water induced by visible light mediated by redox catalysis. Nature(London, UK) 281(5733):657–658 Kiwi J, Gratzel M (1979) Hydrogen evolution from water induced by visible light mediated by redox catalysis. Nature(London, UK) 281(5733):657–658
526.
go back to reference Krishna Reddy J, Suresh G, Hymavathi CH, Durga Kumari V, Subrahmanyam M (2009) Ce (III) species supported zeolites as novel photocatalysts for hydrogen production from water. Catal Today 141(1–2):89–93CrossRef Krishna Reddy J, Suresh G, Hymavathi CH, Durga Kumari V, Subrahmanyam M (2009) Ce (III) species supported zeolites as novel photocatalysts for hydrogen production from water. Catal Today 141(1–2):89–93CrossRef
527.
go back to reference Kryukov AI, Smirnova NP, Korzhak AV, Eremenko AM, Kuchmii SY (1997) Photocatalysis of reaction of hydrogen production by cadmium and zinc sulfide nanoparticles incorporated into silicate matrixes. Theor Exp Chem(Translation of Teoreticheskaya i Eksperimental’naya Khimiya) 33(1):30–33 Kryukov AI, Smirnova NP, Korzhak AV, Eremenko AM, Kuchmii SY (1997) Photocatalysis of reaction of hydrogen production by cadmium and zinc sulfide nanoparticles incorporated into silicate matrixes. Theor Exp Chem(Translation of Teoreticheskaya i Eksperimental’naya Khimiya) 33(1):30–33
528.
go back to reference Kwak BS, Chae J, Kim J, Kang M (2009) Enhanced hydrogen production from methanol/water photo-splitting in TiO2 including Pd component. Bull Korean Chem Soc 30(5):1047–1053CrossRef Kwak BS, Chae J, Kim J, Kang M (2009) Enhanced hydrogen production from methanol/water photo-splitting in TiO2 including Pd component. Bull Korean Chem Soc 30(5):1047–1053CrossRef
529.
go back to reference Lee SG, Kim J-H, Lee S, Lee H-I (2001) Photochemical production of hydrogen from alkaline solution containing polysulfide dyes. Korean J Chem Eng 18(6):894–897CrossRef Lee SG, Kim J-H, Lee S, Lee H-I (2001) Photochemical production of hydrogen from alkaline solution containing polysulfide dyes. Korean J Chem Eng 18(6):894–897CrossRef
530.
go back to reference Li Y, Ma G, Peng S, Lu G, Li S (2009) Photocatalytic H2 evolution over basic zincoxysulfide (ZnS1-x-0.5yOx(OH)y) under visible light irradiation. Appl Catal A Gen 363(1–2):180–187 Li Y, Ma G, Peng S, Lu G, Li S (2009) Photocatalytic H2 evolution over basic zincoxysulfide (ZnS1-x-0.5yOx(OH)y) under visible light irradiation. Appl Catal A Gen 363(1–2):180–187
531.
go back to reference Liu Y, Guo L, Yan W, Liu H (2006) A composite visible-light photocatalyst for hydrogen production. J Power Sources 159(2):1300–1304CrossRef Liu Y, Guo L, Yan W, Liu H (2006) A composite visible-light photocatalyst for hydrogen production. J Power Sources 159(2):1300–1304CrossRef
532.
go back to reference Liu Y, Xie L, Li Y, Yang R, Qu J, Li Y, Li X (2008) Synthesis and high photocatalytic hydrogen production of SrTiO3 nanoparticles from water splitting under UV irradiation. J Power Sources 183(2):701–707CrossRef Liu Y, Xie L, Li Y, Yang R, Qu J, Li Y, Li X (2008) Synthesis and high photocatalytic hydrogen production of SrTiO3 nanoparticles from water splitting under UV irradiation. J Power Sources 183(2):701–707CrossRef
533.
go back to reference Nann T, Ibrahim SK, Woi P-M, Xu S, Ziegler J, Pickett CJ (2010) Water splitting by visible light: a nanophotocathode for hydrogen production. Angew Chem Int Ed 49(9):1574–1577 Nann T, Ibrahim SK, Woi P-M, Xu S, Ziegler J, Pickett CJ (2010) Water splitting by visible light: a nanophotocathode for hydrogen production. Angew Chem Int Ed 49(9):1574–1577
534.
go back to reference Navarro Yerga RM, Alvarez Galvan MC, del Valle F, Villoria de la Mano JA, Fierro JLG (2009) Water splitting on semiconductor catalysts under visible-light irradiation. ChemSusChem 2(6):471–485CrossRef Navarro Yerga RM, Alvarez Galvan MC, del Valle F, Villoria de la Mano JA, Fierro JLG (2009) Water splitting on semiconductor catalysts under visible-light irradiation. ChemSusChem 2(6):471–485CrossRef
535.
go back to reference Park H, Choi W, Hoffmann MR (2008) Effects of the preparation method of the ternary CdS/TiO2/Pt hybrid photocatalysts on visible light-induced hydrogen production. J Mater Chem 18(20):2379–2385CrossRef Park H, Choi W, Hoffmann MR (2008) Effects of the preparation method of the ternary CdS/TiO2/Pt hybrid photocatalysts on visible light-induced hydrogen production. J Mater Chem 18(20):2379–2385CrossRef
536.
go back to reference Paulauskas IE, Katz JE, Jellison GE, Lewis NS, Boatner LA (2008) Photoelectrochemical studies of semiconducting photoanodes for hydrogen production via water dissociation. Thin Solid Films 516(22):8175–8178CrossRef Paulauskas IE, Katz JE, Jellison GE, Lewis NS, Boatner LA (2008) Photoelectrochemical studies of semiconducting photoanodes for hydrogen production via water dissociation. Thin Solid Films 516(22):8175–8178CrossRef
537.
go back to reference Rocheleau RE, Miller E, Misra A (1996) Photoelectrochemical hydrogen production. In: Proceedings of the US DOE Hydrogen Program Review, Miami, 1–2 May 1996, vol 1, pp 345–357 Rocheleau RE, Miller E, Misra A (1996) Photoelectrochemical hydrogen production. In: Proceedings of the US DOE Hydrogen Program Review, Miami, 1–2 May 1996, vol 1, pp 345–357
538.
go back to reference Rosseler O, Shankar MV, Du Karkmaz-Le M, Schmidlin L, Keller N, Keller V (2010) Solar light photocatalytic hydrogen production from water over Pt and Au/TiO2(anatase/rutile) photocatalysts: influence of noble metal and porogen promotion. J Catal 269(1):179–190CrossRef Rosseler O, Shankar MV, Du Karkmaz-Le M, Schmidlin L, Keller N, Keller V (2010) Solar light photocatalytic hydrogen production from water over Pt and Au/TiO2(anatase/rutile) photocatalysts: influence of noble metal and porogen promotion. J Catal 269(1):179–190CrossRef
539.
go back to reference Ryu SY, Balcerski W, Lee TK, Hoffmann MR (2007) Photocatalytic production of hydrogen from water with visible light using hybrid catalysts of CdS attached to microporous and mesoporous silicas. J Phys Chem C 111(49):18195–18203CrossRef Ryu SY, Balcerski W, Lee TK, Hoffmann MR (2007) Photocatalytic production of hydrogen from water with visible light using hybrid catalysts of CdS attached to microporous and mesoporous silicas. J Phys Chem C 111(49):18195–18203CrossRef
540.
go back to reference Sahu N, Upadhyay SN, Sinha ASK (2009) Kinetics of reduction of water to hydrogen by visible light on alumina supported Pt-CdS photocatalysts. Int J Hydrogen Energy 34(1):130–137CrossRef Sahu N, Upadhyay SN, Sinha ASK (2009) Kinetics of reduction of water to hydrogen by visible light on alumina supported Pt-CdS photocatalysts. Int J Hydrogen Energy 34(1):130–137CrossRef
541.
go back to reference Streich D, Astuti Y, Orlandi M, Schwartz L, Lomoth R, Hammarstroem L, Ott S (2010) High-turnover photochemical hydrogen production catalyzed by a model complex of the [FeFe]-hydrogenase active site. Chem Eur J 16(1):60–63, S/1-S/9 Streich D, Astuti Y, Orlandi M, Schwartz L, Lomoth R, Hammarstroem L, Ott S (2010) High-turnover photochemical hydrogen production catalyzed by a model complex of the [FeFe]-hydrogenase active site. Chem Eur J 16(1):60–63, S/1-S/9
542.
go back to reference Subramanian E, Baeg J-O, Lee SM, Moon S-J, K-j K (2008) Dissociation of H2S under visible light irradiation (l > = 420nm) with FeGaO3 photocatalysts for the production of hydrogen. Int J Hydrogen Energy 33(22):6586–6594CrossRef Subramanian E, Baeg J-O, Lee SM, Moon S-J, K-j K (2008) Dissociation of H2S under visible light irradiation (l > = 420nm) with FeGaO3 photocatalysts for the production of hydrogen. Int J Hydrogen Energy 33(22):6586–6594CrossRef
543.
go back to reference Tode R, Ebrahimi A, Fukumoto S, Iyatani K, Takeuchi M, Matsuoka M, Lee CH, Jiang C-S, Anpo M (2010) Photocatalytic decomposition of water on double-layered visible light-responsive TiO2 thin films prepared by a magnetron sputtering deposition method. Catal Lett 135(1–2):10–15CrossRef Tode R, Ebrahimi A, Fukumoto S, Iyatani K, Takeuchi M, Matsuoka M, Lee CH, Jiang C-S, Anpo M (2010) Photocatalytic decomposition of water on double-layered visible light-responsive TiO2 thin films prepared by a magnetron sputtering deposition method. Catal Lett 135(1–2):10–15CrossRef
544.
go back to reference Turner J, Sverdrup G, Mann MK, Maness P-C, Kroposki B, Ghirardi M, Evans RJ, Blake D (2008) Renewable hydrogen production. Int J Energy Res 32(5):379–407CrossRef Turner J, Sverdrup G, Mann MK, Maness P-C, Kroposki B, Ghirardi M, Evans RJ, Blake D (2008) Renewable hydrogen production. Int J Energy Res 32(5):379–407CrossRef
545.
go back to reference Villoria JA, Navarro Yerga RM, Al-Zahrani SM, Fierro JLG (2010) Photocatalytic hydrogen production on Cd1-xZnxS solid solutions under visible light: influence of thermal treatment. Ind Eng Chem Res 49(15):6854–6861CrossRef Villoria JA, Navarro Yerga RM, Al-Zahrani SM, Fierro JLG (2010) Photocatalytic hydrogen production on Cd1-xZnxS solid solutions under visible light: influence of thermal treatment. Ind Eng Chem Res 49(15):6854–6861CrossRef
546.
go back to reference Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti M (2009) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8(1):76–80CrossRef Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti M (2009) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8(1):76–80CrossRef
547.
go back to reference Wang Y, Zhang Z, Zhu Y, Li Z, Vajtai R, Ci L, Ajayan PM (2008) Nanostructured VO2 photocatalysts for hydrogen production. ACS Nano 2(7):1492–1496CrossRef Wang Y, Zhang Z, Zhu Y, Li Z, Vajtai R, Ci L, Ajayan PM (2008) Nanostructured VO2 photocatalysts for hydrogen production. ACS Nano 2(7):1492–1496CrossRef
548.
go back to reference Weidenkaff A, Nuesch P, Wokaun A, Reller A (1997) Mechanistic studies of the water-splitting reaction for producing solar hydrogen. Solid State Ionics 101–103(Pt. 2):915–922CrossRef Weidenkaff A, Nuesch P, Wokaun A, Reller A (1997) Mechanistic studies of the water-splitting reaction for producing solar hydrogen. Solid State Ionics 101–103(Pt. 2):915–922CrossRef
549.
go back to reference Werner HAF, Bauer R (1996) Hydrogen production by water photolysis using nitrilotriacetic acid as electron donor. J Photochem Photobiol, A 97(3):171–173CrossRef Werner HAF, Bauer R (1996) Hydrogen production by water photolysis using nitrilotriacetic acid as electron donor. J Photochem Photobiol, A 97(3):171–173CrossRef
550.
go back to reference Yan H, Yang J, Ma G, Wu G, Zong X, Lei Z, Shi J, Li C (2009) Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt-PdS/CdS photocatalyst. J Catal 266(2):165–168CrossRef Yan H, Yang J, Ma G, Wu G, Zong X, Lei Z, Shi J, Li C (2009) Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt-PdS/CdS photocatalyst. J Catal 266(2):165–168CrossRef
551.
go back to reference Yang H, Guo L, Yan W, Liu H (2006) A novel composite photocatalyst for water splitting hydrogen production. J Power Sources 159(2):1305–1309CrossRef Yang H, Guo L, Yan W, Liu H (2006) A novel composite photocatalyst for water splitting hydrogen production. J Power Sources 159(2):1305–1309CrossRef
552.
go back to reference Yuan Y, Zhang X, Liu L, Jiang X, Lv J, Li Z, Zou Z (2008) Synthesis and photocatalytic characterization of a new photocatalyst BaZrO3. Int J Hydrogen Energy 33(21):5941–5946CrossRef Yuan Y, Zhang X, Liu L, Jiang X, Lv J, Li Z, Zou Z (2008) Synthesis and photocatalytic characterization of a new photocatalyst BaZrO3. Int J Hydrogen Energy 33(21):5941–5946CrossRef
553.
go back to reference T-Raissi A, Block D (2004) Hydrogen: automotive fuel of the future. IEEE Power Energy 2(6):43 T-Raissi A, Block D (2004) Hydrogen: automotive fuel of the future. IEEE Power Energy 2(6):43
554.
go back to reference Sandrock G (2008) Overview of hydrogen storage: gas liquid and solid. DOE EERE/NIST joint workshop on combinatorial materials science for applications in energy (MCMC-14) NIST Combinatorial Center 5 Nov 2008. Zuttel A (2004) Hydrogen storage methods. Naturwissenschaften 91:157–172 Sandrock G (2008) Overview of hydrogen storage: gas liquid and solid. DOE EERE/NIST joint workshop on combinatorial materials science for applications in energy (MCMC-14) NIST Combinatorial Center 5 Nov 2008. Zuttel A (2004) Hydrogen storage methods. Naturwissenschaften 91:157–172
555.
go back to reference Aceves S, Berry G, Espinosa F, Ross T, Switzer V, Weisberg A, Ledesma-Orozco E (2008) Lawrence Livermore National Laboratory, Automotive cryogenic capable pressure vessels for compact, high dormancy (L)H2 storage, DOE Annual Hydrogen Program Merit Review, 10 June 2008 Aceves S, Berry G, Espinosa F, Ross T, Switzer V, Weisberg A, Ledesma-Orozco E (2008) Lawrence Livermore National Laboratory, Automotive cryogenic capable pressure vessels for compact, high dormancy (L)H2 storage, DOE Annual Hydrogen Program Merit Review, 10 June 2008
556.
go back to reference Mori D, Hirose K (2009) Recent challenges of hydrogen storage technologies for fuel cell vehicles. Int J Hydrogen Energy 34:4569–4574CrossRef Mori D, Hirose K (2009) Recent challenges of hydrogen storage technologies for fuel cell vehicles. Int J Hydrogen Energy 34:4569–4574CrossRef
557.
go back to reference QUANTUM Technologies WorldWide, Inc. Irvine, CA, USA QUANTUM Technologies WorldWide, Inc. Irvine, CA, USA
558.
go back to reference Anzulovic I (1992) Optimization of gaseous hydrogen storage system. Int J Hydrogen Energy 17(2):129–138CrossRef Anzulovic I (1992) Optimization of gaseous hydrogen storage system. Int J Hydrogen Energy 17(2):129–138CrossRef
559.
go back to reference Barthelemy H, Bryselbout J, Barbe C (1983) Testing methods to select steels for gaseous hydrogen storage and transport vessels. Cent Rech Claude-Delorme, Jouy en Josas, pp 366–377 Barthelemy H, Bryselbout J, Barbe C (1983) Testing methods to select steels for gaseous hydrogen storage and transport vessels. Cent Rech Claude-Delorme, Jouy en Josas, pp 366–377
560.
go back to reference Itoh Y, Tamura Y, Mitsuishi H, Watanabe S (2007) Numerical study of the thermal bahavior on fast filling of compressed gaseous hydrogen tanks. Society of Automotive Engineers, [Special publication] SP SP-2098(Applications of fuel cells in vehicles), pp 19–24 Itoh Y, Tamura Y, Mitsuishi H, Watanabe S (2007) Numerical study of the thermal bahavior on fast filling of compressed gaseous hydrogen tanks. Society of Automotive Engineers, [Special publication] SP SP-2098(Applications of fuel cells in vehicles), pp 19–24
561.
go back to reference Koroteev AS, Mironov VV, Smolyarov VA (2004) Perspectives in hydrogen use in means of transportation. Isjaee 1:5–13 Koroteev AS, Mironov VV, Smolyarov VA (2004) Perspectives in hydrogen use in means of transportation. Isjaee 1:5–13
563.
go back to reference Teitel R (1981) Hydrogen storage in glass microspheres. Brookhaven National Laboratories, Report No. BNL 51439 Teitel R (1981) Hydrogen storage in glass microspheres. Brookhaven National Laboratories, Report No. BNL 51439
564.
