Skip to main content

2017 | OriginalPaper | Buchkapitel

3. Hydrogen Separation Membranes of Polymeric Materials

verfasst von : Xiayun Huang, Haiqing Yao, Zhengdong Cheng

Erschienen in: Nanostructured Materials for Next-Generation Energy Storage and Conversion

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The increased requirement of a clean and efficient green energy source promotes the development of hydrogen-based economy. In order to lower the cost of manufacturing, the future development of the next generation of hydrogen separation membrane is necessary. This chapter summarized the hydrogen separation membrane technology, the membrane separation mechanism, the polymer material selection and membrane structure design, current industrial market and separation modules, as well as the future development of the next generation hydrogen separation membrane.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat J.D. Perry, K. Nagai, W.J. Koros, Polymer membranes for hydrogen separations. MRS Bull. 31, 745–749 (2006) J.D. Perry, K. Nagai, W.J. Koros, Polymer membranes for hydrogen separations. MRS Bull. 31, 745–749 (2006)
2.
Zurück zum Zitat F.G. Kerry, Industrial Gas Handbook: Gas Separation and Purification (CRC Press, Boca Raton, 2006) F.G. Kerry, Industrial Gas Handbook: Gas Separation and Purification (CRC Press, Boca Raton, 2006)
3.
Zurück zum Zitat S.C.A. Kluiters, Status Review on Membrane System for Hydrogen Separation (Energy Center of Netherlands, Petten, 2004) S.C.A. Kluiters, Status Review on Membrane System for Hydrogen Separation (Energy Center of Netherlands, Petten, 2004)
4.
Zurück zum Zitat N.W. Ockwig, T.M. Nenoff, Membranes for hydrogen separation. Chem. Rev. 107, 4078–4110 (2007) N.W. Ockwig, T.M. Nenoff, Membranes for hydrogen separation. Chem. Rev. 107, 4078–4110 (2007)
5.
Zurück zum Zitat H. Shiga, K. Shinda, K. Hagiwara, A. Tsutsumi, M. Sakurai, K. Yoshida, E. Bilgen, Large-scale hydrogen production from biogas. Int. J. Hydrog. Energy 23, 631–640 (1998) H. Shiga, K. Shinda, K. Hagiwara, A. Tsutsumi, M. Sakurai, K. Yoshida, E. Bilgen, Large-scale hydrogen production from biogas. Int. J. Hydrog. Energy 23, 631–640 (1998)
6.
Zurück zum Zitat S. Adhikari, S. Fernando, Hydrogen membrane separation techniques. Ind. Eng. Chem. Res. 45, 875–881 (2006) S. Adhikari, S. Fernando, Hydrogen membrane separation techniques. Ind. Eng. Chem. Res. 45, 875–881 (2006)
7.
Zurück zum Zitat X.Y. Chen, H. Vinh-Thang, A.A. Ramirez, D. Rodrigue, S. Kaliaguine, Membrane gas separation technologies for biogas upgrading. RSC Adv. 5, 24399–24448 (2015) X.Y. Chen, H. Vinh-Thang, A.A. Ramirez, D. Rodrigue, S. Kaliaguine, Membrane gas separation technologies for biogas upgrading. RSC Adv. 5, 24399–24448 (2015)
8.
Zurück zum Zitat J.W. Phair, S.P.S. Badwal, Materials for separation membranes in hydrogen and oxygen production and future power generation. Sci. Technol. Adv. Mater. 7, 792–805 (2006) J.W. Phair, S.P.S. Badwal, Materials for separation membranes in hydrogen and oxygen production and future power generation. Sci. Technol. Adv. Mater. 7, 792–805 (2006)
9.
Zurück zum Zitat H. Makino, Y. Kusuki, H. Yoshida, A. Nakamaura, Process for preparing aromatic polyimide semipermeable membranes. U.S. Patent 4,378,324, 1983 H. Makino, Y. Kusuki, H. Yoshida, A. Nakamaura, Process for preparing aromatic polyimide semipermeable membranes. U.S. Patent 4,378,324, 1983
10.
Zurück zum Zitat J. M. S. Henis, M. K. Tripodi, Multicomponent membranes for gas separation, 1980 J. M. S. Henis, M. K. Tripodi, Multicomponent membranes for gas separation, 1980
11.
