Skip to main content
Top

2017 | OriginalPaper | Chapter

3. Hydrogen Separation Membranes of Polymeric Materials

Authors : Xiayun Huang, Haiqing Yao, Zhengdong Cheng

Published in: Nanostructured Materials for Next-Generation Energy Storage and Conversion

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The increased requirement of a clean and efficient green energy source promotes the development of hydrogen-based economy. In order to lower the cost of manufacturing, the future development of the next generation of hydrogen separation membrane is necessary. This chapter summarized the hydrogen separation membrane technology, the membrane separation mechanism, the polymer material selection and membrane structure design, current industrial market and separation modules, as well as the future development of the next generation hydrogen separation membrane.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference J.D. Perry, K. Nagai, W.J. Koros, Polymer membranes for hydrogen separations. MRS Bull. 31, 745–749 (2006) J.D. Perry, K. Nagai, W.J. Koros, Polymer membranes for hydrogen separations. MRS Bull. 31, 745–749 (2006)
2.
go back to reference F.G. Kerry, Industrial Gas Handbook: Gas Separation and Purification (CRC Press, Boca Raton, 2006) F.G. Kerry, Industrial Gas Handbook: Gas Separation and Purification (CRC Press, Boca Raton, 2006)
3.
go back to reference S.C.A. Kluiters, Status Review on Membrane System for Hydrogen Separation (Energy Center of Netherlands, Petten, 2004) S.C.A. Kluiters, Status Review on Membrane System for Hydrogen Separation (Energy Center of Netherlands, Petten, 2004)
4.
go back to reference N.W. Ockwig, T.M. Nenoff, Membranes for hydrogen separation. Chem. Rev. 107, 4078–4110 (2007) N.W. Ockwig, T.M. Nenoff, Membranes for hydrogen separation. Chem. Rev. 107, 4078–4110 (2007)
5.
go back to reference H. Shiga, K. Shinda, K. Hagiwara, A. Tsutsumi, M. Sakurai, K. Yoshida, E. Bilgen, Large-scale hydrogen production from biogas. Int. J. Hydrog. Energy 23, 631–640 (1998) H. Shiga, K. Shinda, K. Hagiwara, A. Tsutsumi, M. Sakurai, K. Yoshida, E. Bilgen, Large-scale hydrogen production from biogas. Int. J. Hydrog. Energy 23, 631–640 (1998)
6.
go back to reference S. Adhikari, S. Fernando, Hydrogen membrane separation techniques. Ind. Eng. Chem. Res. 45, 875–881 (2006) S. Adhikari, S. Fernando, Hydrogen membrane separation techniques. Ind. Eng. Chem. Res. 45, 875–881 (2006)
7.
go back to reference X.Y. Chen, H. Vinh-Thang, A.A. Ramirez, D. Rodrigue, S. Kaliaguine, Membrane gas separation technologies for biogas upgrading. RSC Adv. 5, 24399–24448 (2015) X.Y. Chen, H. Vinh-Thang, A.A. Ramirez, D. Rodrigue, S. Kaliaguine, Membrane gas separation technologies for biogas upgrading. RSC Adv. 5, 24399–24448 (2015)
8.
go back to reference J.W. Phair, S.P.S. Badwal, Materials for separation membranes in hydrogen and oxygen production and future power generation. Sci. Technol. Adv. Mater. 7, 792–805 (2006) J.W. Phair, S.P.S. Badwal, Materials for separation membranes in hydrogen and oxygen production and future power generation. Sci. Technol. Adv. Mater. 7, 792–805 (2006)
9.
go back to reference H. Makino, Y. Kusuki, H. Yoshida, A. Nakamaura, Process for preparing aromatic polyimide semipermeable membranes. U.S. Patent 4,378,324, 1983 H. Makino, Y. Kusuki, H. Yoshida, A. Nakamaura, Process for preparing aromatic polyimide semipermeable membranes. U.S. Patent 4,378,324, 1983
10.
go back to reference J. M. S. Henis, M. K. Tripodi, Multicomponent membranes for gas separation, 1980 J. M. S. Henis, M. K. Tripodi, Multicomponent membranes for gas separation, 1980
11.
go back to reference W.J. Schell, C.D. Houston, Spiral-wound permeators for purification and recovery. Chem. Eng. Prog. 78, 33–37 (1982) W.J. Schell, C.D. Houston, Spiral-wound permeators for purification and recovery. Chem. Eng. Prog. 78, 33–37 (1982)
12.
go back to reference S. Weller, W.A. Steiner, Engineering aspects of separation of gases – fractional permeation through membranes. Chem. Eng. Prog. 46, 585–590 (1950) S. Weller, W.A. Steiner, Engineering aspects of separation of gases – fractional permeation through membranes. Chem. Eng. Prog. 46, 585–590 (1950)
13.