go back to reference Sass JP, Fesmire JE, Nagy ZF, Sojourner SJ, Morris DL, Augustynowicz SD (2008) Thermal performance comparison of glass microsphere and perlite insulation systems for liquid hydrogen storage tanks. In: AIP Conference Proceedings, vol 985(Advances in Cryogenic Engineering, vol 53B), pp 1375–1382 Sass JP, Fesmire JE, Nagy ZF, Sojourner SJ, Morris DL, Augustynowicz SD (2008) Thermal performance comparison of glass microsphere and perlite insulation systems for liquid hydrogen storage tanks. In: AIP Conference Proceedings, vol 985(Advances in Cryogenic Engineering, vol 53B), pp 1375–1382
565.
go back to reference Amaseder F, Krainz G (2006) Liquid hydrogen storage systems developed and manufactured for the first time for customer cars. Society of Automotive Engineers, [Special publication] SP SP-2009(Hydrogen IC Engines), pp 23–33 Amaseder F, Krainz G (2006) Liquid hydrogen storage systems developed and manufactured for the first time for customer cars. Society of Automotive Engineers, [Special publication] SP SP-2009(Hydrogen IC Engines), pp 23–33
566.
go back to reference Emans M, Mori D, Krainz G (2006) Analysis of back-gas behaviour of an automotive liquid hydrogen storage system during refilling at the filling station. In: CryoPrague 2006, Multiconference, Proceedings, Praha, Czech Republic, 17–21 July 2006: 186/1–186/5 Emans M, Mori D, Krainz G (2006) Analysis of back-gas behaviour of an automotive liquid hydrogen storage system during refilling at the filling station. In: CryoPrague 2006, Multiconference, Proceedings, Praha, Czech Republic, 17–21 July 2006: 186/1–186/5
567.
go back to reference Furuhama S, Sakurai T, Shindo M (1993) Study of evaporation loss of liquid hydrogen storage tank with LH2 pump. Int J Hydrogen Energy 18(1):25–30CrossRef Furuhama S, Sakurai T, Shindo M (1993) Study of evaporation loss of liquid hydrogen storage tank with LH2 pump. Int J Hydrogen Energy 18(1):25–30CrossRef
568.
go back to reference Hedayat A, Hastings LJ, Bryant C, Plachta DW (2002) Large scale demonstration of liquid hydrogen storage with zero boiloff. In: AIP Conference Proceedings, vol 613(Advances in Cryogenic Engineering), pp 1276–1283 Hedayat A, Hastings LJ, Bryant C, Plachta DW (2002) Large scale demonstration of liquid hydrogen storage with zero boiloff. In: AIP Conference Proceedings, vol 613(Advances in Cryogenic Engineering), pp 1276–1283
569.
go back to reference Khurana TK, Prasad BVSSS, Ramamurthi K, Murthy SS (2006) Thermal stratification in ribbed liquid hydrogen storage tanks. Int J Hydrogen Energy 31(15):2299–2309CrossRef Khurana TK, Prasad BVSSS, Ramamurthi K, Murthy SS (2006) Thermal stratification in ribbed liquid hydrogen storage tanks. Int J Hydrogen Energy 31(15):2299–2309CrossRef
570.
go back to reference Krainz G, Bartlok G, Bodner P, Casapicola P, Doeller C, Hofmeister F, Neubacher E, Zieger A (2004) Development of automotive liquid hydrogen storage systems. In: AIP Conference Proceedings, vol 710(Advances in Cryogenic Engineering), pp 35–40 Krainz G, Bartlok G, Bodner P, Casapicola P, Doeller C, Hofmeister F, Neubacher E, Zieger A (2004) Development of automotive liquid hydrogen storage systems. In: AIP Conference Proceedings, vol 710(Advances in Cryogenic Engineering), pp 35–40
571.
go back to reference Londer H, Myneni GR, Adderley P, Bartlok G, Setina J, Knapp W, Schleussner D (2006) New high capacity getter for vacuum-insulated mobile liquid hydrogen storage systems. In: AIP Conference Proceedings, vol 837(Hydrogen in Matter), pp 210–220 Londer H, Myneni GR, Adderley P, Bartlok G, Setina J, Knapp W, Schleussner D (2006) New high capacity getter for vacuum-insulated mobile liquid hydrogen storage systems. In: AIP Conference Proceedings, vol 837(Hydrogen in Matter), pp 210–220
572.
go back to reference Matsuoka Y (2008) Liquid hydrogen storage and transportation technology. Enerugi no Chozo – Yuso, pp 363–376 Matsuoka Y (2008) Liquid hydrogen storage and transportation technology. Enerugi no Chozo – Yuso, pp 363–376
573.
go back to reference Peschka W, Edeskuty FJ, Stewart WF (1983) Liquid-hydrogen storage and refueling for automotive applications. Altern Energy Sources 3(5):407–417 Peschka W, Edeskuty FJ, Stewart WF (1983) Liquid-hydrogen storage and refueling for automotive applications. Altern Energy Sources 3(5):407–417
574.
go back to reference Sass JP, St. Cyr WW, Barrett TM, Baumgartner RG, Lott JW, Fesmire JE (2010) Glass bubbles insulation for liquid hydrogen storage tanks. In: AIP Conference Proceedings, vol 1218, pp 772–779 Sass JP, St. Cyr WW, Barrett TM, Baumgartner RG, Lott JW, Fesmire JE (2010) Glass bubbles insulation for liquid hydrogen storage tanks. In: AIP Conference Proceedings, vol 1218, pp 772–779
576.
go back to reference Shimko MA (2005) Combined reverse Brayton Joule Thompson Hydrogen liquefaction cycle. DOE Hydrogen Program. FY 2005 progress report. Contract Number: DE-FG36-05GO15021 Shimko MA (2005) Combined reverse Brayton Joule Thompson Hydrogen liquefaction cycle. DOE Hydrogen Program. FY 2005 progress report. Contract Number: DE-FG36-05GO15021
577.
go back to reference Arai M, Utsumi S, Kanamaru M, Urita K, Fujimori T, Yoshizawa N, Noguchi D, Nishiyama K, Hattori Y, Okino F, Ohba T, Tanaka H, Kanoh H, Kaneko K (2009) Enhanced hydrogen adsorptivity of single-wall carbon nanotube bundles by one-step C60-pillaring method. Nano Lett 9(11):3694–3698CrossRef Arai M, Utsumi S, Kanamaru M, Urita K, Fujimori T, Yoshizawa N, Noguchi D, Nishiyama K, Hattori Y, Okino F, Ohba T, Tanaka H, Kanoh H, Kaneko K (2009) Enhanced hydrogen adsorptivity of single-wall carbon nanotube bundles by one-step C60-pillaring method. Nano Lett 9(11):3694–3698CrossRef
578.
go back to reference Avdeenkov AV, Bibikov AV, Bodrenko IV, Nikolaev AV, Taran MD, Tkalya EV (2009) Modified carbon nanostructures as materials for hydrogen storage. Russ Phys J 52(11):1235–1241CrossRef Avdeenkov AV, Bibikov AV, Bodrenko IV, Nikolaev AV, Taran MD, Tkalya EV (2009) Modified carbon nanostructures as materials for hydrogen storage. Russ Phys J 52(11):1235–1241CrossRef
579.
go back to reference Balathanigaimani MS, Shim W-G, Kim T-H, Cho S-J, Lee J-W, Moon H (2009) Hydrogen storage on highly porous novel corn grain-based carbon monoliths. Catal Today 146(1–2): 234–240CrossRef Balathanigaimani MS, Shim W-G, Kim T-H, Cho S-J, Lee J-W, Moon H (2009) Hydrogen storage on highly porous novel corn grain-based carbon monoliths. Catal Today 146(1–2): 234–240CrossRef
580.
go back to reference Bianco S, Giorcelli M, Musso S, Castellino M, Agresti F, Khandelwal A, Lo Russo S, Kumar M, Ando Y, Tagliaferro A (2009) Hydrogen adsorption in several types of carbon nanotubes. J Nanosci Nanotechnol 9(12):6806–6812 Bianco S, Giorcelli M, Musso S, Castellino M, Agresti F, Khandelwal A, Lo Russo S, Kumar M, Ando Y, Tagliaferro A (2009) Hydrogen adsorption in several types of carbon nanotubes. J Nanosci Nanotechnol 9(12):6806–6812
581.
go back to reference Bianco S, Giorcelli M, Musso S, Castellino M, Agresti F, Khandelwal A, Russo SL, Kumar M, Ando Y, Tagliaferro A (2010) Hydrogen adsorption in several types of carbon nanotubes. J Nanosci Nanotechnol 10(6):3860–3866CrossRef Bianco S, Giorcelli M, Musso S, Castellino M, Agresti F, Khandelwal A, Russo SL, Kumar M, Ando Y, Tagliaferro A (2010) Hydrogen adsorption in several types of carbon nanotubes. J Nanosci Nanotechnol 10(6):3860–3866CrossRef
582.
go back to reference Burress J, Kraus M, Beckner M, Cepel R, Suppes G, Wexler C, Pfeifer P (2009) Hydrogen storage in engineered carbon nanospaces. Nanotechnology 20(20):204026/1–204026/10 Burress J, Kraus M, Beckner M, Cepel R, Suppes G, Wexler C, Pfeifer P (2009) Hydrogen storage in engineered carbon nanospaces. Nanotechnology 20(20):204026/1–204026/10
583.
go back to reference Fierro V, Szczurek A, Zlotea C, Mareche JF, Izquierdo MT, Albiniak A, Latroche M, Furdin G, Celzard A (2010) Experimental evidence of an upper limit for hydrogen storage at 77K on activated carbons. Carbon 48(7):1902–1911CrossRef Fierro V, Szczurek A, Zlotea C, Mareche JF, Izquierdo MT, Albiniak A, Latroche M, Furdin G, Celzard A (2010) Experimental evidence of an upper limit for hydrogen storage at 77K on activated carbons. Carbon 48(7):1902–1911CrossRef
584.
go back to reference Gao F, Zhao D-L, Li Y, Li X-G (2010) Preparation and hydrogen storage of activated rayon-based carbon fibers with high specific surface area. J Phys Chem Solids 71(4):444–447CrossRef Gao F, Zhao D-L, Li Y, Li X-G (2010) Preparation and hydrogen storage of activated rayon-based carbon fibers with high specific surface area. J Phys Chem Solids 71(4):444–447CrossRef
585.
go back to reference Gayathri V, Devi NR, Geetha R (2010) Hydrogen storage in coiled carbon nanotubes. Int J Hydrogen Energy 35(3):1313–1320CrossRef Gayathri V, Devi NR, Geetha R (2010) Hydrogen storage in coiled carbon nanotubes. Int J Hydrogen Energy 35(3):1313–1320CrossRef
586.
go back to reference Geng H-Z, Kim TH, Lim SC, Jeong H-K, Jin MH, Jo YW, Lee YH (2010) Hydrogen storage in microwave-treated multi-walled carbon nanotubes. Int J Hydrogen Energy 35(5): 2073–2082CrossRef Geng H-Z, Kim TH, Lim SC, Jeong H-K, Jin MH, Jo YW, Lee YH (2010) Hydrogen storage in microwave-treated multi-walled carbon nanotubes. Int J Hydrogen Energy 35(5): 2073–2082CrossRef
587.
go back to reference Hirano S (2010) Fuel cell research and development at Ford Motor Company. J Fuel Cell Tech (Nenryo Denchi) 9(3):38–45 Hirano S (2010) Fuel cell research and development at Ford Motor Company. J Fuel Cell Tech (Nenryo Denchi) 9(3):38–45
588.
go back to reference Huang C-C, Chen H-M, Chen C-H, Huang J-C (2010) Effect of surface oxides on hydrogen storage of activated carbon. Sep Purif Technol 70(3):291–295CrossRef Huang C-C, Chen H-M, Chen C-H, Huang J-C (2010) Effect of surface oxides on hydrogen storage of activated carbon. Sep Purif Technol 70(3):291–295CrossRef
589.
go back to reference Jimenez V, Sanchez P, Diaz JA, Valverde JL, Romero A (2010) Hydrogen storage capacity on different carbon materials. Chem Phys Lett 485(1–3):152–155CrossRef Jimenez V, Sanchez P, Diaz JA, Valverde JL, Romero A (2010) Hydrogen storage capacity on different carbon materials. Chem Phys Lett 485(1–3):152–155CrossRef
590.
go back to reference Jurewicz K (2009) Influence of charging parameters on the effectiveness of electrochemical hydrogen storage in activated carbon. Int J Hydrogen Energy 34(23):9431–9435CrossRef Jurewicz K (2009) Influence of charging parameters on the effectiveness of electrochemical hydrogen storage in activated carbon. Int J Hydrogen Energy 34(23):9431–9435CrossRef
591.
go back to reference Kuchta B, Firlej L, Pfeifer P, Wexler C (2009) Numerical estimation of hydrogen storage limits in carbon-based nanospaces. Carbon 48(1):223–231CrossRef Kuchta B, Firlej L, Pfeifer P, Wexler C (2009) Numerical estimation of hydrogen storage limits in carbon-based nanospaces. Carbon 48(1):223–231CrossRef
592.
go back to reference Kunowsky M, Marco-Lozar JP, Cazorla-Amoros D, Linares-Solano A (2010) Scale-up activation of carbon fibres for hydrogen storage. Int J Hydrogen Energy 35(6):2393–2402CrossRef Kunowsky M, Marco-Lozar JP, Cazorla-Amoros D, Linares-Solano A (2010) Scale-up activation of carbon fibres for hydrogen storage. Int J Hydrogen Energy 35(6):2393–2402CrossRef
593.
go back to reference Lan J, Cao D, Wang W (2009) Li12Si60H60 fullerene composite: a promising hydrogen storage medium. ACS Nano 3(10):3294–3300CrossRef Lan J, Cao D, Wang W (2009) Li12Si60H60 fullerene composite: a promising hydrogen storage medium. ACS Nano 3(10):3294–3300CrossRef
594.
go back to reference Liu C, Chen Y, Wu C-Z, Xu S-T, Cheng H-M (2009) Hydrogen storage in carbon nanotubes revisited. Carbon 48(2):452–455CrossRef Liu C, Chen Y, Wu C-Z, Xu S-T, Cheng H-M (2009) Hydrogen storage in carbon nanotubes revisited. Carbon 48(2):452–455CrossRef
595.
go back to reference Martin JB, Kinloch IA, Dryfe RAW (2010) Are carbon nanotubes viable materials for the electrochemical storage of hydrogen? J Phys Chem C 114(10):4693–4703CrossRef Martin JB, Kinloch IA, Dryfe RAW (2010) Are carbon nanotubes viable materials for the electrochemical storage of hydrogen? J Phys Chem C 114(10):4693–4703CrossRef
596.
go back to reference Meisner GP, Hu Q (2009) High surface area microporous carbon materials for cryogenic hydrogen storage synthesized using new template-based and activation-based approaches. Nanotechnology 20(20):204023/1–204023/10 Meisner GP, Hu Q (2009) High surface area microporous carbon materials for cryogenic hydrogen storage synthesized using new template-based and activation-based approaches. Nanotechnology 20(20):204023/1–204023/10
597.
go back to reference Muniz AR, Meyyappan M, Maroudas D (2009) On the hydrogen storage capacity of carbon nanotube bundles. Appl Phys Lett 95(16):163111/1–163111/3 Muniz AR, Meyyappan M, Maroudas D (2009) On the hydrogen storage capacity of carbon nanotube bundles. Appl Phys Lett 95(16):163111/1–163111/3
598.
go back to reference Openov LA, Podlivaev AI (2010) Thermal desorption of hydrogen from graphane. Tech Phys Lett 36(1):31–33CrossRef Openov LA, Podlivaev AI (2010) Thermal desorption of hydrogen from graphane. Tech Phys Lett 36(1):31–33CrossRef
599.
go back to reference Paggiaro R, Benard P, Polifke W (2010) Cryo-adsorptive hydrogen storage on activated carbon. I: thermodynamic analysis of adsorption vessels and comparison with liquid and compressed gas hydrogen storage. Int J Hydrogen Energy 35(2):638–647 Paggiaro R, Benard P, Polifke W (2010) Cryo-adsorptive hydrogen storage on activated carbon. I: thermodynamic analysis of adsorption vessels and comparison with liquid and compressed gas hydrogen storage. Int J Hydrogen Energy 35(2):638–647
600.
go back to reference Paggiaro R, Michl F, Benard P, Polifke W (2010) Cryo-adsorptive hydrogen storage on activated carbon. II: investigation of the thermal effects during filling at cryogenic temperatures. Int J Hydrogen Energy 35(2):648–659 Paggiaro R, Michl F, Benard P, Polifke W (2010) Cryo-adsorptive hydrogen storage on activated carbon. II: investigation of the thermal effects during filling at cryogenic temperatures. Int J Hydrogen Energy 35(2):648–659
601.
go back to reference Qin X, Li F (2010) Synthesis of the novel porous carbon nanotubes. Advanced Materials Research (Zuerich, Switzerland) 96(Advance in Ecological Environment, Functional Materials and Ion Industry), pp 241–243 Qin X, Li F (2010) Synthesis of the novel porous carbon nanotubes. Advanced Materials Research (Zuerich, Switzerland) 96(Advance in Ecological Environment, Functional Materials and Ion Industry), pp 241–243
602.