Zurück zum Zitat W.J. Schell, C.D. Houston, Spiral-wound permeators for purification and recovery. Chem. Eng. Prog. 78, 33–37 (1982) W.J. Schell, C.D. Houston, Spiral-wound permeators for purification and recovery. Chem. Eng. Prog. 78, 33–37 (1982)
12.
Zurück zum Zitat S. Weller, W.A. Steiner, Engineering aspects of separation of gases – fractional permeation through membranes. Chem. Eng. Prog. 46, 585–590 (1950) S. Weller, W.A. Steiner, Engineering aspects of separation of gases – fractional permeation through membranes. Chem. Eng. Prog. 46, 585–590 (1950)
13.
Zurück zum Zitat L. M. Gandia, G. Arzamendi, P. M. Dieguez, Renewable Hydrogen Technologies, Production, Purification, Storage, Applications and Safety (Elsevier, Oxford, 2013) L. M. Gandia, G. Arzamendi, P. M. Dieguez, Renewable Hydrogen Technologies, Production, Purification, Storage, Applications and Safety (Elsevier, Oxford, 2013)
14.
Zurück zum Zitat L. Hu, R. Benitez, S. Basu, I. Karaman, M. Radovic, Processing and characterization of porous Ti2AlC with controlled porosity and pore size. Acta Mater. 60, 6266–6277 (2012) L. Hu, R. Benitez, S. Basu, I. Karaman, M. Radovic, Processing and characterization of porous Ti2AlC with controlled porosity and pore size. Acta Mater. 60, 6266–6277 (2012)
15.
Zurück zum Zitat L. Hu, C.-A. Wang, Effect of sintering temperature on compressive strength of porous yttria-stabilized zirconia ceramics. Ceram. Int. 36, 1697–1701 (2010) L. Hu, C.-A. Wang, Effect of sintering temperature on compressive strength of porous yttria-stabilized zirconia ceramics. Ceram. Int. 36, 1697–1701 (2010)
16.
Zurück zum Zitat S.C.A. Kluiters, Status Review on Membrane Systems for Hydrogen Separation (Energy Center of Netherlands, Petten, 2004) S.C.A. Kluiters, Status Review on Membrane Systems for Hydrogen Separation (Energy Center of Netherlands, Petten, 2004)
17.
Zurück zum Zitat W.J. Koros, G.K. Fleming, Membrane-based gas separation. J. Membr. Sci. 83, 1–80 (1993) W.J. Koros, G.K. Fleming, Membrane-based gas separation. J. Membr. Sci. 83, 1–80 (1993)
18.
Zurück zum Zitat P. Bernardo, E. Drioli, G. Golemme, Membrane gas separation: a review/state of the art. Ind. Eng. Chem. Res. 48, 4638–4663 (2009) P. Bernardo, E. Drioli, G. Golemme, Membrane gas separation: a review/state of the art. Ind. Eng. Chem. Res. 48, 4638–4663 (2009)
19.
Zurück zum Zitat M. Knudsen, The Kinetic Theory of Gases: Some Modern Aspects (Wiley, New York, 1934) M. Knudsen, The Kinetic Theory of Gases: Some Modern Aspects (Wiley, New York, 1934)
20.
Zurück zum Zitat S.T. Hwang, K. Kammerme, Surface diffusion in microporous media. Can. J. Chem. Eng. 44, 82 (1966) S.T. Hwang, K. Kammerme, Surface diffusion in microporous media. Can. J. Chem. Eng. 44, 82 (1966)
21.
Zurück zum Zitat K.H. Lee, S.T. Hwang, The transportation of condensable vapors through a microporous vycor glass membrane. J. Colloid Interface Sci. 110, 544–555 (1986) K.H. Lee, S.T. Hwang, The transportation of condensable vapors through a microporous vycor glass membrane. J. Colloid Interface Sci. 110, 544–555 (1986)
22.
Zurück zum Zitat J.S. Masaryk, R.M. Fulrath, Diffusivity of helium in fused silica. J. Chem. Phys. 59, 1198–1202 (1973) J.S. Masaryk, R.M. Fulrath, Diffusivity of helium in fused silica. J. Chem. Phys. 59, 1198–1202 (1973)
23.
Zurück zum Zitat S. Kim, Y.M. Lee, Rigid and microporous polymers for gas separation membranes. Prog. Polym. Sci. 43, 1–32 (2015) S. Kim, Y.M. Lee, Rigid and microporous polymers for gas separation membranes. Prog. Polym. Sci. 43, 1–32 (2015)
24.