go back to reference L. M. Gandia, G. Arzamendi, P. M. Dieguez, Renewable Hydrogen Technologies, Production, Purification, Storage, Applications and Safety (Elsevier, Oxford, 2013) L. M. Gandia, G. Arzamendi, P. M. Dieguez, Renewable Hydrogen Technologies, Production, Purification, Storage, Applications and Safety (Elsevier, Oxford, 2013)
14.
go back to reference L. Hu, R. Benitez, S. Basu, I. Karaman, M. Radovic, Processing and characterization of porous Ti2AlC with controlled porosity and pore size. Acta Mater. 60, 6266–6277 (2012) L. Hu, R. Benitez, S. Basu, I. Karaman, M. Radovic, Processing and characterization of porous Ti2AlC with controlled porosity and pore size. Acta Mater. 60, 6266–6277 (2012)
15.
go back to reference L. Hu, C.-A. Wang, Effect of sintering temperature on compressive strength of porous yttria-stabilized zirconia ceramics. Ceram. Int. 36, 1697–1701 (2010) L. Hu, C.-A. Wang, Effect of sintering temperature on compressive strength of porous yttria-stabilized zirconia ceramics. Ceram. Int. 36, 1697–1701 (2010)
16.
go back to reference S.C.A. Kluiters, Status Review on Membrane Systems for Hydrogen Separation (Energy Center of Netherlands, Petten, 2004) S.C.A. Kluiters, Status Review on Membrane Systems for Hydrogen Separation (Energy Center of Netherlands, Petten, 2004)
17.
go back to reference W.J. Koros, G.K. Fleming, Membrane-based gas separation. J. Membr. Sci. 83, 1–80 (1993) W.J. Koros, G.K. Fleming, Membrane-based gas separation. J. Membr. Sci. 83, 1–80 (1993)
18.
go back to reference P. Bernardo, E. Drioli, G. Golemme, Membrane gas separation: a review/state of the art. Ind. Eng. Chem. Res. 48, 4638–4663 (2009) P. Bernardo, E. Drioli, G. Golemme, Membrane gas separation: a review/state of the art. Ind. Eng. Chem. Res. 48, 4638–4663 (2009)
19.
go back to reference M. Knudsen, The Kinetic Theory of Gases: Some Modern Aspects (Wiley, New York, 1934) M. Knudsen, The Kinetic Theory of Gases: Some Modern Aspects (Wiley, New York, 1934)
20.
go back to reference S.T. Hwang, K. Kammerme, Surface diffusion in microporous media. Can. J. Chem. Eng. 44, 82 (1966) S.T. Hwang, K. Kammerme, Surface diffusion in microporous media. Can. J. Chem. Eng. 44, 82 (1966)
21.
go back to reference K.H. Lee, S.T. Hwang, The transportation of condensable vapors through a microporous vycor glass membrane. J. Colloid Interface Sci. 110, 544–555 (1986) K.H. Lee, S.T. Hwang, The transportation of condensable vapors through a microporous vycor glass membrane. J. Colloid Interface Sci. 110, 544–555 (1986)
22.
go back to reference J.S. Masaryk, R.M. Fulrath, Diffusivity of helium in fused silica. J. Chem. Phys. 59, 1198–1202 (1973) J.S. Masaryk, R.M. Fulrath, Diffusivity of helium in fused silica. J. Chem. Phys. 59, 1198–1202 (1973)
23.
go back to reference S. Kim, Y.M. Lee, Rigid and microporous polymers for gas separation membranes. Prog. Polym. Sci. 43, 1–32 (2015) S. Kim, Y.M. Lee, Rigid and microporous polymers for gas separation membranes. Prog. Polym. Sci. 43, 1–32 (2015)
24.
go back to reference M. Mulder, Basic Principles of Membrane Technology (Kluwer, Dordrecht, 1996) M. Mulder, Basic Principles of Membrane Technology (Kluwer, Dordrecht, 1996)
25.
go back to reference R.W. Baker, Separation Technology and Applications (Wiley, West Sussex, 2004) R.W. Baker, Separation Technology and Applications (Wiley, West Sussex, 2004)
26.
go back to reference Y. Yampolskii, I. Pinnau, I.B. Freeman, Materials Science of Membranes for Gas and Vapor Separation (Wiley, Chichester, 2006) Y. Yampolskii, I. Pinnau, I.B. Freeman, Materials Science of Membranes for Gas and Vapor Separation (Wiley, Chichester, 2006)
27.