go back to reference Reyhani A, Golikand AN, Mortazavi SZ, Irannejad L, Moshfegh AZ (2010) The effects of multi-walled carbon nanotubes graphitization treated with different atmospheres and electrolyte temperatures on electrochemical hydrogen storage. Electrochim Acta 55(16): 4700–4705CrossRef Reyhani A, Golikand AN, Mortazavi SZ, Irannejad L, Moshfegh AZ (2010) The effects of multi-walled carbon nanotubes graphitization treated with different atmospheres and electrolyte temperatures on electrochemical hydrogen storage. Electrochim Acta 55(16): 4700–4705CrossRef
603.
go back to reference Roman TA, Dino WA, Nakanishi H, Kasai H, Sugimoto T, Tange K (2007) Graphite utilization in hydrogen storage: a computational perspective. Condens Matter Theor 21:275–283 Roman TA, Dino WA, Nakanishi H, Kasai H, Sugimoto T, Tange K (2007) Graphite utilization in hydrogen storage: a computational perspective. Condens Matter Theor 21:275–283
604.
go back to reference Saha D, Wei Z, Valluri SH, Deng S (2010) Hydrogen adsorption in ordered mesoporous carbon synthesized by a soft-template approach. J Porous Media 13(1):39–50CrossRef Saha D, Wei Z, Valluri SH, Deng S (2010) Hydrogen adsorption in ordered mesoporous carbon synthesized by a soft-template approach. J Porous Media 13(1):39–50CrossRef
605.
go back to reference Suarez-Garcia F, Vilaplana-Ortego E, Kunowsky M, Kimura M, Oya A, Linares-Solano A (2009) Activation of polymer blend carbon nanofibres by alkaline hydroxides and their hydrogen storage performances. Int J Hydrogen Energy 34(22):9141–9150CrossRef Suarez-Garcia F, Vilaplana-Ortego E, Kunowsky M, Kimura M, Oya A, Linares-Solano A (2009) Activation of polymer blend carbon nanofibres by alkaline hydroxides and their hydrogen storage performances. Int J Hydrogen Energy 34(22):9141–9150CrossRef
606.
go back to reference Sufian S, Yusup S, Walker GS, Shariff AM (2009) Synthesis of graphitic nanofibres using iron (III) oxide catalyst for hydrogen storage application. Mater Res Innovations 13(3):221–224CrossRef Sufian S, Yusup S, Walker GS, Shariff AM (2009) Synthesis of graphitic nanofibres using iron (III) oxide catalyst for hydrogen storage application. Mater Res Innovations 13(3):221–224CrossRef
607.
go back to reference Vasiliev LL, Kanonchik LE (2010) Activated carbon fibres and composites on its base for high performance hydrogen storage system. Chem Eng Sci 65(8):2586–2595CrossRef Vasiliev LL, Kanonchik LE (2010) Activated carbon fibres and composites on its base for high performance hydrogen storage system. Chem Eng Sci 65(8):2586–2595CrossRef
608.
go back to reference Venkataramanan NS, Mizuseki H, Kawazoe Y (2009) Hydrogen storage on nanofullerene cages. Nano 4(5):253–263CrossRef Venkataramanan NS, Mizuseki H, Kawazoe Y (2009) Hydrogen storage on nanofullerene cages. Nano 4(5):253–263CrossRef
609.
go back to reference Wu H-C, Li Y-Y, Sakoda A (2010) Synthesis and hydrogen storage capacity of exfoliated turbostratic carbon nanofibers. Int J Hydrogen Energy 35(9):4123–4130CrossRef Wu H-C, Li Y-Y, Sakoda A (2010) Synthesis and hydrogen storage capacity of exfoliated turbostratic carbon nanofibers. Int J Hydrogen Energy 35(9):4123–4130CrossRef
610.
go back to reference Xia Y, Walker GS, Grant DM, Mokaya R (2009) Hydrogen storage in high surface area carbons: experimental demonstration of the effects of nitrogen doping. J Am Chem Soc 131(45):16493–16499CrossRef Xia Y, Walker GS, Grant DM, Mokaya R (2009) Hydrogen storage in high surface area carbons: experimental demonstration of the effects of nitrogen doping. J Am Chem Soc 131(45):16493–16499CrossRef
611.
go back to reference Zhou Z, Zhao J (2008) Gas adsorption in carbon nanotubes and technological applications. Recent Research Activities of Micro- and Nano-Scale Carbon Related Materials INBN No 978-81-7895-350-2, pp 37–57 Zhou Z, Zhao J (2008) Gas adsorption in carbon nanotubes and technological applications. Recent Research Activities of Micro- and Nano-Scale Carbon Related Materials INBN No 978-81-7895-350-2, pp 37–57
612.
go back to reference Zini G, Marazzi R, Pedrazzi S, Tartarini P (2010) A solar hydrogen hybrid system with activated carbon storage. Int J Hydrogen Energy 35(10):4909–4917CrossRef Zini G, Marazzi R, Pedrazzi S, Tartarini P (2010) A solar hydrogen hybrid system with activated carbon storage. Int J Hydrogen Energy 35(10):4909–4917CrossRef
613.
go back to reference Reyhani A, Mortazavi SZ, Moshfegh AZ, Golikand AN (2010) A study on the effects of Fex/Niy/MgO(1-x-y) catalysts on the volumetric and electrochemical hydrogen storage of multi-walled carbon nanotubes. Int J Hydrogen Energy 35(1):231–237CrossRef Reyhani A, Mortazavi SZ, Moshfegh AZ, Golikand AN (2010) A study on the effects of Fex/Niy/MgO(1-x-y) catalysts on the volumetric and electrochemical hydrogen storage of multi-walled carbon nanotubes. Int J Hydrogen Energy 35(1):231–237CrossRef
614.
go back to reference Schaller R, Mari D, Marques dos Santos S, Tkalcec I, Carreno-Morelli E (2009) Investigation of hydrogen storage in carbon nanotube-magnesium matrix composites. Mate Sci Eng A 521–522:147–150CrossRef Schaller R, Mari D, Marques dos Santos S, Tkalcec I, Carreno-Morelli E (2009) Investigation of hydrogen storage in carbon nanotube-magnesium matrix composites. Mate Sci Eng A 521–522:147–150CrossRef
615.
go back to reference Xu F, Lu Y, Sun L, Zhi L (2010) A novel ZnO nanostructure: rhombus-shaped ZnO nanorod array. Chem Commun(Cambridge, UK) 46(18):3191–3193 Xu F, Lu Y, Sun L, Zhi L (2010) A novel ZnO nanostructure: rhombus-shaped ZnO nanorod array. Chem Commun(Cambridge, UK) 46(18):3191–3193
616.
go back to reference Yamauchi M, Kobayashi H, Kitagawa H (2009) Hydrogen storage mediated by Pd and Pt nanoparticles. Chemphyschem 10(15):2566–2576CrossRef Yamauchi M, Kobayashi H, Kitagawa H (2009) Hydrogen storage mediated by Pd and Pt nanoparticles. Chemphyschem 10(15):2566–2576CrossRef
617.
go back to reference Lee H, Huang B, Duan W, Ihm J (2010) Ab initio study of beryllium-decorated fullerenes for hydrogen storage. J Appl Phys 107(8):084304/1–084304/4 Lee H, Huang B, Duan W, Ihm J (2010) Ab initio study of beryllium-decorated fullerenes for hydrogen storage. J Appl Phys 107(8):084304/1–084304/4
618.
go back to reference Tsao C-S, Liu Y, Li M, Zhang Y, Leao JB, Chang H-W, Yu M-S, Chen S-H (2010) Neutron scattering methodology for absolute measurement of room-temperature hydrogen storage capacity and evidence for spillover effect in a Pt-doped activated carbon. J Phys Chem Lett 1(10):1569–1573CrossRef Tsao C-S, Liu Y, Li M, Zhang Y, Leao JB, Chang H-W, Yu M-S, Chen S-H (2010) Neutron scattering methodology for absolute measurement of room-temperature hydrogen storage capacity and evidence for spillover effect in a Pt-doped activated carbon. J Phys Chem Lett 1(10):1569–1573CrossRef
619.
go back to reference Tsao C-S, Tzeng Y-R, Yu M-S, Wang C-Y, Tseng H-H, Chung T-Y, Wu H-C, Yamamoto T, Kaneko K, Chen S-H (2010) Effect of catalyst size on hydrogen storage capacity of Pt-impregnated active carbon via spillover. J Phys Chem Lett 1(7):1060–1063CrossRef Tsao C-S, Tzeng Y-R, Yu M-S, Wang C-Y, Tseng H-H, Chung T-Y, Wu H-C, Yamamoto T, Kaneko K, Chen S-H (2010) Effect of catalyst size on hydrogen storage capacity of Pt-impregnated active carbon via spillover. J Phys Chem Lett 1(7):1060–1063CrossRef
620.
go back to reference Wang L, Lee K, Sun Y-Y, Lucking M, Chen Z, Zhao JJ, Zhang SB (2009) Graphene oxide as an ideal substrate for hydrogen storage. ACS Nano 3(10):2995–3000CrossRef Wang L, Lee K, Sun Y-Y, Lucking M, Chen Z, Zhao JJ, Zhang SB (2009) Graphene oxide as an ideal substrate for hydrogen storage. ACS Nano 3(10):2995–3000CrossRef
621.
go back to reference Wang L, Yang RT (2009) Hydrogen storage properties of N-doped microporous carbon. J Phys Chem C 113(52):21883–21888CrossRef Wang L, Yang RT (2009) Hydrogen storage properties of N-doped microporous carbon. J Phys Chem C 113(52):21883–21888CrossRef
622.
go back to reference Wang P-J, Fang Z-Z, Ma L-P, Kang X-D, Wang P (2010) Effect of carbon addition on hydrogen storage behaviors of Li-Mg-B-H system. Int J Hydrogen Energy 35(7):3072–3075CrossRef Wang P-J, Fang Z-Z, Ma L-P, Kang X-D, Wang P (2010) Effect of carbon addition on hydrogen storage behaviors of Li-Mg-B-H system. Int J Hydrogen Energy 35(7):3072–3075CrossRef
623.
go back to reference Wang Q, Sun Q, Jena P (2009) Hydrogen storage in AlN-based nanostructures. Prepr Symp Am Chem Soc, Div Fuel Chem 54(2):751 Wang Q, Sun Q, Jena P (2009) Hydrogen storage in AlN-based nanostructures. Prepr Symp Am Chem Soc, Div Fuel Chem 54(2):751
624.
go back to reference Wang Z, Yang RT (2010) Enhanced hydrogen storage on Pt-doped carbon by plasma reduction. J Phys Chem C 114(13):5956–5963CrossRef Wang Z, Yang RT (2010) Enhanced hydrogen storage on Pt-doped carbon by plasma reduction. J Phys Chem C 114(13):5956–5963CrossRef
625.
go back to reference Wu HY, Fan XF, Kuo J-L, Deng W-Q (2010) Carbon doped boron nitride cages as competitive candidates for hydrogen storage materials. Chem Commun (Cambridge, UK) 46(6):883–885 Wu HY, Fan XF, Kuo J-L, Deng W-Q (2010) Carbon doped boron nitride cages as competitive candidates for hydrogen storage materials. Chem Commun (Cambridge, UK) 46(6):883–885
626.
go back to reference Xia J, Yuan S, Wang Z, Kirklin S, Dorney B, Liu D-J, Yu L (2010) Nanoporous polyporphyrin as adsorbent for hydrogen storage. Macromolecules (Washington, DC, USA) 43(7): 3325–3330 Xia J, Yuan S, Wang Z, Kirklin S, Dorney B, Liu D-J, Yu L (2010) Nanoporous polyporphyrin as adsorbent for hydrogen storage. Macromolecules (Washington, DC, USA) 43(7): 3325–3330
627.
go back to reference Diaz E, Leon M, Ordonez S (2010) Hydrogen adsorption on Pd-modified carbon nanofibres: influence of CNF surface chemistry and impregnation procedure. Int J Hydrogen Energy 35(10):4576–4581CrossRef Diaz E, Leon M, Ordonez S (2010) Hydrogen adsorption on Pd-modified carbon nanofibres: influence of CNF surface chemistry and impregnation procedure. Int J Hydrogen Energy 35(10):4576–4581CrossRef
628.
go back to reference Jeong Y, Mike Chung TC (2010) The synthesis and characterization of a super-activated carbon containing substitutional boron (BCx) and its applications in hydrogen storage. Carbon 48(9):2526–2537CrossRef Jeong Y, Mike Chung TC (2010) The synthesis and characterization of a super-activated carbon containing substitutional boron (BCx) and its applications in hydrogen storage. Carbon 48(9):2526–2537CrossRef
629.
go back to reference Chang J-K, Chen C-Y, Tsai W-T (2009) Decorating carbon nanotubes with nanoparticles using a facile redox displacement reaction and an evaluation of synergistic hydrogen storage performance. Nanotechnology 20(49):495603/1–495603/7 Chang J-K, Chen C-Y, Tsai W-T (2009) Decorating carbon nanotubes with nanoparticles using a facile redox displacement reaction and an evaluation of synergistic hydrogen storage performance. Nanotechnology 20(49):495603/1–495603/7
630.
go back to reference Lee H, Ihm J, Cohen ML, Louie SG (2010) Calcium-decorated graphene-based nanostructures for hydrogen storage. Nano Lett 10(3):793–798CrossRef Lee H, Ihm J, Cohen ML, Louie SG (2010) Calcium-decorated graphene-based nanostructures for hydrogen storage. Nano Lett 10(3):793–798CrossRef
631.
go back to reference Lee H, Ihm J, Cohen ML, Louie SG (2009) Calcium-decorated carbon nanotubes for high-capacity hydrogen storage: first-principles calculations. Phys Rev B Condensed Matter Mater Phys 80(11):115412/1–115412/5 Lee H, Ihm J, Cohen ML, Louie SG (2009) Calcium-decorated carbon nanotubes for high-capacity hydrogen storage: first-principles calculations. Phys Rev B Condensed Matter Mater Phys 80(11):115412/1–115412/5
632.
go back to reference Huang L, Liu Y-C, Gubbins KE, Nardelli MB (2010) Ti-decorated C60 as catalyst for hydrogen generation and storage. Appl Phys Lett 96(6):063111/1–063111/3 Huang L, Liu Y-C, Gubbins KE, Nardelli MB (2010) Ti-decorated C60 as catalyst for hydrogen generation and storage. Appl Phys Lett 96(6):063111/1–063111/3
633.
go back to reference Yang C-C, Li YJ, Chen W-H (2010) Electrochemical hydrogen storage behavior of single-walled carbon nanotubes (SWCNTs) coated with Ni nanoparticles. Int J Hydrogen Energy 35(6):2336–2343CrossRef Yang C-C, Li YJ, Chen W-H (2010) Electrochemical hydrogen storage behavior of single-walled carbon nanotubes (SWCNTs) coated with Ni nanoparticles. Int J Hydrogen Energy 35(6):2336–2343CrossRef
634.
go back to reference Yu L-M, Shi G-S, Wang Z-G, Ji G-F, Lu Z-P (2009) Adsorption mechanism of hydrogen on boron-doped fullerenes. Chin Phys Lett 26(8):086804/1–086804/4 Yu L-M, Shi G-S, Wang Z-G, Ji G-F, Lu Z-P (2009) Adsorption mechanism of hydrogen on boron-doped fullerenes. Chin Phys Lett 26(8):086804/1–086804/4
635.
go back to reference Giraudet S, Zhu Z, Yao X, Lu G (2010) Ordered mesoporous carbons enriched with nitrogen: application to hydrogen storage. J Phys Chem C 114(18):8639–8645CrossRef Giraudet S, Zhu Z, Yao X, Lu G (2010) Ordered mesoporous carbons enriched with nitrogen: application to hydrogen storage. J Phys Chem C 114(18):8639–8645CrossRef
636.
go back to reference Grigorova E, Mandzhukova T, Khristov M, Tzvetkov P, Tsyntsarski B (2010) Investigation of hydrogen storage properties of magnesium based composites with addition of activated carbon derived from apricot stones. Bulg Chem Commun 42(1):70–74 Grigorova E, Mandzhukova T, Khristov M, Tzvetkov P, Tsyntsarski B (2010) Investigation of hydrogen storage properties of magnesium based composites with addition of activated carbon derived from apricot stones. Bulg Chem Commun 42(1):70–74
637.
go back to reference Chang J-K, Chen C-Y, Tsai W-T (2009) Preparation and hydrogen storage performance of Pd nanoparticles decorated carbon nanotubes. ECS Transactions 19(10, Hydrogen Production, Transport, and Storage 3): 33–40 Chang J-K, Chen C-Y, Tsai W-T (2009) Preparation and hydrogen storage performance of Pd nanoparticles decorated carbon nanotubes. ECS Transactions 19(10, Hydrogen Production, Transport, and Storage 3): 33–40
638.
go back to reference Neiner D, Kauzlarich SM (2010) Hydrogen-capped silicon nanoparticles as a potential hydrogen storage material: synthesis, characterization, and hydrogen release. Chem Mater 22(2):487–493CrossRef Neiner D, Kauzlarich SM (2010) Hydrogen-capped silicon nanoparticles as a potential hydrogen storage material: synthesis, characterization, and hydrogen release. Chem Mater 22(2):487–493CrossRef
639.