Zurück zum Zitat M. Mulder, Basic Principles of Membrane Technology (Kluwer, Dordrecht, 1996) M. Mulder, Basic Principles of Membrane Technology (Kluwer, Dordrecht, 1996)
25.
Zurück zum Zitat R.W. Baker, Separation Technology and Applications (Wiley, West Sussex, 2004) R.W. Baker, Separation Technology and Applications (Wiley, West Sussex, 2004)
26.
Zurück zum Zitat Y. Yampolskii, I. Pinnau, I.B. Freeman, Materials Science of Membranes for Gas and Vapor Separation (Wiley, Chichester, 2006) Y. Yampolskii, I. Pinnau, I.B. Freeman, Materials Science of Membranes for Gas and Vapor Separation (Wiley, Chichester, 2006)
27.
Zurück zum Zitat A.W. Thornton, K.M. Nairn, A.J. Hill, J.M. Hill, New relation between diffusion and free volume: I. Predicting gas diffusion. J. Membr. Sci. 338, 29–37 (2009) A.W. Thornton, K.M. Nairn, A.J. Hill, J.M. Hill, New relation between diffusion and free volume: I. Predicting gas diffusion. J. Membr. Sci. 338, 29–37 (2009)
28.
Zurück zum Zitat J.G. Wijmans, R.W. Baker, The solution-diffusion model – a review. J. Membr. Sci. 107, 1–21 (1995) J.G. Wijmans, R.W. Baker, The solution-diffusion model – a review. J. Membr. Sci. 107, 1–21 (1995)
29.
Zurück zum Zitat R.W. Baker, Future directions of membrane gas separation technology. Ind. Eng. Chem. Res. 41, 1393–1411 (2002) R.W. Baker, Future directions of membrane gas separation technology. Ind. Eng. Chem. Res. 41, 1393–1411 (2002)
30.
Zurück zum Zitat L.H. Sperling, Introduction to Physical Polymer Science, 4th edn. (Wiley, Hoboken, 2006) L.H. Sperling, Introduction to Physical Polymer Science, 4th edn. (Wiley, Hoboken, 2006)
31.
Zurück zum Zitat H.R. Allcock, F.W. Lampe, J.E. Mark, Contemporary Polymer Science (Pearson Prentice Hall, Upper Saddle River, 2003) H.R. Allcock, F.W. Lampe, J.E. Mark, Contemporary Polymer Science (Pearson Prentice Hall, Upper Saddle River, 2003)
32.
Zurück zum Zitat I. Pinnau, Z.J. He, Pure- and mixed-gas permeation properties of polydimethylsiloxane for hydrocarbon/methane and hydrocarbon/hydrogen separation. J. Membr. Sci. 244, 227–233 (2004) I. Pinnau, Z.J. He, Pure- and mixed-gas permeation properties of polydimethylsiloxane for hydrocarbon/methane and hydrocarbon/hydrogen separation. J. Membr. Sci. 244, 227–233 (2004)
33.
Zurück zum Zitat T.C. Merkel, B.D. Freeman, R.J. Spontak, Z. He, I. Pinnau, P. Meakin, A.J. Hill, Ultrapermeable, reverse-selective nanocomposite membranes. Science 296, 519–522 (2002) T.C. Merkel, B.D. Freeman, R.J. Spontak, Z. He, I. Pinnau, P. Meakin, A.J. Hill, Ultrapermeable, reverse-selective nanocomposite membranes. Science 296, 519–522 (2002)
34.
Zurück zum Zitat A. Hussain, M.-B. Hagg, A feasibility study of CO2 capture from flue gas by a facilitated transport membrane. J. Membr. Sci. 359, 140–148 (2010) A. Hussain, M.-B. Hagg, A feasibility study of CO2 capture from flue gas by a facilitated transport membrane. J. Membr. Sci. 359, 140–148 (2010)
35.
Zurück zum Zitat J.H. Kim, Y.M. Lee, Gas permeation properties of poly(amide-6-b-ethylene oxide)-silica hybrid membranes. J. Membr. Sci. 193, 209–225 (2001) J.H. Kim, Y.M. Lee, Gas permeation properties of poly(amide-6-b-ethylene oxide)-silica hybrid membranes. J. Membr. Sci. 193, 209–225 (2001)
36.