go back to reference A.W. Thornton, K.M. Nairn, A.J. Hill, J.M. Hill, New relation between diffusion and free volume: I. Predicting gas diffusion. J. Membr. Sci. 338, 29–37 (2009) A.W. Thornton, K.M. Nairn, A.J. Hill, J.M. Hill, New relation between diffusion and free volume: I. Predicting gas diffusion. J. Membr. Sci. 338, 29–37 (2009)
28.
go back to reference J.G. Wijmans, R.W. Baker, The solution-diffusion model – a review. J. Membr. Sci. 107, 1–21 (1995) J.G. Wijmans, R.W. Baker, The solution-diffusion model – a review. J. Membr. Sci. 107, 1–21 (1995)
29.
go back to reference R.W. Baker, Future directions of membrane gas separation technology. Ind. Eng. Chem. Res. 41, 1393–1411 (2002) R.W. Baker, Future directions of membrane gas separation technology. Ind. Eng. Chem. Res. 41, 1393–1411 (2002)
30.
go back to reference L.H. Sperling, Introduction to Physical Polymer Science, 4th edn. (Wiley, Hoboken, 2006) L.H. Sperling, Introduction to Physical Polymer Science, 4th edn. (Wiley, Hoboken, 2006)
31.
go back to reference H.R. Allcock, F.W. Lampe, J.E. Mark, Contemporary Polymer Science (Pearson Prentice Hall, Upper Saddle River, 2003) H.R. Allcock, F.W. Lampe, J.E. Mark, Contemporary Polymer Science (Pearson Prentice Hall, Upper Saddle River, 2003)
32.
go back to reference I. Pinnau, Z.J. He, Pure- and mixed-gas permeation properties of polydimethylsiloxane for hydrocarbon/methane and hydrocarbon/hydrogen separation. J. Membr. Sci. 244, 227–233 (2004) I. Pinnau, Z.J. He, Pure- and mixed-gas permeation properties of polydimethylsiloxane for hydrocarbon/methane and hydrocarbon/hydrogen separation. J. Membr. Sci. 244, 227–233 (2004)
33.
go back to reference T.C. Merkel, B.D. Freeman, R.J. Spontak, Z. He, I. Pinnau, P. Meakin, A.J. Hill, Ultrapermeable, reverse-selective nanocomposite membranes. Science 296, 519–522 (2002) T.C. Merkel, B.D. Freeman, R.J. Spontak, Z. He, I. Pinnau, P. Meakin, A.J. Hill, Ultrapermeable, reverse-selective nanocomposite membranes. Science 296, 519–522 (2002)
34.
go back to reference A. Hussain, M.-B. Hagg, A feasibility study of CO2 capture from flue gas by a facilitated transport membrane. J. Membr. Sci. 359, 140–148 (2010) A. Hussain, M.-B. Hagg, A feasibility study of CO2 capture from flue gas by a facilitated transport membrane. J. Membr. Sci. 359, 140–148 (2010)
35.
go back to reference J.H. Kim, Y.M. Lee, Gas permeation properties of poly(amide-6-b-ethylene oxide)-silica hybrid membranes. J. Membr. Sci. 193, 209–225 (2001) J.H. Kim, Y.M. Lee, Gas permeation properties of poly(amide-6-b-ethylene oxide)-silica hybrid membranes. J. Membr. Sci. 193, 209–225 (2001)
36.
go back to reference L.M. Robeson, Correlation of separation factor versus permeability for polymeric membranes. J. Membr. Sci. 62, 165–185 (1991) L.M. Robeson, Correlation of separation factor versus permeability for polymeric membranes. J. Membr. Sci. 62, 165–185 (1991)
37.
go back to reference L.M. Robeson, The upper bound revisited. J. Membr. Sci. 320, 390–400 (2008) L.M. Robeson, The upper bound revisited. J. Membr. Sci. 320, 390–400 (2008)
38.
go back to reference L. Deng, M.-B. Hagg, Swelling behavior and gas permeation performance of PVAm/PVA blend FSC membrane. J. Membr. Sci. 363, 295–301 (2010) L. Deng, M.-B. Hagg, Swelling behavior and gas permeation performance of PVAm/PVA blend FSC membrane. J. Membr. Sci. 363, 295–301 (2010)
39.
go back to reference A. Car, C. Stropnik, W. Yave, K.V. Peinemann, Pebax (R)/polyethylene glycol blend thin film composite membranes for CO2 separation: performance with mixed gases. Sep. Purif. Technol. 62, 110–117 (2008) A. Car, C. Stropnik, W. Yave, K.V. Peinemann, Pebax (R)/polyethylene glycol blend thin film composite membranes for CO2 separation: performance with mixed gases. Sep. Purif. Technol. 62, 110–117 (2008)
40.