go back to reference Ni M, Huang L, Guo L, Zeng Z (2010) Hydrogen storage in Li-doped charged single-walled carbon nanotubes. Int J Hydrogen Energy 35(8):3546–3549CrossRef Ni M, Huang L, Guo L, Zeng Z (2010) Hydrogen storage in Li-doped charged single-walled carbon nanotubes. Int J Hydrogen Energy 35(8):3546–3549CrossRef
640.
go back to reference Chen C-Y, Chang J-K, Lin K-Y, Chung S-T, Tsai W-T (2010) Enhanced hydrogen storage in MWCNTs decorated by electroless nickel nanoparticles deposited in supercritical CO2 bath. Mater Sci Forum 638–642, 1148–1151, (Pt. 2, THERMEC 2009) Chen C-Y, Chang J-K, Lin K-Y, Chung S-T, Tsai W-T (2010) Enhanced hydrogen storage in MWCNTs decorated by electroless nickel nanoparticles deposited in supercritical CO2 bath. Mater Sci Forum 638–642, 1148–1151, (Pt. 2, THERMEC 2009)
641.
go back to reference Liu Q (2010) Monodisperse polystyrene nanospheres with ultrahigh surface area: application for hydrogen storage. Macromol Chem Phys 211(9):1012–1017 Liu Q (2010) Monodisperse polystyrene nanospheres with ultrahigh surface area: application for hydrogen storage. Macromol Chem Phys 211(9):1012–1017
642.
go back to reference Ahmad M, Rafi-ud D, Pan C, Zhu J (2010) Investigation of hydrogen storage capabilities of ZnO-based nanostructures. J Phys Chem C 114(6):2560–2565CrossRef Ahmad M, Rafi-ud D, Pan C, Zhu J (2010) Investigation of hydrogen storage capabilities of ZnO-based nanostructures. J Phys Chem C 114(6):2560–2565CrossRef
643.
go back to reference Chu Z, He R, Zhang X, Cheng H, Li X, Wang Y (2010) Hydrogen adsorption properties of polymer-derived nanoporous SiCx fibers. Int J Hydrogen Energy 35(7):3165–3169CrossRef Chu Z, He R, Zhang X, Cheng H, Li X, Wang Y (2010) Hydrogen adsorption properties of polymer-derived nanoporous SiCx fibers. Int J Hydrogen Energy 35(7):3165–3169CrossRef
644.
go back to reference Hu T, Zhang H, Li T, Liu R, Meng C, Qiu J (2009) Zeolite supported nickel cluster and its adsorption towards hydrogen molecules. Prepr Symp Am Chem Soc, Div Fuel Chem 54(2):591–592 Hu T, Zhang H, Li T, Liu R, Meng C, Qiu J (2009) Zeolite supported nickel cluster and its adsorption towards hydrogen molecules. Prepr Symp Am Chem Soc, Div Fuel Chem 54(2):591–592
645.
go back to reference Korili SA, Gil A (2008) Recent advances in hydrogen adsorption and storage on porous materials. Recent Research Developments in Environmental Technology, pp 143–155 Korili SA, Gil A (2008) Recent advances in hydrogen adsorption and storage on porous materials. Recent Research Developments in Environmental Technology, pp 143–155
646.
go back to reference Chung K-H (2010) High-pressure hydrogen storage on microporous zeolites with varying pore properties. Energy (Oxford, UK) 35(5):2235–2241 Chung K-H (2010) High-pressure hydrogen storage on microporous zeolites with varying pore properties. Energy (Oxford, UK) 35(5):2235–2241
647.
go back to reference Lim KL, Kazemian H, Yaakob Z, Daud WRW (2010) Solid-state materials and methods for hydrogen storage: a critical review. Chem Eng Technol 33(2):213–226CrossRef Lim KL, Kazemian H, Yaakob Z, Daud WRW (2010) Solid-state materials and methods for hydrogen storage: a critical review. Chem Eng Technol 33(2):213–226CrossRef
648.
go back to reference Hunt AJ, Gross K, Mao SS (2009) Mesoporous oxides and their applications to hydrogen storage. Mater Matters (Milwaukee, WI, USA) 4(2):47–54 Hunt AJ, Gross K, Mao SS (2009) Mesoporous oxides and their applications to hydrogen storage. Mater Matters (Milwaukee, WI, USA) 4(2):47–54
649.
go back to reference Niemann MU, Srinivasan SS, Phani AR, Kumar A, Goswami DY, Stefanakos EK (2009) Room temperature reversible hydrogen storage in polyaniline (PANI) nanofibers. J Nanosci Nanotechnol 9(8):4561–4565CrossRef Niemann MU, Srinivasan SS, Phani AR, Kumar A, Goswami DY, Stefanakos EK (2009) Room temperature reversible hydrogen storage in polyaniline (PANI) nanofibers. J Nanosci Nanotechnol 9(8):4561–4565CrossRef
650.
go back to reference Kuchta B, Firlej L, Cepel R, Pfeifer P, Wexler C (2010) Structural and energetic factors in designing a nanoporous sorbent for hydrogen storage. Colloids Surf A Physicochem Eng Aspects 357(1–3):61–66CrossRef Kuchta B, Firlej L, Cepel R, Pfeifer P, Wexler C (2010) Structural and energetic factors in designing a nanoporous sorbent for hydrogen storage. Colloids Surf A Physicochem Eng Aspects 357(1–3):61–66CrossRef
651.
go back to reference Park S-J, Lee S-Y (2010) A study on hydrogen-storage behaviors of nickel-loaded mesoporous MCM-41. J Colloid Interface Sci 346(1):194–198CrossRef Park S-J, Lee S-Y (2010) A study on hydrogen-storage behaviors of nickel-loaded mesoporous MCM-41. J Colloid Interface Sci 346(1):194–198CrossRef
652.
go back to reference Reddy ALM, Tanur AE, Walker GC (2010) Synthesis and hydrogen storage properties of different types of boron nitride nanostructures. Int J Hydrogen Energy 35(9):4138–4143CrossRef Reddy ALM, Tanur AE, Walker GC (2010) Synthesis and hydrogen storage properties of different types of boron nitride nanostructures. Int J Hydrogen Energy 35(9):4138–4143CrossRef
653.
go back to reference Sepehri S, Cao G (2010) Nanostructured materials for hydrogen storage. Annu Rev Nano Res 3:487–514 Sepehri S, Cao G (2010) Nanostructured materials for hydrogen storage. Annu Rev Nano Res 3:487–514
654.
go back to reference Sun X, Hwang J-Y, Shi S (2010) Hydrogen storage in mesoporous metal oxides with catalyst and external electric field. J Phys Chem C 114(15):7178–7184CrossRef Sun X, Hwang J-Y, Shi S (2010) Hydrogen storage in mesoporous metal oxides with catalyst and external electric field. J Phys Chem C 114(15):7178–7184CrossRef
655.
go back to reference Zuettel A (2009) Materials for hydrogen storage. In: Barbaro P, Bianchini C (eds) Catalysis for sustainable energy production. Wiley-VCH, Weinheim, pp 107–169CrossRef Zuettel A (2009) Materials for hydrogen storage. In: Barbaro P, Bianchini C (eds) Catalysis for sustainable energy production. Wiley-VCH, Weinheim, pp 107–169CrossRef
656.
go back to reference Bogdanovic B, Felderhoff M, Streukens G (2009) Hydrogen storage in complex metal hydrides. J Serb Chem Soc 74(2):183–196CrossRef Bogdanovic B, Felderhoff M, Streukens G (2009) Hydrogen storage in complex metal hydrides. J Serb Chem Soc 74(2):183–196CrossRef
657.
go back to reference Thomas KM (2007) Hydrogen adsorption and storage on porous materials. Catal Today 120:389–398CrossRef Thomas KM (2007) Hydrogen adsorption and storage on porous materials. Catal Today 120:389–398CrossRef
658.
go back to reference Darkrim F, Levesque D (2000) High adsorptive property of opened carbon nanotubes at 77 K. J Phys Chem B 104:6773–6776CrossRef Darkrim F, Levesque D (2000) High adsorptive property of opened carbon nanotubes at 77 K. J Phys Chem B 104:6773–6776CrossRef
659.
go back to reference Wang Q, Johnson JK (1999) Molecular simulation of hydrogen adsorption in single–walled carbon nanotubes and idealized carbon slit pores. J Chem Phys 110:557–567 Wang Q, Johnson JK (1999) Molecular simulation of hydrogen adsorption in single–walled carbon nanotubes and idealized carbon slit pores. J Chem Phys 110:557–567
660.
go back to reference Yin YF, Mays T, McEnaney B (2000) Molecular simulations of hydrogen storage in carbon nanotube arrays. Langmuir 16:10521–10527CrossRef Yin YF, Mays T, McEnaney B (2000) Molecular simulations of hydrogen storage in carbon nanotube arrays. Langmuir 16:10521–10527CrossRef
661.
go back to reference Dillon AC, Jones KM, Bekkedahl TA, Kiang CH, Bethune DS, Heben MJ (1997) Storage of hydrogen in single-walled carbon nanotubes. Nature 386:377–379CrossRef Dillon AC, Jones KM, Bekkedahl TA, Kiang CH, Bethune DS, Heben MJ (1997) Storage of hydrogen in single-walled carbon nanotubes. Nature 386:377–379CrossRef
662.
go back to reference Ye Y, Ahn CC, Witham C, Fultz B, Liu J, Rinzler G, Colbert D, Smith KA, Smalley RE (1999) Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes. Appl Phys Lett 74:2307–2309CrossRef Ye Y, Ahn CC, Witham C, Fultz B, Liu J, Rinzler G, Colbert D, Smith KA, Smalley RE (1999) Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes. Appl Phys Lett 74:2307–2309CrossRef
663.
go back to reference Dillon AC, Bekkedahl TA, Jones KM, Heben MJ (1996) Oxidative opening and filling by hydrogen of single wall carbon nanotubes. In: Kadish KM, Ruoff RS (eds) Proceedings of the symposium on recent advances in the chemistry and physics of fullerenes and related materials, 5–10 May 1996, Los Angeles, California. Electrochemical Society Proceedings Volume 96–10. Pennington, NJ. The Electrochemical Society, Inc. 3, pp 716–727 NREL Report No. 24407 Dillon AC, Bekkedahl TA, Jones KM, Heben MJ (1996) Oxidative opening and filling by hydrogen of single wall carbon nanotubes. In: Kadish KM, Ruoff RS (eds) Proceedings of the symposium on recent advances in the chemistry and physics of fullerenes and related materials, 5–10 May 1996, Los Angeles, California. Electrochemical Society Proceedings Volume 96–10. Pennington, NJ. The Electrochemical Society, Inc. 3, pp 716–727 NREL Report No. 24407
664.
go back to reference Liu C, Fan YY, Liu M, Cong HT, Cheng HM, Dresselhaus MS (1999) Hydrogen storage in single-walled carbon nanotubes at room temperature. Science 286:1127–1129CrossRef Liu C, Fan YY, Liu M, Cong HT, Cheng HM, Dresselhaus MS (1999) Hydrogen storage in single-walled carbon nanotubes at room temperature. Science 286:1127–1129CrossRef
665.
go back to reference Zhu HW, Ci LJ, Chen A, Mao ZQ, Xu CL, Xiao X, Wei BQ, Liang J, Wu DH (2000) Hydrogen uptake in multi-walled carbon nanotubes at room temperature. In: Mao ZQ, Veziroglu TN (eds) Proceedings of the 13th World Hydrogen Energy Conference, 11–15 June 2000, Beijing, China. International Hydrogen Association 2000, pp 560 Zhu HW, Ci LJ, Chen A, Mao ZQ, Xu CL, Xiao X, Wei BQ, Liang J, Wu DH (2000) Hydrogen uptake in multi-walled carbon nanotubes at room temperature. In: Mao ZQ, Veziroglu TN (eds) Proceedings of the 13th World Hydrogen Energy Conference, 11–15 June 2000, Beijing, China. International Hydrogen Association 2000, pp 560
666.
go back to reference Wu H-i LuJ, Li B-L (2000) A coupled oscillatory model mimicking avian circadian regulatory systems. J Biol Phys 26:261–272CrossRef Wu H-i LuJ, Li B-L (2000) A coupled oscillatory model mimicking avian circadian regulatory systems. J Biol Phys 26:261–272CrossRef
667.
go back to reference Chen P, Wu X, Lin J, Tan KL (1999) High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures. Science 285:91–93CrossRef Chen P, Wu X, Lin J, Tan KL (1999) High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures. Science 285:91–93CrossRef
668.
go back to reference Yang RT (2000) Hydrogen storage by alkali-doped carbon nanotubes-revisited. Carbon 38:623–626CrossRef Yang RT (2000) Hydrogen storage by alkali-doped carbon nanotubes-revisited. Carbon 38:623–626CrossRef
669.
go back to reference Pinkerton F, Wickle B, Olk C, Tibbetts G, Meisner G, Meyer MS, Herbst J (2000) Thermogravimetric measurement of hydrogen storage in carbon-based materials: promise and pitfalls. In: Proceedings of the 10th Canadian Hydrogen Conference, Quebec, Canadian Hydrogen Association Pinkerton F, Wickle B, Olk C, Tibbetts G, Meisner G, Meyer MS, Herbst J (2000) Thermogravimetric measurement of hydrogen storage in carbon-based materials: promise and pitfalls. In: Proceedings of the 10th Canadian Hydrogen Conference, Quebec, Canadian Hydrogen Association
670.
go back to reference Rodriguez N (1996) Hydrogen storage. MRS 1996 Fall Meeting, 2–6 Dec, Boston, Paper D 11.6 Rodriguez N (1996) Hydrogen storage. MRS 1996 Fall Meeting, 2–6 Dec, Boston, Paper D 11.6
671.
go back to reference Browning DJ, Gerrard ML, Laakeman JB, Mellor IM, Mortimer RJ, Turpin MC (2000) Investigation of the hydrogen storage capacities of carbon nanofibres prepared from an Ethylene precursor. In: Mao ZQ, Veziroglu TN (eds) Proceedings of the 13th World Hydrogen Energy Conference, Beijing, China. International Hydrogen Association, 2000, p 580 Browning DJ, Gerrard ML, Laakeman JB, Mellor IM, Mortimer RJ, Turpin MC (2000) Investigation of the hydrogen storage capacities of carbon nanofibres prepared from an Ethylene precursor. In: Mao ZQ, Veziroglu TN (eds) Proceedings of the 13th World Hydrogen Energy Conference, Beijing, China. International Hydrogen Association, 2000, p 580
672.
go back to reference Gupta BK, Awasthi K, Srivastava ON (2000) New carbon variants: graphitic nanofibres and nanotubules as hydrogen storage materials. In: Mao ZQ, Veziroglu TN (eds) Proceedings of the 13th World Hydrogen Energy Conference, Beijing, China.International Hydrogen Association, 2000, p 487 Gupta BK, Awasthi K, Srivastava ON (2000) New carbon variants: graphitic nanofibres and nanotubules as hydrogen storage materials. In: Mao ZQ, Veziroglu TN (eds) Proceedings of the 13th World Hydrogen Energy Conference, Beijing, China.International Hydrogen Association, 2000, p 487
673.
go back to reference Liu C, Chen Y, Wu C-Z, Xu S-T, Cheng H-M (2010) Hydrogen storage in carbon nanotubes revisited. Carbon 48:452–455CrossRef Liu C, Chen Y, Wu C-Z, Xu S-T, Cheng H-M (2010) Hydrogen storage in carbon nanotubes revisited. Carbon 48:452–455CrossRef
674.
go back to reference Dillon AC, Gennett T, Jones KM, Alleman JL, Parilla PA, Heben MJ (1999) Carbon nanotubes materials for hydrogen storage. In: Proceedings of the 1999 DOE/NREL Hydrogen Program Review, U.S. DOE, Washington DC 1999 Dillon AC, Gennett T, Jones KM, Alleman JL, Parilla PA, Heben MJ (1999) Carbon nanotubes materials for hydrogen storage. In: Proceedings of the 1999 DOE/NREL Hydrogen Program Review, U.S. DOE, Washington DC 1999
675.
go back to reference Chen X (2002) Hydrogen storage. In: Proceedings of the 3rd Materials Research Society Symposiu. Materials Research Society Press, Boston Chen X (2002) Hydrogen storage. In: Proceedings of the 3rd Materials Research Society Symposiu. Materials Research Society Press, Boston
676.
go back to reference Smith MR Jr, Bittner EW, Shi W, Johnson JK, Bockrath BC (2003) Chemical activation of single-walled carbon nanotubes for hydrogen adsorption. J Phys Chem B 107(16):3752–3760CrossRef Smith MR Jr, Bittner EW, Shi W, Johnson JK, Bockrath BC (2003) Chemical activation of single-walled carbon nanotubes for hydrogen adsorption. J Phys Chem B 107(16):3752–3760CrossRef
677.
go back to reference Chambers A, Park C, Baker RTK, Rodriguez NM (1998) Hydrogen storage in graphite nanofibers. J Phys Chem B 102(22):4253–4256CrossRef Chambers A, Park C, Baker RTK, Rodriguez NM (1998) Hydrogen storage in graphite nanofibers. J Phys Chem B 102(22):4253–4256CrossRef
678.