Zurück zum Zitat L.M. Robeson, Correlation of separation factor versus permeability for polymeric membranes. J. Membr. Sci. 62, 165–185 (1991) L.M. Robeson, Correlation of separation factor versus permeability for polymeric membranes. J. Membr. Sci. 62, 165–185 (1991)
37.
Zurück zum Zitat L.M. Robeson, The upper bound revisited. J. Membr. Sci. 320, 390–400 (2008) L.M. Robeson, The upper bound revisited. J. Membr. Sci. 320, 390–400 (2008)
38.
Zurück zum Zitat L. Deng, M.-B. Hagg, Swelling behavior and gas permeation performance of PVAm/PVA blend FSC membrane. J. Membr. Sci. 363, 295–301 (2010) L. Deng, M.-B. Hagg, Swelling behavior and gas permeation performance of PVAm/PVA blend FSC membrane. J. Membr. Sci. 363, 295–301 (2010)
39.
Zurück zum Zitat A. Car, C. Stropnik, W. Yave, K.V. Peinemann, Pebax (R)/polyethylene glycol blend thin film composite membranes for CO2 separation: performance with mixed gases. Sep. Purif. Technol. 62, 110–117 (2008) A. Car, C. Stropnik, W. Yave, K.V. Peinemann, Pebax (R)/polyethylene glycol blend thin film composite membranes for CO2 separation: performance with mixed gases. Sep. Purif. Technol. 62, 110–117 (2008)
40.
Zurück zum Zitat J.J. Rouquerol, D. Avnir, C.W. Fairbridge, D.H. Everett, J.M. Haynes, H. Pernicone, J.D.F. Ramsay, S.K.W. Sing, J.J. Unger, Recommendations for the characterization of porous solids. Pure Appl. Chem. 66, 1739–1758 (1994) J.J. Rouquerol, D. Avnir, C.W. Fairbridge, D.H. Everett, J.M. Haynes, H. Pernicone, J.D.F. Ramsay, S.K.W. Sing, J.J. Unger, Recommendations for the characterization of porous solids. Pure Appl. Chem. 66, 1739–1758 (1994)
41.
Zurück zum Zitat P.C. Hiemenz, T.P. Lodge, Polymer Chemistry, 2nd edn. (CRC Press, Boca Raton, 2007) P.C. Hiemenz, T.P. Lodge, Polymer Chemistry, 2nd edn. (CRC Press, Boca Raton, 2007)
42.
Zurück zum Zitat P.M. Budd, N.B. McKeown, High permeable polymers for gas separation membranes. Polym. Chem. 1, 63–68 (2010) P.M. Budd, N.B. McKeown, High permeable polymers for gas separation membranes. Polym. Chem. 1, 63–68 (2010)
43.
Zurück zum Zitat S. Shishatskiy, C. Nistor, M. Popa, S.P. Nunes, K.V. Peinemann, Polyimide asymmetric membranes for hydrogen separation: influence of formation conditions on gas transport properties. Adv. Eng. Mater. 8, 390–397 (2006) S. Shishatskiy, C. Nistor, M. Popa, S.P. Nunes, K.V. Peinemann, Polyimide asymmetric membranes for hydrogen separation: influence of formation conditions on gas transport properties. Adv. Eng. Mater. 8, 390–397 (2006)
44.
Zurück zum Zitat B.T. Low, Y. Xiao, T.S. Chung, Y. Liu, Simultaneous occurrence of chemical grafting, cross-linking, and etching on the surface of polyimide membranes and their impact on H2/CO2 separation. Macromolecules 41, 1297–1309 (2008) B.T. Low, Y. Xiao, T.S. Chung, Y. Liu, Simultaneous occurrence of chemical grafting, cross-linking, and etching on the surface of polyimide membranes and their impact on H2/CO2 separation. Macromolecules 41, 1297–1309 (2008)
45.
Zurück zum Zitat X. Li, R.P. Singh, K.W. Dudeck, K.A. Berchtold, B.C. Benicewicz, Influence of polybenzimidazole main chain structure on H2/CO2 separation at elevated temperatures. J. Membr. Sci. 461, 59–68 (2014) X. Li, R.P. Singh, K.W. Dudeck, K.A. Berchtold, B.C. Benicewicz, Influence of polybenzimidazole main chain structure on H2/CO2 separation at elevated temperatures. J. Membr. Sci. 461, 59–68 (2014)
46.