go back to reference J.J. Rouquerol, D. Avnir, C.W. Fairbridge, D.H. Everett, J.M. Haynes, H. Pernicone, J.D.F. Ramsay, S.K.W. Sing, J.J. Unger, Recommendations for the characterization of porous solids. Pure Appl. Chem. 66, 1739–1758 (1994) J.J. Rouquerol, D. Avnir, C.W. Fairbridge, D.H. Everett, J.M. Haynes, H. Pernicone, J.D.F. Ramsay, S.K.W. Sing, J.J. Unger, Recommendations for the characterization of porous solids. Pure Appl. Chem. 66, 1739–1758 (1994)
41.
go back to reference P.C. Hiemenz, T.P. Lodge, Polymer Chemistry, 2nd edn. (CRC Press, Boca Raton, 2007) P.C. Hiemenz, T.P. Lodge, Polymer Chemistry, 2nd edn. (CRC Press, Boca Raton, 2007)
42.
go back to reference P.M. Budd, N.B. McKeown, High permeable polymers for gas separation membranes. Polym. Chem. 1, 63–68 (2010) P.M. Budd, N.B. McKeown, High permeable polymers for gas separation membranes. Polym. Chem. 1, 63–68 (2010)
43.
go back to reference S. Shishatskiy, C. Nistor, M. Popa, S.P. Nunes, K.V. Peinemann, Polyimide asymmetric membranes for hydrogen separation: influence of formation conditions on gas transport properties. Adv. Eng. Mater. 8, 390–397 (2006) S. Shishatskiy, C. Nistor, M. Popa, S.P. Nunes, K.V. Peinemann, Polyimide asymmetric membranes for hydrogen separation: influence of formation conditions on gas transport properties. Adv. Eng. Mater. 8, 390–397 (2006)
44.
go back to reference B.T. Low, Y. Xiao, T.S. Chung, Y. Liu, Simultaneous occurrence of chemical grafting, cross-linking, and etching on the surface of polyimide membranes and their impact on H2/CO2 separation. Macromolecules 41, 1297–1309 (2008) B.T. Low, Y. Xiao, T.S. Chung, Y. Liu, Simultaneous occurrence of chemical grafting, cross-linking, and etching on the surface of polyimide membranes and their impact on H2/CO2 separation. Macromolecules 41, 1297–1309 (2008)
45.
go back to reference X. Li, R.P. Singh, K.W. Dudeck, K.A. Berchtold, B.C. Benicewicz, Influence of polybenzimidazole main chain structure on H2/CO2 separation at elevated temperatures. J. Membr. Sci. 461, 59–68 (2014) X. Li, R.P. Singh, K.W. Dudeck, K.A. Berchtold, B.C. Benicewicz, Influence of polybenzimidazole main chain structure on H2/CO2 separation at elevated temperatures. J. Membr. Sci. 461, 59–68 (2014)
46.
go back to reference S.S. Hosseini, M.M. Teoh, T.S. Chung, Hydrogen separation and purification in membranes of miscible polymer blends with interpenetration networks. Polymer 49, 1594–1603 (2008) S.S. Hosseini, M.M. Teoh, T.S. Chung, Hydrogen separation and purification in membranes of miscible polymer blends with interpenetration networks. Polymer 49, 1594–1603 (2008)
47.
go back to reference A.A. Tracton, Coatings Materials and Surface Coatings (CRC Press/Taylor & Francis Group, Boca Raton, 2006) A.A. Tracton, Coatings Materials and Surface Coatings (CRC Press/Taylor & Francis Group, Boca Raton, 2006)
48.
go back to reference C. Cao, T. Chung, Y. Liu, R. Wang, K.P. Pramoda, Chemical cross-linking modification of 6FDA-2,6-DAT hollow fiber membranes for natural gas separation. J. Membr. Sci. 216, 257–268 (2003) C. Cao, T. Chung, Y. Liu, R. Wang, K.P. Pramoda, Chemical cross-linking modification of 6FDA-2,6-DAT hollow fiber membranes for natural gas separation. J. Membr. Sci. 216, 257–268 (2003)
49.
go back to reference X. Huang, H. Cao, Z. Shi, H. Xu, J. Fang, J. Yin, Q. Pan, A study on mineralization behavior of amino-terminated hyperbranched polybenzimidazole membranes. J. Mater. Sci. Mater. Med. 21, 1829–1835 (2010) X. Huang, H. Cao, Z. Shi, H. Xu, J. Fang, J. Yin, Q. Pan, A study on mineralization behavior of amino-terminated hyperbranched polybenzimidazole membranes. J. Mater. Sci. Mater. Med. 21, 1829–1835 (2010)
50.
go back to reference H. Vogel, C.S. Marvel, Polybenzimidazoles, New thermally stable polymers. J. Polym. Sci. 50, 511–539 (1961) H. Vogel, C.S. Marvel, Polybenzimidazoles, New thermally stable polymers. J. Polym. Sci. 50, 511–539 (1961)
51.