go back to reference Zhu H, Cao A, Li X, Xu C, Mao Z, Ruan D, Liang J (2001) Hydrogen adsorption in bundles of well aligned carbon nanotubes at room temperature. Appl Surf Sci 178(1–4):50–55CrossRef Zhu H, Cao A, Li X, Xu C, Mao Z, Ruan D, Liang J (2001) Hydrogen adsorption in bundles of well aligned carbon nanotubes at room temperature. Appl Surf Sci 178(1–4):50–55CrossRef
679.
go back to reference Chen Y, Shaw DT, Bai XD, Wang EG, Lund C, Lu WM, Chung DDL (2001) Hydrogen storage in aligned carbon annotubes. Appl Phys Lett 78(15):2128–2130CrossRef Chen Y, Shaw DT, Bai XD, Wang EG, Lund C, Lu WM, Chung DDL (2001) Hydrogen storage in aligned carbon annotubes. Appl Phys Lett 78(15):2128–2130CrossRef
680.
go back to reference Badzian A, Badzian T, Breval E, Piotrowski A (2001) Nanostructured, nitrogen doped carbon materials for hydrogen storage. Thin Solid Films 398–399:170–174CrossRef Badzian A, Badzian T, Breval E, Piotrowski A (2001) Nanostructured, nitrogen doped carbon materials for hydrogen storage. Thin Solid Films 398–399:170–174CrossRef
681.
go back to reference Wang H, Gao Q, Hu J (2009) High hydrogen storage capacity of porous carbons prepared by using activated carbon. J Am Chem Soc 131:7016–7022CrossRef Wang H, Gao Q, Hu J (2009) High hydrogen storage capacity of porous carbons prepared by using activated carbon. J Am Chem Soc 131:7016–7022CrossRef
682.
go back to reference Cheng F, Liang J, Zhao J, Tao Z, Chen J (2008) Biomass waste-derived microporous carbons with controlled texture and enhanced hydrogen uptake. Chem Mater 20:1889–1895CrossRef Cheng F, Liang J, Zhao J, Tao Z, Chen J (2008) Biomass waste-derived microporous carbons with controlled texture and enhanced hydrogen uptake. Chem Mater 20:1889–1895CrossRef
683.
go back to reference Jordá-Beneyto M, Suárez-Garcá F, Lozano-Castelló D, Cazorla-Amorós D, Linares-Solano A (2007) Hydrogen storage on chemically activated carbons and carbon nanomaterials at high pressures. Carbon 45:293–303CrossRef Jordá-Beneyto M, Suárez-Garcá F, Lozano-Castelló D, Cazorla-Amorós D, Linares-Solano A (2007) Hydrogen storage on chemically activated carbons and carbon nanomaterials at high pressures. Carbon 45:293–303CrossRef
684.
go back to reference Yang Z, Xia Y, Mokaya R (2007) Enhanced hydrogen storage capacity of high surface area zeolite-like carbon materials. J Am Chem Soc 129:1673–1679CrossRef Yang Z, Xia Y, Mokaya R (2007) Enhanced hydrogen storage capacity of high surface area zeolite-like carbon materials. J Am Chem Soc 129:1673–1679CrossRef
685.
go back to reference Pacula A, Mokaya R (2008) Synthesis and high hydrogen storage capacity of zeolite-like carbons nanocast using as-synthesized zeolite templates. J Phys Chem C 112:2764–2769CrossRef Pacula A, Mokaya R (2008) Synthesis and high hydrogen storage capacity of zeolite-like carbons nanocast using as-synthesized zeolite templates. J Phys Chem C 112:2764–2769CrossRef
686.
go back to reference Saha D, Deng S (2009) Hydrogen adsorption in ordered mesoporous carbon Doped with Pt, Pd, Ru and Ni. Langmuir 25(21):12550–12560CrossRef Saha D, Deng S (2009) Hydrogen adsorption in ordered mesoporous carbon Doped with Pt, Pd, Ru and Ni. Langmuir 25(21):12550–12560CrossRef
687.
go back to reference Nijkamp MG, Raaymakers JEMJ, Van Dillen AJ, De Jong KP (2001) Hydrogen storage using physisorption-materials demands. Appl Phys A: Mater Sci Process 72:619–623CrossRef Nijkamp MG, Raaymakers JEMJ, Van Dillen AJ, De Jong KP (2001) Hydrogen storage using physisorption-materials demands. Appl Phys A: Mater Sci Process 72:619–623CrossRef
688.
go back to reference Pang J, Hampsey JE, Wu Z, Hu Q, Lu Y (2004) Hydrogen adsorption in mesoporous carbons. Appl Phys Lett 85:4887–4889CrossRef Pang J, Hampsey JE, Wu Z, Hu Q, Lu Y (2004) Hydrogen adsorption in mesoporous carbons. Appl Phys Lett 85:4887–4889CrossRef
689.
go back to reference Parra JB, Ania CO, Arenillas A, Rubiera F, Palacios JM, Pis JJ (2004) Textural development and hydrogen adsorption of carbon materials from PET waste. J Alloy Comp 379:280–289CrossRef Parra JB, Ania CO, Arenillas A, Rubiera F, Palacios JM, Pis JJ (2004) Textural development and hydrogen adsorption of carbon materials from PET waste. J Alloy Comp 379:280–289CrossRef
690.
go back to reference Takagi H, Hatori H, Soneda Y, Yoshizawa N, Yamada Y (2004) Adsorptive hydrogen storage in carbon and porous materials. Mater Sci Eng B Solid State Mater Advan Technol 108: 143–147 Takagi H, Hatori H, Soneda Y, Yoshizawa N, Yamada Y (2004) Adsorptive hydrogen storage in carbon and porous materials. Mater Sci Eng B Solid State Mater Advan Technol 108: 143–147
691.
go back to reference Takagi H, Hatori H, Yamada Y, Matsuo S, Shiraishi M (2004) Hydrogen adsorption properties of activated carbons with modified surfaces. J Alloy Comp 385:257–263CrossRef Takagi H, Hatori H, Yamada Y, Matsuo S, Shiraishi M (2004) Hydrogen adsorption properties of activated carbons with modified surfaces. J Alloy Comp 385:257–263CrossRef
692.
go back to reference Zhao X, Villar-Rodil S, Fletcher AJ, Thomas KM (2006) Kinetic isotope effect for H2 and D2 quantum molecular sieving in adsorption/desorption on porous carbon materials. J Phys Chem B 110:9947–9955CrossRef Zhao X, Villar-Rodil S, Fletcher AJ, Thomas KM (2006) Kinetic isotope effect for H2 and D2 quantum molecular sieving in adsorption/desorption on porous carbon materials. J Phys Chem B 110:9947–9955CrossRef
693.
go back to reference Zhao XB, Xiao B, Fletcher AJ, Thomas KM (2005) Hydrogen adsorption on functionalized nanoporous activated carbons. J Phys Chem B 109:8880–8888CrossRef Zhao XB, Xiao B, Fletcher AJ, Thomas KM (2005) Hydrogen adsorption on functionalized nanoporous activated carbons. J Phys Chem B 109:8880–8888CrossRef
694.
go back to reference Schimmel HG, Kearley GJ, Nijkamp MG, Visser CT, de Jong KP, Mulder FM (2003) Hydrogen adsorption in carbon nanostructures: comparison of nanotubes, fibers, and coals. Chem Eur J 9:4764–4770CrossRef Schimmel HG, Kearley GJ, Nijkamp MG, Visser CT, de Jong KP, Mulder FM (2003) Hydrogen adsorption in carbon nanostructures: comparison of nanotubes, fibers, and coals. Chem Eur J 9:4764–4770CrossRef
695.
go back to reference Schimmel HG, Nijkamp G, Kearley GJ, Rivera A, De Jong KP, Mulder FM (2004) Hydrogen adsorption in carbon nanostructures compared. Mater Sci Eng B Solid State Mater Advan Technol 108:124–129 Schimmel HG, Nijkamp G, Kearley GJ, Rivera A, De Jong KP, Mulder FM (2004) Hydrogen adsorption in carbon nanostructures compared. Mater Sci Eng B Solid State Mater Advan Technol 108:124–129
696.
go back to reference Texier-Mandoki N, Dentzer J, Piquero T, Saadallah S, David P, Vix-Guterl C (2004) Hydrogen storage in activated carbon materials: role of the nanoporous texture. Carbon 42:2744–2747CrossRef Texier-Mandoki N, Dentzer J, Piquero T, Saadallah S, David P, Vix-Guterl C (2004) Hydrogen storage in activated carbon materials: role of the nanoporous texture. Carbon 42:2744–2747CrossRef
697.
go back to reference Gadiou R, Saadallah SE, Piquero T, David P, Parmentier J, Vix-Guterl C (2005) The influence of textural properties on the adsorption of hydrogen on ordered nanostructured carbons. Microporous Mesoporous Mater 79:121–128CrossRef Gadiou R, Saadallah SE, Piquero T, David P, Parmentier J, Vix-Guterl C (2005) The influence of textural properties on the adsorption of hydrogen on ordered nanostructured carbons. Microporous Mesoporous Mater 79:121–128CrossRef
698.
go back to reference Gogotsi Y, Dash RK, Yushin G, Yildirim T, Laudisio G, Fischer JE (2005) Tailoring of nanoscale porosity in carbide-derived carbons for hydrogen storage. J Am Chem Soc 127:16006–16007CrossRef Gogotsi Y, Dash RK, Yushin G, Yildirim T, Laudisio G, Fischer JE (2005) Tailoring of nanoscale porosity in carbide-derived carbons for hydrogen storage. J Am Chem Soc 127:16006–16007CrossRef
699.
go back to reference Rowsell JLC, Yaghi OM (2006) Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks. J Am Chem Soc 128:1304–1315CrossRef Rowsell JLC, Yaghi OM (2006) Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks. J Am Chem Soc 128:1304–1315CrossRef
700.
go back to reference Chapman KW, Southon PD, Weeks CL, Kepert CJ (2005) Reversible hydrogen gas uptake in nanoporous Prussian blue analogues. Chem Commun 26:3322–3324CrossRef Chapman KW, Southon PD, Weeks CL, Kepert CJ (2005) Reversible hydrogen gas uptake in nanoporous Prussian blue analogues. Chem Commun 26:3322–3324CrossRef
701.
go back to reference Chun H, Dybtsev DN, Kim H, Kim K (2005) Synthesis, x-ray crystal structures, and gas sorption properties of pillared square grid nets based on paddle-wheel motifs: implications for hydrogen storage in porous materials. Chem Eur J 11:3521–3529CrossRef Chun H, Dybtsev DN, Kim H, Kim K (2005) Synthesis, x-ray crystal structures, and gas sorption properties of pillared square grid nets based on paddle-wheel motifs: implications for hydrogen storage in porous materials. Chem Eur J 11:3521–3529CrossRef
702.
go back to reference Kaye SS, Long JR (2005) Hydrogen storage in the dehydrated prussian blue analogues M3[Co(CN)6]2 (M = Mn, Fe, Co, Ni, Cu, Zn). J Am Chem Soc 127:6506–6507CrossRef Kaye SS, Long JR (2005) Hydrogen storage in the dehydrated prussian blue analogues M3[Co(CN)6]2 (M = Mn, Fe, Co, Ni, Cu, Zn). J Am Chem Soc 127:6506–6507CrossRef
703.
go back to reference Dybtsev DN, Chun H, Kim K (2004) Rigid and flexible: a highly porous metal–organic framework with unusual guest-dependent dynamic behavior. Angew Chem Int Ed 43:5033–5036CrossRef Dybtsev DN, Chun H, Kim K (2004) Rigid and flexible: a highly porous metal–organic framework with unusual guest-dependent dynamic behavior. Angew Chem Int Ed 43:5033–5036CrossRef
704.
go back to reference Chen B, Ockwig NW, Millward AR, Contreras DS, Yaghi OM (2005) High H2 adsorption in a microporous metal-organic framework with open metal sites. Angew Chem Int Ed 44: 4745–4749CrossRef Chen B, Ockwig NW, Millward AR, Contreras DS, Yaghi OM (2005) High H2 adsorption in a microporous metal-organic framework with open metal sites. Angew Chem Int Ed 44: 4745–4749CrossRef
705.
go back to reference Dietzel PDC, Panella B, Hirscher M, Blom R, Fjellvag H (2006) Hydrogen adsorption in a nickel based coordination polymer with open metal sites in the cylindrical cavities of the desolvated framework. Chem Commun 9:959–961 Dietzel PDC, Panella B, Hirscher M, Blom R, Fjellvag H (2006) Hydrogen adsorption in a nickel based coordination polymer with open metal sites in the cylindrical cavities of the desolvated framework. Chem Commun 9:959–961
706.
go back to reference Belosludov VR, Subbotin OS, Belosludov RV, Mizuseki H, Kawazoe Y, Kudoh J (2009) Thermodynamics and hydrogen storage ability of binary hydrogen + help gas clathrate hydrate. Int J Nanosci 8(1 & 2):57–63CrossRef Belosludov VR, Subbotin OS, Belosludov RV, Mizuseki H, Kawazoe Y, Kudoh J (2009) Thermodynamics and hydrogen storage ability of binary hydrogen + help gas clathrate hydrate. Int J Nanosci 8(1 & 2):57–63CrossRef
707.
go back to reference Di Profio P, Arca S, Rossi F, Filipponi M (2009) Comparison of hydrogen hydrates with existing hydrogen storage technologies: energetic and economic evaluations. Int J Hydrogen Energy 34(22):9173–9180CrossRef Di Profio P, Arca S, Rossi F, Filipponi M (2009) Comparison of hydrogen hydrates with existing hydrogen storage technologies: energetic and economic evaluations. Int J Hydrogen Energy 34(22):9173–9180CrossRef
708.
go back to reference Gutowski M, Abramov AV (2009) Hierarchical storage of hydrogen in clathrates of ammonia borane. Prepr Symp Am Chem Soc, Div Fuel Chem 54(2):849–852 Gutowski M, Abramov AV (2009) Hierarchical storage of hydrogen in clathrates of ammonia borane. Prepr Symp Am Chem Soc, Div Fuel Chem 54(2):849–852
709.
go back to reference Lee H, J-W L, Kim DY, Park J, Seo Y-T, Zeng H, Moudrakovski IL, Ratcliffe CI, Ripmeester JA (2005) Tuning clathrate hydrates for hydrogen storage. Nature (London, UK) 434(7034):743–746 Lee H, J-W L, Kim DY, Park J, Seo Y-T, Zeng H, Moudrakovski IL, Ratcliffe CI, Ripmeester JA (2005) Tuning clathrate hydrates for hydrogen storage. Nature (London, UK) 434(7034):743–746
710.
go back to reference Martin A, Peters CJ (2009) Hydrogen storage in sH clathrate hydrates: thermodynamic model. J Phys Chem B 113(21):7558–7563CrossRef Martin A, Peters CJ (2009) Hydrogen storage in sH clathrate hydrates: thermodynamic model. J Phys Chem B 113(21):7558–7563CrossRef
711.
go back to reference Mulder FM, Wagemaker M, van Eijck L, Kearley GJ (2008) Hydrogen in porous tetrahydrofuran clathrate hydrate. Chemphyschem 9(9):1331–1337CrossRef Mulder FM, Wagemaker M, van Eijck L, Kearley GJ (2008) Hydrogen in porous tetrahydrofuran clathrate hydrate. Chemphyschem 9(9):1331–1337CrossRef
712.
go back to reference Nakayama T, Tomura S, Ozaki M, Ohmura R, Mori YH (2010) Engineering investigation of hydrogen storage in the form of clathrate hydrates: conceptual design of hydrate production plants. Energy Fuels 24(4):2576–2588CrossRef Nakayama T, Tomura S, Ozaki M, Ohmura R, Mori YH (2010) Engineering investigation of hydrogen storage in the form of clathrate hydrates: conceptual design of hydrate production plants. Energy Fuels 24(4):2576–2588CrossRef
713.
go back to reference Ogata K, Tsuda T, Amano S, Hashimoto S, Sugahara T, Ohgaki K (2010) Hydrogen storage in trimethylamine hydrate: thermodynamic stability and hydrogen storage capacity of hydrogen + trimethylamine mixed semi-clathrate hydrate. Chem Eng Sci 65(5):1616–1620CrossRef Ogata K, Tsuda T, Amano S, Hashimoto S, Sugahara T, Ohgaki K (2010) Hydrogen storage in trimethylamine hydrate: thermodynamic stability and hydrogen storage capacity of hydrogen + trimethylamine mixed semi-clathrate hydrate. Chem Eng Sci 65(5):1616–1620CrossRef
714.
go back to reference Papadimitriou NI, Tsimpanogiannis IN, Stubos AK (2010) Computational approach to study hydrogen storage in clathrate hydrates. Colloids Surf A Physicochem Eng Aspects 357(1–3): 67–73CrossRef Papadimitriou NI, Tsimpanogiannis IN, Stubos AK (2010) Computational approach to study hydrogen storage in clathrate hydrates. Colloids Surf A Physicochem Eng Aspects 357(1–3): 67–73CrossRef
715.
go back to reference Prasad PR, Sum AK, Sloan ED, Koh CA (2009) Hydrogen storage in clathrate materials. Abstracts of Papers, 237th ACS National Meeting, Salt Lake City, UT, United States, 22–26 March 2009, FUEL-154 Prasad PR, Sum AK, Sloan ED, Koh CA (2009) Hydrogen storage in clathrate materials. Abstracts of Papers, 237th ACS National Meeting, Salt Lake City, UT, United States, 22–26 March 2009, FUEL-154
716.