Zurück zum Zitat S.S. Hosseini, M.M. Teoh, T.S. Chung, Hydrogen separation and purification in membranes of miscible polymer blends with interpenetration networks. Polymer 49, 1594–1603 (2008) S.S. Hosseini, M.M. Teoh, T.S. Chung, Hydrogen separation and purification in membranes of miscible polymer blends with interpenetration networks. Polymer 49, 1594–1603 (2008)
47.
Zurück zum Zitat A.A. Tracton, Coatings Materials and Surface Coatings (CRC Press/Taylor & Francis Group, Boca Raton, 2006) A.A. Tracton, Coatings Materials and Surface Coatings (CRC Press/Taylor & Francis Group, Boca Raton, 2006)
48.
Zurück zum Zitat C. Cao, T. Chung, Y. Liu, R. Wang, K.P. Pramoda, Chemical cross-linking modification of 6FDA-2,6-DAT hollow fiber membranes for natural gas separation. J. Membr. Sci. 216, 257–268 (2003) C. Cao, T. Chung, Y. Liu, R. Wang, K.P. Pramoda, Chemical cross-linking modification of 6FDA-2,6-DAT hollow fiber membranes for natural gas separation. J. Membr. Sci. 216, 257–268 (2003)
49.
Zurück zum Zitat X. Huang, H. Cao, Z. Shi, H. Xu, J. Fang, J. Yin, Q. Pan, A study on mineralization behavior of amino-terminated hyperbranched polybenzimidazole membranes. J. Mater. Sci. Mater. Med. 21, 1829–1835 (2010) X. Huang, H. Cao, Z. Shi, H. Xu, J. Fang, J. Yin, Q. Pan, A study on mineralization behavior of amino-terminated hyperbranched polybenzimidazole membranes. J. Mater. Sci. Mater. Med. 21, 1829–1835 (2010)
50.
Zurück zum Zitat H. Vogel, C.S. Marvel, Polybenzimidazoles, New thermally stable polymers. J. Polym. Sci. 50, 511–539 (1961) H. Vogel, C.S. Marvel, Polybenzimidazoles, New thermally stable polymers. J. Polym. Sci. 50, 511–539 (1961)
51.
Zurück zum Zitat D.R. Pesiri, B. Jorgensen, R.C. Dye, Thermal optimization of polybenzimidazole meniscus membranes for the separation of hydrogen, methane, and carbon dioxide. J. Membr. Sci. 218, 11–18 (2003) D.R. Pesiri, B. Jorgensen, R.C. Dye, Thermal optimization of polybenzimidazole meniscus membranes for the separation of hydrogen, methane, and carbon dioxide. J. Membr. Sci. 218, 11–18 (2003)
52.
Zurück zum Zitat S.C. Kumbharkar, Y. Liu, K. Li, High performance polybenzimidazole based asymmetric hollow fibre membranes for H2/CO2 separation. J. Membr. Sci. 375, 231–240 (2011) S.C. Kumbharkar, Y. Liu, K. Li, High performance polybenzimidazole based asymmetric hollow fibre membranes for H2/CO2 separation. J. Membr. Sci. 375, 231–240 (2011)
53.
Zurück zum Zitat S.C. Kumbharkar, P.B. Karadkar, U.K. Kharul, Enhancement of gas permeation properties of polybenzimidazoles by systematic structure architecture. J. Membr. Sci. 286, 161–169 (2006) S.C. Kumbharkar, P.B. Karadkar, U.K. Kharul, Enhancement of gas permeation properties of polybenzimidazoles by systematic structure architecture. J. Membr. Sci. 286, 161–169 (2006)
54.
Zurück zum Zitat S.C. Kumbharkar, U.K. Kharul, Investigation of gas permeation properties of systematically modified polybenzimidazoles by N-substitution. J. Membr. Sci. 357, 134–142 (2010) S.C. Kumbharkar, U.K. Kharul, Investigation of gas permeation properties of systematically modified polybenzimidazoles by N-substitution. J. Membr. Sci. 357, 134–142 (2010)
55.
Zurück zum Zitat J.D. Wind, D.R. Paul, W.J. Koros, Natural gas permeation in polyimide membranes. J. Membr. Sci. 228, 227–236 (2004) J.D. Wind, D.R. Paul, W.J. Koros, Natural gas permeation in polyimide membranes. J. Membr. Sci. 228, 227–236 (2004)
56.