go back to reference D.R. Pesiri, B. Jorgensen, R.C. Dye, Thermal optimization of polybenzimidazole meniscus membranes for the separation of hydrogen, methane, and carbon dioxide. J. Membr. Sci. 218, 11–18 (2003) D.R. Pesiri, B. Jorgensen, R.C. Dye, Thermal optimization of polybenzimidazole meniscus membranes for the separation of hydrogen, methane, and carbon dioxide. J. Membr. Sci. 218, 11–18 (2003)
52.
go back to reference S.C. Kumbharkar, Y. Liu, K. Li, High performance polybenzimidazole based asymmetric hollow fibre membranes for H2/CO2 separation. J. Membr. Sci. 375, 231–240 (2011) S.C. Kumbharkar, Y. Liu, K. Li, High performance polybenzimidazole based asymmetric hollow fibre membranes for H2/CO2 separation. J. Membr. Sci. 375, 231–240 (2011)
53.
go back to reference S.C. Kumbharkar, P.B. Karadkar, U.K. Kharul, Enhancement of gas permeation properties of polybenzimidazoles by systematic structure architecture. J. Membr. Sci. 286, 161–169 (2006) S.C. Kumbharkar, P.B. Karadkar, U.K. Kharul, Enhancement of gas permeation properties of polybenzimidazoles by systematic structure architecture. J. Membr. Sci. 286, 161–169 (2006)
54.
go back to reference S.C. Kumbharkar, U.K. Kharul, Investigation of gas permeation properties of systematically modified polybenzimidazoles by N-substitution. J. Membr. Sci. 357, 134–142 (2010) S.C. Kumbharkar, U.K. Kharul, Investigation of gas permeation properties of systematically modified polybenzimidazoles by N-substitution. J. Membr. Sci. 357, 134–142 (2010)
55.
go back to reference J.D. Wind, D.R. Paul, W.J. Koros, Natural gas permeation in polyimide membranes. J. Membr. Sci. 228, 227–236 (2004) J.D. Wind, D.R. Paul, W.J. Koros, Natural gas permeation in polyimide membranes. J. Membr. Sci. 228, 227–236 (2004)
56.
go back to reference Y. Liu, R. Wang, T.-S. Chung, Chemical cross-linking modification of polyimide membranes for gas separation. J. Membr. Sci. 189, 231–239 (2001) Y. Liu, R. Wang, T.-S. Chung, Chemical cross-linking modification of polyimide membranes for gas separation. J. Membr. Sci. 189, 231–239 (2001)
57.
go back to reference N.N. Li, A.G. Fane, W.S.W. Ho, T. Matsuura, Advanced Membrane Technology and Applications (Wiley, Hoboken, 2008) N.N. Li, A.G. Fane, W.S.W. Ho, T. Matsuura, Advanced Membrane Technology and Applications (Wiley, Hoboken, 2008)
58.
go back to reference W.J. Koros, R. Mahajan, Pushing the limits on possibilities for large scale gas separation: which strategies? J. Membr. Sci. 175, 181–196 (2000) W.J. Koros, R. Mahajan, Pushing the limits on possibilities for large scale gas separation: which strategies? J. Membr. Sci. 175, 181–196 (2000)
59.
go back to reference H.A. Mannan, H. Mukhtar, T. Murugesan, R. Nasir, D.F. Mohshim, A. Mushtaq, Recent applications of polymer blends in gas separation membranes. Chem. Eng. Technol. 36, 1838–1846 (2013) H.A. Mannan, H. Mukhtar, T. Murugesan, R. Nasir, D.F. Mohshim, A. Mushtaq, Recent applications of polymer blends in gas separation membranes. Chem. Eng. Technol. 36, 1838–1846 (2013)
60.
go back to reference S.P. Nunes, K.V. Peinemann, Membrane Technology in the Chemical Industry, 2nd edn. (Wiley-VCH, Weinheim, 2001) S.P. Nunes, K.V. Peinemann, Membrane Technology in the Chemical Industry, 2nd edn. (Wiley-VCH, Weinheim, 2001)
61.
go back to reference N. McKeown, P. Budd, Exploitation of intrinsic microporosity in polymer-based materials. Macromolecules 43, 5163–5176 (2010) N. McKeown, P. Budd, Exploitation of intrinsic microporosity in polymer-based materials. Macromolecules 43, 5163–5176 (2010)
62.
go back to reference M. Carta, R. Malpass-Evans, M. Croad, Y. Rogan, J.C. Jansen, P. Bernardo, F. Bazzarelli, N.B. McKeown, An efficient polymer molecular sieve for membrane gas separation. Science 339, 303–307 (2013) M. Carta, R. Malpass-Evans, M. Croad, Y. Rogan, J.C. Jansen, P. Bernardo, F. Bazzarelli, N.B. McKeown, An efficient polymer molecular sieve for membrane gas separation. Science 339, 303–307 (2013)
63.