go back to reference Prasad PSR, Sugahara T, Kim Y, Sum AK, Sloan ED, Koh CA (2009) Hydrogen storage in clathrate materials. Prepr Symp Am Chem Soc, Div Fuel Chem 54(2):855 Prasad PSR, Sugahara T, Kim Y, Sum AK, Sloan ED, Koh CA (2009) Hydrogen storage in clathrate materials. Prepr Symp Am Chem Soc, Div Fuel Chem 54(2):855
717.
go back to reference Prasad PSR, Sugahara T, Sum AK, Sloan ED, Koh CA (2009) Hydrogen storage in double clathrates with tert-butylamine. J Phys Chem A 113(24):6540–6543CrossRef Prasad PSR, Sugahara T, Sum AK, Sloan ED, Koh CA (2009) Hydrogen storage in double clathrates with tert-butylamine. J Phys Chem A 113(24):6540–6543CrossRef
718.
go back to reference Saha D, Deng S (2009) Enhanced hydrogen adsorption in ordered mesoporous carbon through clathrate formation. Int J Hydrogen Energy 34(20):8583–8588CrossRef Saha D, Deng S (2009) Enhanced hydrogen adsorption in ordered mesoporous carbon through clathrate formation. Int J Hydrogen Energy 34(20):8583–8588CrossRef
719.
go back to reference Shin K, Kim Y, Strobel TA, Prasad PSR, Sugahara T, Lee H, Sloan ED, Sum AK, Koh CA (2009) Tetra-n-butylammonium borohydride semiclathrate: a hybrid material for hydrogen storage. J Phys Chem A 113(23):6415–6418CrossRef Shin K, Kim Y, Strobel TA, Prasad PSR, Sugahara T, Lee H, Sloan ED, Sum AK, Koh CA (2009) Tetra-n-butylammonium borohydride semiclathrate: a hybrid material for hydrogen storage. J Phys Chem A 113(23):6415–6418CrossRef
720.
go back to reference Sluiter MHF, Adachi H, Belosludov RV, Belosludov VR, Kawazoe Y (2004) Ab initio study of hydrogen storage in hydrogen hydrate clathrates. Mater Trans 45(5):1452–1454CrossRef Sluiter MHF, Adachi H, Belosludov RV, Belosludov VR, Kawazoe Y (2004) Ab initio study of hydrogen storage in hydrogen hydrate clathrates. Mater Trans 45(5):1452–1454CrossRef
721.
go back to reference Strobel TA, Hester KC, Koh CA, Sum AK, Sloan ED Jr (2009) Properties of the clathrates of hydrogen and developments in their applicability for hydrogen storage. Chem Phys Lett 478(4–6):97–109CrossRef Strobel TA, Hester KC, Koh CA, Sum AK, Sloan ED Jr (2009) Properties of the clathrates of hydrogen and developments in their applicability for hydrogen storage. Chem Phys Lett 478(4–6):97–109CrossRef
722.
go back to reference Strobel TA, Kim Y, Andrews GS, Ferrell JR III, Koh CA, Herring AM, Sloan ED (2008) Chemical-clathrate hybrid hydrogen storage: storage in both guest and host. J Am Chem Soc 130(45):14975–14977CrossRef Strobel TA, Kim Y, Andrews GS, Ferrell JR III, Koh CA, Herring AM, Sloan ED (2008) Chemical-clathrate hybrid hydrogen storage: storage in both guest and host. J Am Chem Soc 130(45):14975–14977CrossRef
723.
go back to reference Strobel TA, Kim Y, Andrews GS, Ferrell JR III, Koh CA, Herring AM, Sloan ED (2009) Chemical-clathrate hybrid hydrogen storage. Prepr Symp Am Chem Soc, Div Fuel Chem 54(1):314–316 Strobel TA, Kim Y, Andrews GS, Ferrell JR III, Koh CA, Herring AM, Sloan ED (2009) Chemical-clathrate hybrid hydrogen storage. Prepr Symp Am Chem Soc, Div Fuel Chem 54(1):314–316
724.
go back to reference Strobel TA, Koh CA, Sloan ED (2009) Thermodynamic predictions of various tetrahydrofuran and hydrogen clathrate hydrates. Fluid Phase Equilib 280(1–2):61–67CrossRef Strobel TA, Koh CA, Sloan ED (2009) Thermodynamic predictions of various tetrahydrofuran and hydrogen clathrate hydrates. Fluid Phase Equilib 280(1–2):61–67CrossRef
725.
go back to reference Su F, Bray CL, Carter BO, Overend G, Cropper C, Iggo JA, Khimyak YZ, Fogg AM, Cooper AI (2009) Reversible hydrogen storage in hydrogel clathrate hydrates. Advan Mater 21(23):2382–2386CrossRef Su F, Bray CL, Carter BO, Overend G, Cropper C, Iggo JA, Khimyak YZ, Fogg AM, Cooper AI (2009) Reversible hydrogen storage in hydrogel clathrate hydrates. Advan Mater 21(23):2382–2386CrossRef
726.
go back to reference Sugahara T, Haag JC, Prasad PSR, Warntjes AA, Sloan ED, Sum AK, Koh CA (2009) Increasing hydrogen storage capacity using tetrahydrofuran. J Am Chem Soc 131(41): 14616–14617CrossRef Sugahara T, Haag JC, Prasad PSR, Warntjes AA, Sloan ED, Sum AK, Koh CA (2009) Increasing hydrogen storage capacity using tetrahydrofuran. J Am Chem Soc 131(41): 14616–14617CrossRef
727.
go back to reference Tsuda T, Ogata K, Hashimoto S, Sugahara T, Moritoki M, Ohgaki K (2009) Storage capacity of hydrogen in tetrahydrothiophene and furan clathrate hydrates. Chem Eng Sci 64(19): 4150–4154CrossRef Tsuda T, Ogata K, Hashimoto S, Sugahara T, Moritoki M, Ohgaki K (2009) Storage capacity of hydrogen in tetrahydrothiophene and furan clathrate hydrates. Chem Eng Sci 64(19): 4150–4154CrossRef
728.
go back to reference Van den Berg AWC, Bromley ST, Jansen JC, Maschmeyer T (2004) Clathrates as potential hydrogen storage materials. Advances in Science and Technology (Faenza, Italy) 42(Computational Modeling and Simulation of Materials III, Part A), pp 549–556 Van den Berg AWC, Bromley ST, Jansen JC, Maschmeyer T (2004) Clathrates as potential hydrogen storage materials. Advances in Science and Technology (Faenza, Italy) 42(Computational Modeling and Simulation of Materials III, Part A), pp 549–556
730.
go back to reference Lee H, Lee J-W, Kim DY, Park J, SeoY-T ZH, Moudrakovski IL, Ratcliffe CL, Ripmeester JA (2005) Tuning clathrate hydrates for hydrogen storage. Nature 434(7034):743–746CrossRef Lee H, Lee J-W, Kim DY, Park J, SeoY-T ZH, Moudrakovski IL, Ratcliffe CL, Ripmeester JA (2005) Tuning clathrate hydrates for hydrogen storage. Nature 434(7034):743–746CrossRef
731.
go back to reference Hirose K (2010) Handbook of hydrogen storage: new materials for future energy storage. Wiley-VCH, Weinheim Hirose K (2010) Handbook of hydrogen storage: new materials for future energy storage. Wiley-VCH, Weinheim
732.
go back to reference Zuttel A, Schlapbach L (2009) Science and technology of hydrogen: book series on complex metallic alloys 2(Properties and Applications of Complex Intermetallics) pp 331–363 Zuttel A, Schlapbach L (2009) Science and technology of hydrogen: book series on complex metallic alloys 2(Properties and Applications of Complex Intermetallics) pp 331–363
733.
go back to reference Biniwale RB, Rayalu S, Devotta S, Ichikawa M (2008) Chemical hydrides: a solution to high capacity hydrogen storage and supply. Int J Hydrogen Energy 33(1):360–365CrossRef Biniwale RB, Rayalu S, Devotta S, Ichikawa M (2008) Chemical hydrides: a solution to high capacity hydrogen storage and supply. Int J Hydrogen Energy 33(1):360–365CrossRef
734.
go back to reference Dornheim M, Eigen N, Barkhordarian G, Klassen T, Bormann R (2006) Tailoring hydrogen storage materials towards application. Adv Eng Mater 8(5):377–385CrossRef Dornheim M, Eigen N, Barkhordarian G, Klassen T, Bormann R (2006) Tailoring hydrogen storage materials towards application. Adv Eng Mater 8(5):377–385CrossRef
735.
go back to reference John V, Pinkerton F, Stetson N (2009) Nanoscale phenomena in hydrogen storage. Nanotechnology 20(20):200201–200202CrossRef John V, Pinkerton F, Stetson N (2009) Nanoscale phenomena in hydrogen storage. Nanotechnology 20(20):200201–200202CrossRef
736.
go back to reference Nico E, Claude K, Martin D, Thomas K, Rudiger B (2007) Industrial production of light metal hydrides for hydrogen storage. Scr Mater 56(10):847–851CrossRef Nico E, Claude K, Martin D, Thomas K, Rudiger B (2007) Industrial production of light metal hydrides for hydrogen storage. Scr Mater 56(10):847–851CrossRef
737.
go back to reference Orimo S-I, Nakamori Y, Eliseo JR, Zuttel A, Jensen CM (2007) Complex hydrides for hydrogen storage. Chem Rev 107(10):4111–4132CrossRef Orimo S-I, Nakamori Y, Eliseo JR, Zuttel A, Jensen CM (2007) Complex hydrides for hydrogen storage. Chem Rev 107(10):4111–4132CrossRef
738.
go back to reference Sakintuna B, Lamari-Darkrim F, Hirscher M (2007) Metal hydride materials for solid hydrogen storage: a review. Int J Hydrogen Energy 32(9):1121–1140CrossRef Sakintuna B, Lamari-Darkrim F, Hirscher M (2007) Metal hydride materials for solid hydrogen storage: a review. Int J Hydrogen Energy 32(9):1121–1140CrossRef
739.
go back to reference Satyapal S, Petrovic J, Read C, Thomas G, Ordaz G (2007) The U.S. Department of Energy’s National Hydrogen Storage Project: progress towards meeting hydrogen-powered vehicle requirements. Catal Today 120(3–4):246–256 Satyapal S, Petrovic J, Read C, Thomas G, Ordaz G (2007) The U.S. Department of Energy’s National Hydrogen Storage Project: progress towards meeting hydrogen-powered vehicle requirements. Catal Today 120(3–4):246–256
740.
go back to reference Vincent B, Gregg R, Mildred D, Gang C (2007) Size effects on the hydrogen storage properties of nanostructured metal hydrides: a review. Int J Energy Res 31(6–7):637–663 Vincent B, Gregg R, Mildred D, Gang C (2007) Size effects on the hydrogen storage properties of nanostructured metal hydrides: a review. Int J Energy Res 31(6–7):637–663
741.
go back to reference Yamamoto H, Miyaoka H, Hino S, Nakanishi H, Ichikawa T, Kojima Y (2009) Recyclable hydrogen storage system composed of ammonia and alkali metal hydride. Int J Hydrogen Energy 34(24):9760–9764CrossRef Yamamoto H, Miyaoka H, Hino S, Nakanishi H, Ichikawa T, Kojima Y (2009) Recyclable hydrogen storage system composed of ammonia and alkali metal hydride. Int J Hydrogen Energy 34(24):9760–9764CrossRef
742.
go back to reference Sabitu ST, Gallo G, Goudy AJ (2010) Effect of TiH2 and Mg2Ni additives on the hydrogen storage properties of magnesium hydride. J Alloy Comp 499(1):35–38CrossRef Sabitu ST, Gallo G, Goudy AJ (2010) Effect of TiH2 and Mg2Ni additives on the hydrogen storage properties of magnesium hydride. J Alloy Comp 499(1):35–38CrossRef
743.
go back to reference Kalisvaart WP, Harrower CT, Haagsma J, Zahiri B, Luber EJ, Ophus C, Poirier E, Fritzsche H, Mitlin D (2010) Hydrogen storage in binary and ternary Mg-based alloys: a comprehensive experimental study. Int J Hydrogen Energy 35(5):2091–2103CrossRef Kalisvaart WP, Harrower CT, Haagsma J, Zahiri B, Luber EJ, Ophus C, Poirier E, Fritzsche H, Mitlin D (2010) Hydrogen storage in binary and ternary Mg-based alloys: a comprehensive experimental study. Int J Hydrogen Energy 35(5):2091–2103CrossRef
744.
go back to reference Weidenthaler C, Pommerin A, Felderhoff M, Sun W, Wolverton C, Bogdanovic B, Schuth F (2009) Complex rare-earth aluminum hydrides: mechanochemical preparation, crystal structure and potential for hydrogen storage. J Am Chem Soc 131(46):16735–16743CrossRef Weidenthaler C, Pommerin A, Felderhoff M, Sun W, Wolverton C, Bogdanovic B, Schuth F (2009) Complex rare-earth aluminum hydrides: mechanochemical preparation, crystal structure and potential for hydrogen storage. J Am Chem Soc 131(46):16735–16743CrossRef
745.
go back to reference Dornheim M, Doppiu S, Barkhordarian G, Boesenberg U, Klassen T, Gutfleisch O, Bormann R (2007) Hydrogen storage in magnesium-based hydrides and hydride composites. Scr Materialia 56(10):841–846CrossRef Dornheim M, Doppiu S, Barkhordarian G, Boesenberg U, Klassen T, Gutfleisch O, Bormann R (2007) Hydrogen storage in magnesium-based hydrides and hydride composites. Scr Materialia 56(10):841–846CrossRef
747.
go back to reference Khandelwal A, Agresti F, Capurso G, Lo Russo S, Maddalena A, Gialanella S, Principi G (2010) Pellets of MgH2-based composites as practical material for solid state hydrogen storage. Int J Hydrogen Energy 35(8):3565–3571CrossRef Khandelwal A, Agresti F, Capurso G, Lo Russo S, Maddalena A, Gialanella S, Principi G (2010) Pellets of MgH2-based composites as practical material for solid state hydrogen storage. Int J Hydrogen Energy 35(8):3565–3571CrossRef
748.
go back to reference Molinas B, Ghilarducci AA, Melnichuk M, Corso HL, Peretti HA, Agresti F, Bianchin A, Lo Russo S, Maddalena A, Principi G (2009) Scaled-up production of a promising Mg-based hydride for hydrogen storage. Int J Hydrogen Energy 34(10):4597–4601CrossRef Molinas B, Ghilarducci AA, Melnichuk M, Corso HL, Peretti HA, Agresti F, Bianchin A, Lo Russo S, Maddalena A, Principi G (2009) Scaled-up production of a promising Mg-based hydride for hydrogen storage. Int J Hydrogen Energy 34(10):4597–4601CrossRef
749.
go back to reference Tsubota M, Hino S, Fujii H, Oomatsu C, Yamana M, Ichikawa T, Kojima Y (2010) Reaction between magnesium ammine complex compound and lithium hydride. Int J Hydrogen Energy 35(5):2058–2062CrossRef Tsubota M, Hino S, Fujii H, Oomatsu C, Yamana M, Ichikawa T, Kojima Y (2010) Reaction between magnesium ammine complex compound and lithium hydride. Int J Hydrogen Energy 35(5):2058–2062CrossRef
750.
go back to reference Zhao X, Ma L (2009) Recent progress in hydrogen storage alloys for nickel/metal hydride secondary batteries. Int J Hydrogen Energy 34(11):4788–4796CrossRef Zhao X, Ma L (2009) Recent progress in hydrogen storage alloys for nickel/metal hydride secondary batteries. Int J Hydrogen Energy 34(11):4788–4796CrossRef
751.
go back to reference Liu Y, Liang C, Wei Z, Jiang Y, Gao M, Pan H, Wang Q (2010) Hydrogen storage reaction over a ternary imide Li2Mg2N3H3. Phys Chem Chem Phys 12(13):3108–3111CrossRef Liu Y, Liang C, Wei Z, Jiang Y, Gao M, Pan H, Wang Q (2010) Hydrogen storage reaction over a ternary imide Li2Mg2N3H3. Phys Chem Chem Phys 12(13):3108–3111CrossRef
752.
go back to reference Lu D-S, Li W-S (2009) Electrochemical codeposition of magnesium and nickel alloy for hydrogen storage. Mater Chem Phys 117(2–3):395–398 Lu D-S, Li W-S (2009) Electrochemical codeposition of magnesium and nickel alloy for hydrogen storage. Mater Chem Phys 117(2–3):395–398
753.
go back to reference Ma L-P, Wang P, Cheng H-M (2010) Hydrogen sorption kinetics of MgH2 catalyzed with titanium compounds. Int J Hydrogen Energy 35(7):3046–3050CrossRef Ma L-P, Wang P, Cheng H-M (2010) Hydrogen sorption kinetics of MgH2 catalyzed with titanium compounds. Int J Hydrogen Energy 35(7):3046–3050CrossRef
754.
go back to reference Mao J, Guo Z, Yu X, Liu H, Wu Z, Ni J (2010) Enhanced hydrogen sorption properties of Ni and Co-catalyzed MgH2. Int J Hydrogen Energy 35(10):4569–4575CrossRef Mao J, Guo Z, Yu X, Liu H, Wu Z, Ni J (2010) Enhanced hydrogen sorption properties of Ni and Co-catalyzed MgH2. Int J Hydrogen Energy 35(10):4569–4575CrossRef
755.