Zurück zum Zitat Y. Liu, R. Wang, T.-S. Chung, Chemical cross-linking modification of polyimide membranes for gas separation. J. Membr. Sci. 189, 231–239 (2001) Y. Liu, R. Wang, T.-S. Chung, Chemical cross-linking modification of polyimide membranes for gas separation. J. Membr. Sci. 189, 231–239 (2001)
57.
Zurück zum Zitat N.N. Li, A.G. Fane, W.S.W. Ho, T. Matsuura, Advanced Membrane Technology and Applications (Wiley, Hoboken, 2008) N.N. Li, A.G. Fane, W.S.W. Ho, T. Matsuura, Advanced Membrane Technology and Applications (Wiley, Hoboken, 2008)
58.
Zurück zum Zitat W.J. Koros, R. Mahajan, Pushing the limits on possibilities for large scale gas separation: which strategies? J. Membr. Sci. 175, 181–196 (2000) W.J. Koros, R. Mahajan, Pushing the limits on possibilities for large scale gas separation: which strategies? J. Membr. Sci. 175, 181–196 (2000)
59.
Zurück zum Zitat H.A. Mannan, H. Mukhtar, T. Murugesan, R. Nasir, D.F. Mohshim, A. Mushtaq, Recent applications of polymer blends in gas separation membranes. Chem. Eng. Technol. 36, 1838–1846 (2013) H.A. Mannan, H. Mukhtar, T. Murugesan, R. Nasir, D.F. Mohshim, A. Mushtaq, Recent applications of polymer blends in gas separation membranes. Chem. Eng. Technol. 36, 1838–1846 (2013)
60.
Zurück zum Zitat S.P. Nunes, K.V. Peinemann, Membrane Technology in the Chemical Industry, 2nd edn. (Wiley-VCH, Weinheim, 2001) S.P. Nunes, K.V. Peinemann, Membrane Technology in the Chemical Industry, 2nd edn. (Wiley-VCH, Weinheim, 2001)
61.
Zurück zum Zitat N. McKeown, P. Budd, Exploitation of intrinsic microporosity in polymer-based materials. Macromolecules 43, 5163–5176 (2010) N. McKeown, P. Budd, Exploitation of intrinsic microporosity in polymer-based materials. Macromolecules 43, 5163–5176 (2010)
62.
Zurück zum Zitat M. Carta, R. Malpass-Evans, M. Croad, Y. Rogan, J.C. Jansen, P. Bernardo, F. Bazzarelli, N.B. McKeown, An efficient polymer molecular sieve for membrane gas separation. Science 339, 303–307 (2013) M. Carta, R. Malpass-Evans, M. Croad, Y. Rogan, J.C. Jansen, P. Bernardo, F. Bazzarelli, N.B. McKeown, An efficient polymer molecular sieve for membrane gas separation. Science 339, 303–307 (2013)
63.
Zurück zum Zitat N. Jusoh, Y.F. Yeong, K.K. Lau, M.S. Azmi, Membranes for gas separation current development and challenges. Appl. Mech. Mater. 773–774, 1085–1090 (2015) N. Jusoh, Y.F. Yeong, K.K. Lau, M.S. Azmi, Membranes for gas separation current development and challenges. Appl. Mech. Mater. 773–774, 1085–1090 (2015)
64.
Zurück zum Zitat Y. Zhang, J. Sunarso, S. Liu, R. Wang, Current status and development of membranes for CO2/CH4 separation: a review. Int. J. Green Gas Con. 12, 84–107 (2013) Y. Zhang, J. Sunarso, S. Liu, R. Wang, Current status and development of membranes for CO2/CH4 separation: a review. Int. J. Green Gas Con. 12, 84–107 (2013)
65.
Zurück zum Zitat S.B. Tantekin-Ersolmaz, C. Ataly-Oral, M. Tather, A. Erdem-Senatalar, B. Schoeman, J. Sterte, Effect of zeolite particle size on the performance of polymer-zeolite mixed matrix membranes. J. Membr. Sci. 175, 285–288 (2000) S.B. Tantekin-Ersolmaz, C. Ataly-Oral, M. Tather, A. Erdem-Senatalar, B. Schoeman, J. Sterte, Effect of zeolite particle size on the performance of polymer-zeolite mixed matrix membranes. J. Membr. Sci. 175, 285–288 (2000)
66.
Zurück zum Zitat T.S. Chung, L.Y. Jiang, Y. Li, S. Kulprathipanja, Mixded matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Prog. Polym. Sci. 32, 483–507 (2007) T.S. Chung, L.Y. Jiang, Y. Li, S. Kulprathipanja, Mixded matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Prog. Polym. Sci. 32, 483–507 (2007)
67.