go back to reference N. Jusoh, Y.F. Yeong, K.K. Lau, M.S. Azmi, Membranes for gas separation current development and challenges. Appl. Mech. Mater. 773–774, 1085–1090 (2015) N. Jusoh, Y.F. Yeong, K.K. Lau, M.S. Azmi, Membranes for gas separation current development and challenges. Appl. Mech. Mater. 773–774, 1085–1090 (2015)
64.
go back to reference Y. Zhang, J. Sunarso, S. Liu, R. Wang, Current status and development of membranes for CO2/CH4 separation: a review. Int. J. Green Gas Con. 12, 84–107 (2013) Y. Zhang, J. Sunarso, S. Liu, R. Wang, Current status and development of membranes for CO2/CH4 separation: a review. Int. J. Green Gas Con. 12, 84–107 (2013)
65.
go back to reference S.B. Tantekin-Ersolmaz, C. Ataly-Oral, M. Tather, A. Erdem-Senatalar, B. Schoeman, J. Sterte, Effect of zeolite particle size on the performance of polymer-zeolite mixed matrix membranes. J. Membr. Sci. 175, 285–288 (2000) S.B. Tantekin-Ersolmaz, C. Ataly-Oral, M. Tather, A. Erdem-Senatalar, B. Schoeman, J. Sterte, Effect of zeolite particle size on the performance of polymer-zeolite mixed matrix membranes. J. Membr. Sci. 175, 285–288 (2000)
66.
go back to reference T.S. Chung, L.Y. Jiang, Y. Li, S. Kulprathipanja, Mixded matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Prog. Polym. Sci. 32, 483–507 (2007) T.S. Chung, L.Y. Jiang, Y. Li, S. Kulprathipanja, Mixded matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Prog. Polym. Sci. 32, 483–507 (2007)
67.
go back to reference P.M. Budd, B.S. Ghanem, S. Makhseed, N.B. McKeown, K.J. Msayib, C.E. Tattershall, Polymers of intrinsic microporosity (PIMs): robust, solution-processable, organic nanoporous materials. Chem. Commun. 10, 230–231 (2004) P.M. Budd, B.S. Ghanem, S. Makhseed, N.B. McKeown, K.J. Msayib, C.E. Tattershall, Polymers of intrinsic microporosity (PIMs): robust, solution-processable, organic nanoporous materials. Chem. Commun. 10, 230–231 (2004)
68.
go back to reference P.M. Budd, K.J. Msayib, C.E. Tattershall, B.S. Ghanem, K.J. Reynolds, N.B. McKeown, D. Fritsch, Gas separation membranes from polymers of intrinsic microporosity. J. Membr. Sci. 251, 263–269 (2005) P.M. Budd, K.J. Msayib, C.E. Tattershall, B.S. Ghanem, K.J. Reynolds, N.B. McKeown, D. Fritsch, Gas separation membranes from polymers of intrinsic microporosity. J. Membr. Sci. 251, 263–269 (2005)
69.
go back to reference N.B. McKeown, P.M. Budd, K.J. Msayib, B.S. Ghanem, H.J. Kingston, C.E. Tattershall, S. Makhseed, K.J. Reynolds, D. Fritsch, Polymers of intrinsic microporosity (PIMs): bridging the void between microporous and polymeric materials. Chem. Eur. J. 11, 2610–2620 (2005) N.B. McKeown, P.M. Budd, K.J. Msayib, B.S. Ghanem, H.J. Kingston, C.E. Tattershall, S. Makhseed, K.J. Reynolds, D. Fritsch, Polymers of intrinsic microporosity (PIMs): bridging the void between microporous and polymeric materials. Chem. Eur. J. 11, 2610–2620 (2005)
70.
go back to reference Q. Song, S. Cao, R.H. Pritchard, B. Ghalei, S.A. Al-Muhtaseb, E.M. Terentjev, A.K. Cheetham, E. Sivaniah, Controlled thermal oxidation crosslinking of polymer of intrinsic microporosity towards tunable molecular sieve membranes. Nat. Commun. 5, 4811–4813 (2014) Q. Song, S. Cao, R.H. Pritchard, B. Ghalei, S.A. Al-Muhtaseb, E.M. Terentjev, A.K. Cheetham, E. Sivaniah, Controlled thermal oxidation crosslinking of polymer of intrinsic microporosity towards tunable molecular sieve membranes. Nat. Commun. 5, 4811–4813 (2014)
71.