go back to reference Kwon SN, Mumm DR, Park HR, Song MY (2010) Effects of transition metal oxide and Ni addition on the hydrogen-storage properties of Mg. J Mater Sci 45(19):5164–5170CrossRef Kwon SN, Mumm DR, Park HR, Song MY (2010) Effects of transition metal oxide and Ni addition on the hydrogen-storage properties of Mg. J Mater Sci 45(19):5164–5170CrossRef
756.
go back to reference Langmi HW, Culligan SD, McGrady GS (2009) Mixed-metal Li3N-based systems for hydrogen storage: Li3AlN2 and Li3FeN2. Int J Hydrogen Energy 34(19):8108–8114CrossRef Langmi HW, Culligan SD, McGrady GS (2009) Mixed-metal Li3N-based systems for hydrogen storage: Li3AlN2 and Li3FeN2. Int J Hydrogen Energy 34(19):8108–8114CrossRef
757.
go back to reference Li SL, Wang P, Chen W, Luo G, Chen DM, Yang K (2009) Hydrogen storage properties of LaNi3.8Al1.0M0.2 (M = Ni, Cu, Fe, Al, Cr, Mn) alloys. J Alloy Comp 485(1–2):867–871 Li SL, Wang P, Chen W, Luo G, Chen DM, Yang K (2009) Hydrogen storage properties of LaNi3.8Al1.0M0.2 (M = Ni, Cu, Fe, Al, Cr, Mn) alloys. J Alloy Comp 485(1–2):867–871
758.
go back to reference Li W, Vajo JJ, Cumberland RW, Liu P, Hwang S-J, Kim C, Bowman RC (2010) Hydrogenation of magnesium nickel boride for reversible hydrogen storage. J Phys Chem Lett 1(1):69–72CrossRef Li W, Vajo JJ, Cumberland RW, Liu P, Hwang S-J, Kim C, Bowman RC (2010) Hydrogenation of magnesium nickel boride for reversible hydrogen storage. J Phys Chem Lett 1(1):69–72CrossRef
759.
go back to reference Chaise A, de Rango P, Marty P, Fruchart D, Miraglia S, Olives R, Garrier S (2009) Enhancement of hydrogen sorption in magnesium hydride using expanded natural graphite. Int J Hydrogen Energy 34(20):8589–8596CrossRef Chaise A, de Rango P, Marty P, Fruchart D, Miraglia S, Olives R, Garrier S (2009) Enhancement of hydrogen sorption in magnesium hydride using expanded natural graphite. Int J Hydrogen Energy 34(20):8589–8596CrossRef
760.
go back to reference Cho Y, Dahle AK (2010) Characterization of hydrogen sorption properties and microstructure of cast Mg-10wt%Ni alloys. Mater Sci Forum 638–642:1085–1090 (Pt. 2, THERMEC 2009) Cho Y, Dahle AK (2010) Characterization of hydrogen sorption properties and microstructure of cast Mg-10wt%Ni alloys. Mater Sci Forum 638–642:1085–1090 (Pt. 2, THERMEC 2009)
761.
go back to reference Fang W, H-f S, W-b F, Wang B (2009) Effect of Al and Zn additives on grain size of Mg-3Ni-2MnO2 alloy. Trans Nonferrous Met Soc China 19(Spec. 2):s355–s358 Fang W, H-f S, W-b F, Wang B (2009) Effect of Al and Zn additives on grain size of Mg-3Ni-2MnO2 alloy. Trans Nonferrous Met Soc China 19(Spec. 2):s355–s358
762.
go back to reference Giusepponi S, Celino M, Cleri F, Montone A (2009) Hydrogen storage in MgH2 matrices: a study of Mg-MgH2 interface using CPMD code on ENEA-GRID. Il Nuovo Cimento C 32C(2):139–142 Giusepponi S, Celino M, Cleri F, Montone A (2009) Hydrogen storage in MgH2 matrices: a study of Mg-MgH2 interface using CPMD code on ENEA-GRID. Il Nuovo Cimento C 32C(2):139–142
763.
go back to reference Hong TW, Kim IH, Ur SC, Lee YG, Kim YJ (2005) Hydriding/dehydriding behavior of Mg-Ni systems. Mater Sci Forum 486–487:582–585 (Eco-Materials Processing & Design VI) Hong TW, Kim IH, Ur SC, Lee YG, Kim YJ (2005) Hydriding/dehydriding behavior of Mg-Ni systems. Mater Sci Forum 486–487:582–585 (Eco-Materials Processing & Design VI)
764.
go back to reference Imamura H, Tanaka K, Kitazawa I, Sumi T, Sakata Y, Nakayama N, Ooshima S (2009) Hydrogen storage properties of nanocrystalline MgH2 and MgH2/Sn nanocomposite synthesized by ball milling. J Alloy Comp 484(1–2):939–942CrossRef Imamura H, Tanaka K, Kitazawa I, Sumi T, Sakata Y, Nakayama N, Ooshima S (2009) Hydrogen storage properties of nanocrystalline MgH2 and MgH2/Sn nanocomposite synthesized by ball milling. J Alloy Comp 484(1–2):939–942CrossRef
765.
go back to reference Jain IP, Lal C, Jain A (2010) Hydrogen storage in Mg: a most promising material. Int J Hydrogen Energy 35(10):5133–5144CrossRef Jain IP, Lal C, Jain A (2010) Hydrogen storage in Mg: a most promising material. Int J Hydrogen Energy 35(10):5133–5144CrossRef
766.
go back to reference Jaron T, Grochala W (2010) Y(BH4)3 – an old-new ternary hydrogen store aka learning from a multitude of failures. Dalton Trans 39(1):160–166CrossRef Jaron T, Grochala W (2010) Y(BH4)3 – an old-new ternary hydrogen store aka learning from a multitude of failures. Dalton Trans 39(1):160–166CrossRef
767.
go back to reference Johnson SR, Anderson PA, Edwards PP, Gameson I, Prendergast JW, Al-Mamouri M, Book D, Harris IR, Speight JD, Walton A (2005) Chemical activation of MgH2; a new route to superior hydrogen storage materials. Chem Commun (22): 2823–2825CrossRef Johnson SR, Anderson PA, Edwards PP, Gameson I, Prendergast JW, Al-Mamouri M, Book D, Harris IR, Speight JD, Walton A (2005) Chemical activation of MgH2; a new route to superior hydrogen storage materials. Chem Commun (22): 2823–2825CrossRef
768.
go back to reference Liu DM, Fang CH, Zhang QA (2009) Hydrogen storage properties of MgH2-(Sr, Ca)2AlH7 composite. J Alloy Comp 485(1–2):391–395 Liu DM, Fang CH, Zhang QA (2009) Hydrogen storage properties of MgH2-(Sr, Ca)2AlH7 composite. J Alloy Comp 485(1–2):391–395
769.
go back to reference Milanese C, Girella A, Bruni G, Cofrancesco P, Berbenni V, Matteazzi P, Marini A (2009) Mg-Ni-Cu mixtures for hydrogen storage: a kinetic study. Intermetallics 18(2):203–211CrossRef Milanese C, Girella A, Bruni G, Cofrancesco P, Berbenni V, Matteazzi P, Marini A (2009) Mg-Ni-Cu mixtures for hydrogen storage: a kinetic study. Intermetallics 18(2):203–211CrossRef
770.
go back to reference Rousselot S, Guay D, Roue L (2010) Synthesis of fcc Mg-Ti-H alloys by high energy ball milling: structure and electrochemical hydrogen storage properties. J Power Sources 195(13):4370–4374CrossRef Rousselot S, Guay D, Roue L (2010) Synthesis of fcc Mg-Ti-H alloys by high energy ball milling: structure and electrochemical hydrogen storage properties. J Power Sources 195(13):4370–4374CrossRef
771.
go back to reference Niemann MU, Srinivasan SS, Kumar A, Stefanakos EK, Goswami DY, McGrath K (2009) Processing analysis of the ternary LiNH2-MgH2-LiBH4 system for hydrogen storage. Int J Hydrogen Energy 34(19):8086–8093CrossRef Niemann MU, Srinivasan SS, Kumar A, Stefanakos EK, Goswami DY, McGrath K (2009) Processing analysis of the ternary LiNH2-MgH2-LiBH4 system for hydrogen storage. Int J Hydrogen Energy 34(19):8086–8093CrossRef
772.
go back to reference Spassov T, Delchev P, Madjarov P, Spassova M, Himitliiska T (2010) Hydrogen storage in Mg-10at.% LaNi5 nanocomposites, synthesized by ball milling at different conditions. J Alloy Comp 495(1):149–153 Spassov T, Delchev P, Madjarov P, Spassova M, Himitliiska T (2010) Hydrogen storage in Mg-10at.% LaNi5 nanocomposites, synthesized by ball milling at different conditions. J Alloy Comp 495(1):149–153
773.
go back to reference Nogita K, Ockert S, Duguid A, Pierce J, Greaves M (2009) Mechanism of improved hydrogen absorption kinetics in cast Mg-Ni alloys. Mater Sci Forum 618–619:391–394 (Light Metals Technology 2009) Nogita K, Ockert S, Duguid A, Pierce J, Greaves M (2009) Mechanism of improved hydrogen absorption kinetics in cast Mg-Ni alloys. Mater Sci Forum 618–619:391–394 (Light Metals Technology 2009)
774.
go back to reference Orban RL, Lucaci M, Salomie D, Orban M (2008) Nanocrystalline Fe-Ti-AI-Ni alloys for hydrogen storage processing by reactive mechanical alloying. Adv Powder Metall Partic Mater 9/251–9/263 Orban RL, Lucaci M, Salomie D, Orban M (2008) Nanocrystalline Fe-Ti-AI-Ni alloys for hydrogen storage processing by reactive mechanical alloying. Adv Powder Metall Partic Mater 9/251–9/263
775.
go back to reference Osborn W, Markmaitree T, Shaw LL (2007) Evaluation of the hydrogen storage behavior of a LiNH2 + MgH2 system with 1:1 ratio. J Power Sources 172(1):376–378CrossRef Osborn W, Markmaitree T, Shaw LL (2007) Evaluation of the hydrogen storage behavior of a LiNH2 + MgH2 system with 1:1 ratio. J Power Sources 172(1):376–378CrossRef
776.
go back to reference Varin RA, Jang M, Polanski M (2009) The effects of ball milling and molar ratio of LiH on the hydrogen storage properties of nanocrystalline lithium amide and lithium hydride (LiNH2  + LiH) system. J Alloy Comp 491(1–2):658–667 Varin RA, Jang M, Polanski M (2009) The effects of ball milling and molar ratio of LiH on the hydrogen storage properties of nanocrystalline lithium amide and lithium hydride (LiNH2  + LiH) system. J Alloy Comp 491(1–2):658–667
777.
go back to reference Vella C, Renouard J, Goudon JP, Yvart P (2009) Solid hydrogen storage: hydride based composition for gaseous hydrogen generation. In: International Annual Conference of ICT 40th(Energetic Materials), pp 25/1–25/11 Vella C, Renouard J, Goudon JP, Yvart P (2009) Solid hydrogen storage: hydride based composition for gaseous hydrogen generation. In: International Annual Conference of ICT 40th(Energetic Materials), pp 25/1–25/11
778.
go back to reference Visaria M, Mudawar I, Pourpoint T, Kumar S (2010) Study of heat transfer and kinetics parameters influencing the design of heat exchangers for hydrogen storage in high-pressure metal hydrides. Int J Heat Mass Transfer 53(9–10):2229–2239MATHCrossRef Visaria M, Mudawar I, Pourpoint T, Kumar S (2010) Study of heat transfer and kinetics parameters influencing the design of heat exchangers for hydrogen storage in high-pressure metal hydrides. Int J Heat Mass Transfer 53(9–10):2229–2239MATHCrossRef
779.
go back to reference Vojtech D, Guhlova P, Mortanikova M, Janik P (2010) Hydrogen storage by direct electrochemical hydriding of Mg-based alloys. J Alloy Comp 494(1–2):456–462CrossRef Vojtech D, Guhlova P, Mortanikova M, Janik P (2010) Hydrogen storage by direct electrochemical hydriding of Mg-based alloys. J Alloy Comp 494(1–2):456–462CrossRef
780.
go back to reference Wang J, Liu T, Wu G, Li W, Liu Y, Araujo CM, Scheicher RH, Blomqvist A, Ahuja R, Xiong Z, Yang P, Gao M, Pan H, Chen P (2009) Potassium-modified Mg(NH2)2/2 LiH system for hydrogen storage. Angew Chem Int Ed 48(32):5828–5832, S/1–S/2 Wang J, Liu T, Wu G, Li W, Liu Y, Araujo CM, Scheicher RH, Blomqvist A, Ahuja R, Xiong Z, Yang P, Gao M, Pan H, Chen P (2009) Potassium-modified Mg(NH2)2/2 LiH system for hydrogen storage. Angew Chem Int Ed 48(32):5828–5832, S/1–S/2
781.
go back to reference Wang Y, Adroher XC, Chen J, Yang XG, Miller T (2009) Three-dimensional modeling of hydrogen sorption in metal hydride hydrogen storage beds. J Power Sources 194(2):997–1006CrossRef Wang Y, Adroher XC, Chen J, Yang XG, Miller T (2009) Three-dimensional modeling of hydrogen sorption in metal hydride hydrogen storage beds. J Power Sources 194(2):997–1006CrossRef
782.
go back to reference Osborn W, Markmaitree T, Shaw LL (2009) The long-term hydriding and dehydriding stability of the nanoscale LiNH2 + LiH hydrogen storage system. Nanotechnology 20(20):204028/1–204028/9 Osborn W, Markmaitree T, Shaw LL (2009) The long-term hydriding and dehydriding stability of the nanoscale LiNH2 + LiH hydrogen storage system. Nanotechnology 20(20):204028/1–204028/9
783.
go back to reference Shaw LL, Wan X, Hu JZ, Kwak JH, Yang Z (2010) Solid-state hydriding mechanism in the LiBH4 + MgH2 system. J Phys Chem C 114(17):8089–8098CrossRef Shaw LL, Wan X, Hu JZ, Kwak JH, Yang Z (2010) Solid-state hydriding mechanism in the LiBH4 + MgH2 system. J Phys Chem C 114(17):8089–8098CrossRef
784.
go back to reference Pentimalli M, Padella F, La Barbera A, Pilloni L, Imperi E (2009) A metal hydride-polymer composite for hydrogen storage applications. Energy Convers Manage 50(12):3140–3146CrossRef Pentimalli M, Padella F, La Barbera A, Pilloni L, Imperi E (2009) A metal hydride-polymer composite for hydrogen storage applications. Energy Convers Manage 50(12):3140–3146CrossRef
785.
go back to reference Pourpoint TL, Velagapudi V, Mudawar I, Zheng Y, Fisher TS (2010) Active cooling of a metal hydride system for hydrogen storage. Int J Heat Mass Transfer 53(7–8):1326–1332MATHCrossRef Pourpoint TL, Velagapudi V, Mudawar I, Zheng Y, Fisher TS (2010) Active cooling of a metal hydride system for hydrogen storage. Int J Heat Mass Transfer 53(7–8):1326–1332MATHCrossRef
786.
go back to reference Ranjbar A, Guo ZP, Yu XB, Calka A, Liu HK (2009) Hydrogen storage properties of Mg-BCC composite. Int J Green Energy 6(6):607–615CrossRef Ranjbar A, Guo ZP, Yu XB, Calka A, Liu HK (2009) Hydrogen storage properties of Mg-BCC composite. Int J Green Energy 6(6):607–615CrossRef
787.
go back to reference Xiao X, Liu G, Peng S, Yu K, Li S, Chen C, Chen L (2010) Microstructure and hydrogen storage characteristics of nanocrystalline Mg + x wt% LaMg2Ni (x = 0–30) composites. Int J Hydrogen Energy 35(7):2786–2790CrossRef Xiao X, Liu G, Peng S, Yu K, Li S, Chen C, Chen L (2010) Microstructure and hydrogen storage characteristics of nanocrystalline Mg + x wt% LaMg2Ni (x = 0–30) composites. Int J Hydrogen Energy 35(7):2786–2790CrossRef
788.
go back to reference Xiong Z, Hu J, Wu G, Chen P (2005) Hydrogen absorption and desorption in Mg-Na-N-H system. J Alloy Comp 395(1–2):209–212CrossRef Xiong Z, Hu J, Wu G, Chen P (2005) Hydrogen absorption and desorption in Mg-Na-N-H system. J Alloy Comp 395(1–2):209–212CrossRef
789.
go back to reference Zhang J, Yan W, Bai C, Pan F (2009) Mechanochemical synthesis of a Mg-Li-Al-H complex hydride. J Mater Res 24(9):2880–2885CrossRef Zhang J, Yan W, Bai C, Pan F (2009) Mechanochemical synthesis of a Mg-Li-Al-H complex hydride. J Mater Res 24(9):2880–2885CrossRef
790.
go back to reference Zlotea C, Sahlberg M, Moretto P, Andersson Y (2009) Hydrogen sorption properties of a Mg-Y-Ti alloy. J Alloy Comp 489(2):375–378CrossRef Zlotea C, Sahlberg M, Moretto P, Andersson Y (2009) Hydrogen sorption properties of a Mg-Y-Ti alloy. J Alloy Comp 489(2):375–378CrossRef
791.