Zurück zum Zitat P.M. Budd, B.S. Ghanem, S. Makhseed, N.B. McKeown, K.J. Msayib, C.E. Tattershall, Polymers of intrinsic microporosity (PIMs): robust, solution-processable, organic nanoporous materials. Chem. Commun. 10, 230–231 (2004) P.M. Budd, B.S. Ghanem, S. Makhseed, N.B. McKeown, K.J. Msayib, C.E. Tattershall, Polymers of intrinsic microporosity (PIMs): robust, solution-processable, organic nanoporous materials. Chem. Commun. 10, 230–231 (2004)
68.
Zurück zum Zitat P.M. Budd, K.J. Msayib, C.E. Tattershall, B.S. Ghanem, K.J. Reynolds, N.B. McKeown, D. Fritsch, Gas separation membranes from polymers of intrinsic microporosity. J. Membr. Sci. 251, 263–269 (2005) P.M. Budd, K.J. Msayib, C.E. Tattershall, B.S. Ghanem, K.J. Reynolds, N.B. McKeown, D. Fritsch, Gas separation membranes from polymers of intrinsic microporosity. J. Membr. Sci. 251, 263–269 (2005)
69.
Zurück zum Zitat N.B. McKeown, P.M. Budd, K.J. Msayib, B.S. Ghanem, H.J. Kingston, C.E. Tattershall, S. Makhseed, K.J. Reynolds, D. Fritsch, Polymers of intrinsic microporosity (PIMs): bridging the void between microporous and polymeric materials. Chem. Eur. J. 11, 2610–2620 (2005) N.B. McKeown, P.M. Budd, K.J. Msayib, B.S. Ghanem, H.J. Kingston, C.E. Tattershall, S. Makhseed, K.J. Reynolds, D. Fritsch, Polymers of intrinsic microporosity (PIMs): bridging the void between microporous and polymeric materials. Chem. Eur. J. 11, 2610–2620 (2005)
70.
Zurück zum Zitat Q. Song, S. Cao, R.H. Pritchard, B. Ghalei, S.A. Al-Muhtaseb, E.M. Terentjev, A.K. Cheetham, E. Sivaniah, Controlled thermal oxidation crosslinking of polymer of intrinsic microporosity towards tunable molecular sieve membranes. Nat. Commun. 5, 4811–4813 (2014) Q. Song, S. Cao, R.H. Pritchard, B. Ghalei, S.A. Al-Muhtaseb, E.M. Terentjev, A.K. Cheetham, E. Sivaniah, Controlled thermal oxidation crosslinking of polymer of intrinsic microporosity towards tunable molecular sieve membranes. Nat. Commun. 5, 4811–4813 (2014)
71.
Zurück zum Zitat P. Budd, N. McKeown, D. Fritsch, Polymers of intrinsic microporosity (PIMs): high free volume polymers for membrane applications. Macromol. Symp. 245, 403–405 (2006) P. Budd, N. McKeown, D. Fritsch, Polymers of intrinsic microporosity (PIMs): high free volume polymers for membrane applications. Macromol. Symp. 245, 403–405 (2006)
72.
Zurück zum Zitat N. McKeown, P. Budd, Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. Chem. Soc. Rev. 35, 675–683 (2006) N. McKeown, P. Budd, Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. Chem. Soc. Rev. 35, 675–683 (2006)
73.
Zurück zum Zitat B. Ghanem, N. McKeown, P. Budd, D. Fritsch, Polymers of intrinsic microporosity derived from bis(phenazyl) monomers. Macromolecules 41, 1640–1646 (2008) B. Ghanem, N. McKeown, P. Budd, D. Fritsch, Polymers of intrinsic microporosity derived from bis(phenazyl) monomers. Macromolecules 41, 1640–1646 (2008)
74.
Zurück zum Zitat R.W. Spillmann, T.E. Cooley, Economic considerations in membrane gas separation process design (1998) R.W. Spillmann, T.E. Cooley, Economic considerations in membrane gas separation process design (1998)
75.
Zurück zum Zitat M. Lesemann, Membrane Separation Technologies (RTI International, Research Triangle Park, 2015) M. Lesemann, Membrane Separation Technologies (RTI International, Research Triangle Park, 2015)
76.