go back to reference P. Budd, N. McKeown, D. Fritsch, Polymers of intrinsic microporosity (PIMs): high free volume polymers for membrane applications. Macromol. Symp. 245, 403–405 (2006) P. Budd, N. McKeown, D. Fritsch, Polymers of intrinsic microporosity (PIMs): high free volume polymers for membrane applications. Macromol. Symp. 245, 403–405 (2006)
72.
go back to reference N. McKeown, P. Budd, Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. Chem. Soc. Rev. 35, 675–683 (2006) N. McKeown, P. Budd, Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. Chem. Soc. Rev. 35, 675–683 (2006)
73.
go back to reference B. Ghanem, N. McKeown, P. Budd, D. Fritsch, Polymers of intrinsic microporosity derived from bis(phenazyl) monomers. Macromolecules 41, 1640–1646 (2008) B. Ghanem, N. McKeown, P. Budd, D. Fritsch, Polymers of intrinsic microporosity derived from bis(phenazyl) monomers. Macromolecules 41, 1640–1646 (2008)
74.
go back to reference R.W. Spillmann, T.E. Cooley, Economic considerations in membrane gas separation process design (1998) R.W. Spillmann, T.E. Cooley, Economic considerations in membrane gas separation process design (1998)
75.
go back to reference M. Lesemann, Membrane Separation Technologies (RTI International, Research Triangle Park, 2015) M. Lesemann, Membrane Separation Technologies (RTI International, Research Triangle Park, 2015)
76.
go back to reference F. Gallucci, E. Fernandez, P. Corengia, M.V.S. Annaland, Recent advances on membranes and membrane reactors for hydrogen production. Chem. Eng. Sci. 92, 40–66 (2013) F. Gallucci, E. Fernandez, P. Corengia, M.V.S. Annaland, Recent advances on membranes and membrane reactors for hydrogen production. Chem. Eng. Sci. 92, 40–66 (2013)
77.
go back to reference M. Ulbricht, Advanced functional polymer membranes. Polymer 47, 2217–2262 (2006) M. Ulbricht, Advanced functional polymer membranes. Polymer 47, 2217–2262 (2006)
78.
go back to reference H. Strathmann, Membrane separation processes: current relevance and future opportunities. AICHE J. 47, 1077–1087 (2001) H. Strathmann, Membrane separation processes: current relevance and future opportunities. AICHE J. 47, 1077–1087 (2001)
79.
go back to reference X. Huang, N.S. Zacharia, Functional polyelectrolyte multilayer assemblies for surfaces with controlled wetting behavior. J. Appl. Polym. Sci. 132, 42767 (2015) X. Huang, N.S. Zacharia, Functional polyelectrolyte multilayer assemblies for surfaces with controlled wetting behavior. J. Appl. Polym. Sci. 132, 42767 (2015)
80.
go back to reference Y. Gu, X. Huang, C.G. Wiener, B.D. Vogt, N.S. Zacharia, Large-scale solvent driven actuation of polyelectrolyte multilayers based on modulation of dynamic secondary interactions. ACS Appl. Mater. Interfaces 7, 1848–1858 (2015) Y. Gu, X. Huang, C.G. Wiener, B.D. Vogt, N.S. Zacharia, Large-scale solvent driven actuation of polyelectrolyte multilayers based on modulation of dynamic secondary interactions. ACS Appl. Mater. Interfaces 7, 1848–1858 (2015)
81.
go back to reference X. Huang, N.S. Zacharia, Facile assembly enhanced spontaneous fluorescent response of Ag+ ion containing polyelectrolyte multilayer films. ACS Macro Lett. 3, 1092–1095 (2014) X. Huang, N.S. Zacharia, Facile assembly enhanced spontaneous fluorescent response of Ag+ ion containing polyelectrolyte multilayer films. ACS Macro Lett. 3, 1092–1095 (2014)
82.
go back to reference X. Huang, M.J. Bolen, N.S. Zacharia, Silver nanoparticle aided self-healing of polyelectrolyte multilayers. Phys. Chem. Chem. Phys. 16, 10267–10273 (2014) X. Huang, M.J. Bolen, N.S. Zacharia, Silver nanoparticle aided self-healing of polyelectrolyte multilayers. Phys. Chem. Chem. Phys. 16, 10267–10273 (2014)
83.
go back to reference X. Huang, Assembly and physico-chemical properties of polyelectrolyte multilayer films co-assembled with guest species (2014) X. Huang, Assembly and physico-chemical properties of polyelectrolyte multilayer films co-assembled with guest species (2014)
84.
go back to reference X. Huang, N.S. Zacharia, Surfactant co-assembly and ion exchange to modulate polyelectrolyte multilayer wettability. Soft Matter 9, 7735–7742 (2013) X. Huang, N.S. Zacharia, Surfactant co-assembly and ion exchange to modulate polyelectrolyte multilayer wettability. Soft Matter 9, 7735–7742 (2013)
85.