go back to reference Ismail M, Zhao Y, Yu XB, Dou SX (2010) Effects of NbF5 addition on the hydrogen storage properties of LiAlH4. Int J Hydrogen Energy 35(6):2361–2367CrossRef Ismail M, Zhao Y, Yu XB, Dou SX (2010) Effects of NbF5 addition on the hydrogen storage properties of LiAlH4. Int J Hydrogen Energy 35(6):2361–2367CrossRef
792.
go back to reference Principi G, Agresti F, Maddalena A, Lo Russo S (2009) The problem of solid state hydrogen storage. Energy 34:2087–2091CrossRef Principi G, Agresti F, Maddalena A, Lo Russo S (2009) The problem of solid state hydrogen storage. Energy 34:2087–2091CrossRef
793.
go back to reference Ahluwalia RK, Hua TQ, Peng JK (2009) Automotive storage of hydrogen in alane. Int J Hydrogen Energy 34(18):7731–7740CrossRef Ahluwalia RK, Hua TQ, Peng JK (2009) Automotive storage of hydrogen in alane. Int J Hydrogen Energy 34(18):7731–7740CrossRef
794.
go back to reference Luo K, Liu Y, Wang F, Gao M, Pan H (2009) Hydrogen storage in a Li-Al-N ternary system. Int J Hydrogen Energy 34(19):8101–8107CrossRef Luo K, Liu Y, Wang F, Gao M, Pan H (2009) Hydrogen storage in a Li-Al-N ternary system. Int J Hydrogen Energy 34(19):8101–8107CrossRef
795.
go back to reference Xiao X, Fan X, Yu K, Li S, Chen C, Wang Q, Chen L (2009) Catalytic Mechanism of New TiC-Doped Sodium Alanate for Hydrogen Storage. J Phys Chem C 113(48):20745–20751CrossRef Xiao X, Fan X, Yu K, Li S, Chen C, Wang Q, Chen L (2009) Catalytic Mechanism of New TiC-Doped Sodium Alanate for Hydrogen Storage. J Phys Chem C 113(48):20745–20751CrossRef
796.
go back to reference M-u-d N, S-u R, So CS, Hwang SW, Kim AR, Nahm KS (2009) Thermal decomposition of LiAlH4 chemically mixed with Lithium amide and transition metal chlorides. Int J Hydrogen Energy 34(21):8937–8943CrossRef M-u-d N, S-u R, So CS, Hwang SW, Kim AR, Nahm KS (2009) Thermal decomposition of LiAlH4 chemically mixed with Lithium amide and transition metal chlorides. Int J Hydrogen Energy 34(21):8937–8943CrossRef
797.
go back to reference Luo W, Cowgill D, Stewart K, Stavila V (2010) High capacity hydrogen generation on-demand from (NH3 + LiAlH4). J Alloy Comp 497(1–2):L17–L20CrossRef Luo W, Cowgill D, Stewart K, Stavila V (2010) High capacity hydrogen generation on-demand from (NH3 + LiAlH4). J Alloy Comp 497(1–2):L17–L20CrossRef
798.
go back to reference Beattie SD, McGrady GS (2009) Hydrogen desorption studies of NaAlH4 and LiAlH4 by in situ heating in an ESEM. Int J Hydrogen Energy 34(22):9151–9156CrossRef Beattie SD, McGrady GS (2009) Hydrogen desorption studies of NaAlH4 and LiAlH4 by in situ heating in an ESEM. Int J Hydrogen Energy 34(22):9151–9156CrossRef
799.
go back to reference Mao JF, Guo ZP, Liu HK, Yu XB (2009) Reversible hydrogen storage in titanium-catalyzed LiAlH4-LiBH4 system. J Alloy Comp 487(1–2):434–438CrossRef Mao JF, Guo ZP, Liu HK, Yu XB (2009) Reversible hydrogen storage in titanium-catalyzed LiAlH4-LiBH4 system. J Alloy Comp 487(1–2):434–438CrossRef
800.
go back to reference Schmidt T, Roentzsch L (2010) Reversible hydrogen storage in Ti-Zr-codoped NaAlH4 under realistic operation conditions. J Alloy Comp 496(1–2):L38–L40CrossRef Schmidt T, Roentzsch L (2010) Reversible hydrogen storage in Ti-Zr-codoped NaAlH4 under realistic operation conditions. J Alloy Comp 496(1–2):L38–L40CrossRef
801.
go back to reference Dathar GKP, Mainardi DS (2010) Kinetics of hydrogen desorption in NaAlH4 and Ti-containing NaAlH4. J Phys Chem C 114(17):8026–8031CrossRef Dathar GKP, Mainardi DS (2010) Kinetics of hydrogen desorption in NaAlH4 and Ti-containing NaAlH4. J Phys Chem C 114(17):8026–8031CrossRef
802.
go back to reference Zheng X, Liu S (2009) Effect of LaCl3 and Ti on hydrogen storage properties of NaAlH4 and LiAlH4. Xiyou Jinshu Cailiao Yu Gongcheng 38(8):1328–1332MathSciNet Zheng X, Liu S (2009) Effect of LaCl3 and Ti on hydrogen storage properties of NaAlH4 and LiAlH4. Xiyou Jinshu Cailiao Yu Gongcheng 38(8):1328–1332MathSciNet
803.
go back to reference Yang J, Wang X, Mao J, Chen L, Pan H, Li S, Ge H, Chen C (2010) Investigation on reversible hydrogen storage properties of Li3AlH6/2LiNH2 composite. J Alloy Comp 494(1–2):58–61CrossRef Yang J, Wang X, Mao J, Chen L, Pan H, Li S, Ge H, Chen C (2010) Investigation on reversible hydrogen storage properties of Li3AlH6/2LiNH2 composite. J Alloy Comp 494(1–2):58–61CrossRef
804.
go back to reference Liu J, Ge Q (2009) Hydrogen interaction in Ti-doped LiBH4 for hydrogen storage: a density functional analysis. J Chem Theory Comput 5(11):3079–3087CrossRef Liu J, Ge Q (2009) Hydrogen interaction in Ti-doped LiBH4 for hydrogen storage: a density functional analysis. J Chem Theory Comput 5(11):3079–3087CrossRef
805.
go back to reference Frankcombe TJ (2010) Calcium borohydride for hydrogen storage: a computational study of Ca(BH4)2 crystal structures and the CaB2Hx intermediate. J Phys Chem C 114(20):9503–9509CrossRef Frankcombe TJ (2010) Calcium borohydride for hydrogen storage: a computational study of Ca(BH4)2 crystal structures and the CaB2Hx intermediate. J Phys Chem C 114(20):9503–9509CrossRef
806.
go back to reference Gao L, Guo YH, Xia GL, Yu XB (2009) Low temperature hydrogen generation from ammonia combined with lithium borohydride. J Mater Chem 19(42):7826–7829CrossRef Gao L, Guo YH, Xia GL, Yu XB (2009) Low temperature hydrogen generation from ammonia combined with lithium borohydride. J Mater Chem 19(42):7826–7829CrossRef
807.
go back to reference Karkamkar A, Heldebrant D, Linehan J, Autrey T (2009) Ammonium borohydride: solid hydrogen storage material with highest gravimetric hydrogen content. Prepr Symp Am Chem Soc, Div Fuel Chem 54(2):889–890 Karkamkar A, Heldebrant D, Linehan J, Autrey T (2009) Ammonium borohydride: solid hydrogen storage material with highest gravimetric hydrogen content. Prepr Symp Am Chem Soc, Div Fuel Chem 54(2):889–890
808.
go back to reference Liu C-H, Kuo Y-C, Chen B-H, Hsueh C-L, Hwang K-J, Ku J-R, Tsau F, Jeng M-S (2010) Synthesis of solid-state NaBH4/Co-based catalyst composite for hydrogen storage through a high-energy ball-milling process. Int J Hydrogen Energy 35(9):4027–4040CrossRef Liu C-H, Kuo Y-C, Chen B-H, Hsueh C-L, Hwang K-J, Ku J-R, Tsau F, Jeng M-S (2010) Synthesis of solid-state NaBH4/Co-based catalyst composite for hydrogen storage through a high-energy ball-milling process. Int J Hydrogen Energy 35(9):4027–4040CrossRef
809.
go back to reference Yu XB, Guo YH, Sun DL, Yang ZX, Ranjbar A, Guo ZP, Liu HK, Dou SX (2010) A combined hydrogen storage system of Mg(BH4)2-LiNH2 with favorable dehydrogenation. J Phys Chem C 114(10):4733–4737CrossRef Yu XB, Guo YH, Sun DL, Yang ZX, Ranjbar A, Guo ZP, Liu HK, Dou SX (2010) A combined hydrogen storage system of Mg(BH4)2-LiNH2 with favorable dehydrogenation. J Phys Chem C 114(10):4733–4737CrossRef
810.
go back to reference Vajo JJ, Skeith SL, Mertens F (2005) Reversible storage of hydrogen in destabilized LiBH4. J Phys Chem B 109(9):3719–3722CrossRef Vajo JJ, Skeith SL, Mertens F (2005) Reversible storage of hydrogen in destabilized LiBH4. J Phys Chem B 109(9):3719–3722CrossRef
811.
go back to reference Matsunaga T, Buchter F, Mauron P, Bielman M, Nakamori Y, Orimo S, Ohba N, Miwa K, Towata S, Züttel A (2008) Hydrogen storage properties of Mg[BH4]2. J Alloy Comp 459(1–2):583–588CrossRef Matsunaga T, Buchter F, Mauron P, Bielman M, Nakamori Y, Orimo S, Ohba N, Miwa K, Towata S, Züttel A (2008) Hydrogen storage properties of Mg[BH4]2. J Alloy Comp 459(1–2):583–588CrossRef
812.
go back to reference Chater PA, Anderson PA, Prendergast JW, Walton A, Mann VSJ, Book D, David WIF, Johnson SR, Edwards PP (2007) Synthesis and characterization of amide-borohydrides: new complex light hydrides for potential hydrogen storage. J Alloy Comp 446–447:350–354CrossRef Chater PA, Anderson PA, Prendergast JW, Walton A, Mann VSJ, Book D, David WIF, Johnson SR, Edwards PP (2007) Synthesis and characterization of amide-borohydrides: new complex light hydrides for potential hydrogen storage. J Alloy Comp 446–447:350–354CrossRef
813.
go back to reference Basu S, Diwan M, Abiad MG, Zheng Y, Campanella OH, Varma A (2010) Transport characteristics of dehydrogenated ammonia borane and sodium borohydride spent fuels. Int J Hydrogen Energy 35(5):2063–2072CrossRef Basu S, Diwan M, Abiad MG, Zheng Y, Campanella OH, Varma A (2010) Transport characteristics of dehydrogenated ammonia borane and sodium borohydride spent fuels. Int J Hydrogen Energy 35(5):2063–2072CrossRef
814.
go back to reference Burrell AK, Diyabalanage HVK, Shrestha RL, Ryan K, Jones MO, David WIF (2009) Hydrogen from ammonia borane and derivatives. Prepr Symp Am Chem Soc, Div Fuel Chem 54(2):858–859 Burrell AK, Diyabalanage HVK, Shrestha RL, Ryan K, Jones MO, David WIF (2009) Hydrogen from ammonia borane and derivatives. Prepr Symp Am Chem Soc, Div Fuel Chem 54(2):858–859
815.
go back to reference Xiong Z, Yong CK, Wu G, Chen P, Shaw W, Karkamkar A, Autrey T, Jones MO, Johnson SR, Edwards PP, David WIF (2008) High-capacity hydrogen storage in lithium and sodium amidoboranes. Nat Mater 7(2):138–141CrossRef Xiong Z, Yong CK, Wu G, Chen P, Shaw W, Karkamkar A, Autrey T, Jones MO, Johnson SR, Edwards PP, David WIF (2008) High-capacity hydrogen storage in lithium and sodium amidoboranes. Nat Mater 7(2):138–141CrossRef
816.
go back to reference Chua YS, Wu G, Xiong Z, He T, Chen P (2009) Calcium amidoborane ammoniate – synthesis, structure, and hydrogen storage properties. Chem Mater 21(20):4899–4904CrossRef Chua YS, Wu G, Xiong Z, He T, Chen P (2009) Calcium amidoborane ammoniate – synthesis, structure, and hydrogen storage properties. Chem Mater 21(20):4899–4904CrossRef
817.
go back to reference Demirci UB, Miele P (2010) Hydrolysis of solid ammonia borane. J Power Sources 195(13):4030–4035CrossRef Demirci UB, Miele P (2010) Hydrolysis of solid ammonia borane. J Power Sources 195(13):4030–4035CrossRef
818.
go back to reference Sundberg MR, Sanchez-Gonzalez A (2007) Hydrogen storage in ammonia triborane: properties and behavior of the chemical bonds. Inorg Chem Commun 10(10):1229–1232CrossRef Sundberg MR, Sanchez-Gonzalez A (2007) Hydrogen storage in ammonia triborane: properties and behavior of the chemical bonds. Inorg Chem Commun 10(10):1229–1232CrossRef
819.
go back to reference Swinnen S, Nguyen V-S, Nguyen M-T (2010) Potential hydrogen storage of lithium amidoboranes and derivatives. Chem Phys Lett 489(4–6):148–153CrossRef Swinnen S, Nguyen V-S, Nguyen M-T (2010) Potential hydrogen storage of lithium amidoboranes and derivatives. Chem Phys Lett 489(4–6):148–153CrossRef
820.
go back to reference Wu C, Wu G, Xiong Z, Han X, Chu H, He T, Chen P (2010) LiNH2BH3. NH3BH3: structure and hydrogen storage properties. Chem Mater 22(1):3–5 Wu C, Wu G, Xiong Z, Han X, Chu H, He T, Chen P (2010) LiNH2BH3. NH3BH3: structure and hydrogen storage properties. Chem Mater 22(1):3–5
821.
go back to reference Demirci UB, Miele P (2009) Sodium borohydride versus ammonia borane, in hydrogen storage and direct fuel cell applications. Energy Environ Sci 2(6):627–637CrossRef Demirci UB, Miele P (2009) Sodium borohydride versus ammonia borane, in hydrogen storage and direct fuel cell applications. Energy Environ Sci 2(6):627–637CrossRef
822.
go back to reference Diwan M, Hanna D, Varma A (2010) Method to release hydrogen from ammonia borane for portable fuel cell applications. Int J Hydrogen Energy 35(2):577–584CrossRef Diwan M, Hanna D, Varma A (2010) Method to release hydrogen from ammonia borane for portable fuel cell applications. Int J Hydrogen Energy 35(2):577–584CrossRef
823.
go back to reference Graham KR, Kemmitt T, Bowden ME (2009) High capacity hydrogen storage in a hybrid ammonia borane-lithium amide material. Energy Environ Sci 2(6):706–710CrossRef Graham KR, Kemmitt T, Bowden ME (2009) High capacity hydrogen storage in a hybrid ammonia borane-lithium amide material. Energy Environ Sci 2(6):706–710CrossRef
824.
go back to reference Himmelberger DW, Yoon CW, Bluhm ME, Carroll PJ, Sneddon LG (2009) Base-promoted ammonia borane hydrogen-release. J Am Chem Soc 131(39):14101–14110CrossRef Himmelberger DW, Yoon CW, Bluhm ME, Carroll PJ, Sneddon LG (2009) Base-promoted ammonia borane hydrogen-release. J Am Chem Soc 131(39):14101–14110CrossRef
825.
go back to reference Rassat SD, Aardahl CL, Autrey T, Smith RS (2010) Thermal Stability of Ammonia Borane: A Case Study for Exothermic Hydrogen Storage Materials. Energy Fuels 24(4):2596–2606CrossRef Rassat SD, Aardahl CL, Autrey T, Smith RS (2010) Thermal Stability of Ammonia Borane: A Case Study for Exothermic Hydrogen Storage Materials. Energy Fuels 24(4):2596–2606CrossRef
826.
go back to reference Me B, Bradley MG, Butterick I, Kusari U, Sneddon LG (2006) Amineborane-based chemical hydrogen storage: enhanced ammonia borane dehydrogenation in ionic liquids. J Am Chem Soc 128(24):7748–7749CrossRef Me B, Bradley MG, Butterick I, Kusari U, Sneddon LG (2006) Amineborane-based chemical hydrogen storage: enhanced ammonia borane dehydrogenation in ionic liquids. J Am Chem Soc 128(24):7748–7749CrossRef
827.
go back to reference Sirosh N (2002) Hydrogen composite tank program. In: Proceedings of the 2002 US DOE Hydrogen Program Review. Report No. NREL/CP-610-32405 Sirosh N (2002) Hydrogen composite tank program. In: Proceedings of the 2002 US DOE Hydrogen Program Review. Report No. NREL/CP-610-32405
828.
go back to reference Joseph T (2006) Fuel solutions for industrial applications. Air Products Ltd, Allentown Joseph T (2006) Fuel solutions for industrial applications. Air Products Ltd, Allentown
Metadata
Title
Hydrogen Energy
Authors
Tushar K. Ghosh
Mark A. Prelas
Copyright Year
2011
Publisher
Springer Netherlands
DOI
https://doi.org/10.1007/978-94-007-1402-1_8