go back to reference X. Huang, A.B. Schubert, J.D. Chrisman, N.S. Zacharia, Formation and tunable disassembly of polyelectrolyte–Cu2+ layer-by-layer complex film. Langmuir 29, 12959–12968 (2013) X. Huang, A.B. Schubert, J.D. Chrisman, N.S. Zacharia, Formation and tunable disassembly of polyelectrolyte–Cu2+ layer-by-layer complex film. Langmuir 29, 12959–12968 (2013)
86.
go back to reference X. Huang, J.D. Chrisman, N.S. Zacharia, Omniphobic slippery coatings based on lubricant-infused porous polyelectrolyte multilayers. ACS Macro Lett. 2, 826–829 (2013) X. Huang, J.D. Chrisman, N.S. Zacharia, Omniphobic slippery coatings based on lubricant-infused porous polyelectrolyte multilayers. ACS Macro Lett. 2, 826–829 (2013)
87.
go back to reference S.A. Stern, Polymers for gas separations – the next decade. J. Membr. Sci. 94, 1–65 (1994) S.A. Stern, Polymers for gas separations – the next decade. J. Membr. Sci. 94, 1–65 (1994)
88.
go back to reference D. Hofmann, M. Heuchel, Y. Yampolskii, V. Khotimskii, V. Shantarovich, Free volume distributions in ultrahigh and lower free volume polymers: comparison between molecular modeling and positron lifetime studies. Macromolecules 35, 2129–2140 (2002) D. Hofmann, M. Heuchel, Y. Yampolskii, V. Khotimskii, V. Shantarovich, Free volume distributions in ultrahigh and lower free volume polymers: comparison between molecular modeling and positron lifetime studies. Macromolecules 35, 2129–2140 (2002)
89.
go back to reference D. Hofmann, J. Ulbrich, D. Fritsch, D. Paul, Molecular modelling simulation of gas transport in amorphous polyimide and poly(amide imide) membrane materials. Polymer 37, 4773–4785 (1996) D. Hofmann, J. Ulbrich, D. Fritsch, D. Paul, Molecular modelling simulation of gas transport in amorphous polyimide and poly(amide imide) membrane materials. Polymer 37, 4773–4785 (1996)
90.
go back to reference H. Yao, C.-C. Chu, H.-J. Sue, R. Nishimura, Electrically conductive superhydrophobic octadecylamine-functionalized multiwall carbon nanotube films. Carbon 53, 366–373 (2013) H. Yao, C.-C. Chu, H.-J. Sue, R. Nishimura, Electrically conductive superhydrophobic octadecylamine-functionalized multiwall carbon nanotube films. Carbon 53, 366–373 (2013)
91.
go back to reference A.T. Atimtay, Cleaner energy production with integrated gasification combined cycle systems and use of metal oxide sorbents for H2S cleanup from coal gas. Clean Products Process 2(4), 197–208 (2001) A.T. Atimtay, Cleaner energy production with integrated gasification combined cycle systems and use of metal oxide sorbents for H2S cleanup from coal gas. Clean Products Process 2(4), 197–208 (2001)
92.
go back to reference P. Costamagna, S. Supramaniam, Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000: part II. Engineering, technology development and application aspects. J. Power Sources 156, 251–269 (2001) P. Costamagna, S. Supramaniam, Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000: part II. Engineering, technology development and application aspects. J. Power Sources 156, 251–269 (2001)
93.
go back to reference S. Sá, J.M. Sousa, M. Adélio, Methanol steam reforming in a dual-bed membrane reactor for producing PEMFC grade hydrogen. Catal. Today 156, 254–260 (2010) S. Sá, J.M. Sousa, M. Adélio, Methanol steam reforming in a dual-bed membrane reactor for producing PEMFC grade hydrogen. Catal. Today 156, 254–260 (2010)
94.
go back to reference S. Ahmed, M. Krumpelt, Hydrogen from hydrocarbon fuels for fuel cells. Int. J. Hydrog. Energy 26, 291–301 (2001) S. Ahmed, M. Krumpelt, Hydrogen from hydrocarbon fuels for fuel cells. Int. J. Hydrog. Energy 26, 291–301 (2001)
95.
go back to reference C.K. Dyer, Fuel cells for portable applications. J. Power Sources 106, 31–34 (2002) C.K. Dyer, Fuel cells for portable applications. J. Power Sources 106, 31–34 (2002)
Metadata
Title
Hydrogen Separation Membranes of Polymeric Materials
Authors
Xiayun Huang
Haiqing Yao
Zhengdong Cheng
Copyright Year
2017
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-53514-1_3

Premium Partners