Zurück zum Zitat F. Gallucci, E. Fernandez, P. Corengia, M.V.S. Annaland, Recent advances on membranes and membrane reactors for hydrogen production. Chem. Eng. Sci. 92, 40–66 (2013) F. Gallucci, E. Fernandez, P. Corengia, M.V.S. Annaland, Recent advances on membranes and membrane reactors for hydrogen production. Chem. Eng. Sci. 92, 40–66 (2013)
77.
Zurück zum Zitat M. Ulbricht, Advanced functional polymer membranes. Polymer 47, 2217–2262 (2006) M. Ulbricht, Advanced functional polymer membranes. Polymer 47, 2217–2262 (2006)
78.
Zurück zum Zitat H. Strathmann, Membrane separation processes: current relevance and future opportunities. AICHE J. 47, 1077–1087 (2001) H. Strathmann, Membrane separation processes: current relevance and future opportunities. AICHE J. 47, 1077–1087 (2001)
79.
Zurück zum Zitat X. Huang, N.S. Zacharia, Functional polyelectrolyte multilayer assemblies for surfaces with controlled wetting behavior. J. Appl. Polym. Sci. 132, 42767 (2015) X. Huang, N.S. Zacharia, Functional polyelectrolyte multilayer assemblies for surfaces with controlled wetting behavior. J. Appl. Polym. Sci. 132, 42767 (2015)
80.
Zurück zum Zitat Y. Gu, X. Huang, C.G. Wiener, B.D. Vogt, N.S. Zacharia, Large-scale solvent driven actuation of polyelectrolyte multilayers based on modulation of dynamic secondary interactions. ACS Appl. Mater. Interfaces 7, 1848–1858 (2015) Y. Gu, X. Huang, C.G. Wiener, B.D. Vogt, N.S. Zacharia, Large-scale solvent driven actuation of polyelectrolyte multilayers based on modulation of dynamic secondary interactions. ACS Appl. Mater. Interfaces 7, 1848–1858 (2015)
81.
Zurück zum Zitat X. Huang, N.S. Zacharia, Facile assembly enhanced spontaneous fluorescent response of Ag+ ion containing polyelectrolyte multilayer films. ACS Macro Lett. 3, 1092–1095 (2014) X. Huang, N.S. Zacharia, Facile assembly enhanced spontaneous fluorescent response of Ag+ ion containing polyelectrolyte multilayer films. ACS Macro Lett. 3, 1092–1095 (2014)
82.
Zurück zum Zitat X. Huang, M.J. Bolen, N.S. Zacharia, Silver nanoparticle aided self-healing of polyelectrolyte multilayers. Phys. Chem. Chem. Phys. 16, 10267–10273 (2014) X. Huang, M.J. Bolen, N.S. Zacharia, Silver nanoparticle aided self-healing of polyelectrolyte multilayers. Phys. Chem. Chem. Phys. 16, 10267–10273 (2014)
83.
Zurück zum Zitat X. Huang, Assembly and physico-chemical properties of polyelectrolyte multilayer films co-assembled with guest species (2014) X. Huang, Assembly and physico-chemical properties of polyelectrolyte multilayer films co-assembled with guest species (2014)
84.
Zurück zum Zitat X. Huang, N.S. Zacharia, Surfactant co-assembly and ion exchange to modulate polyelectrolyte multilayer wettability. Soft Matter 9, 7735–7742 (2013) X. Huang, N.S. Zacharia, Surfactant co-assembly and ion exchange to modulate polyelectrolyte multilayer wettability. Soft Matter 9, 7735–7742 (2013)
85.
Zurück zum Zitat X. Huang, A.B. Schubert, J.D. Chrisman, N.S. Zacharia, Formation and tunable disassembly of polyelectrolyte–Cu2+ layer-by-layer complex film. Langmuir 29, 12959–12968 (2013) X. Huang, A.B. Schubert, J.D. Chrisman, N.S. Zacharia, Formation and tunable disassembly of polyelectrolyte–Cu2+ layer-by-layer complex film. Langmuir 29, 12959–12968 (2013)
86.
Zurück zum Zitat X. Huang, J.D. Chrisman, N.S. Zacharia, Omniphobic slippery coatings based on lubricant-infused porous polyelectrolyte multilayers. ACS Macro Lett. 2, 826–829 (2013) X. Huang, J.D. Chrisman, N.S. Zacharia, Omniphobic slippery coatings based on lubricant-infused porous polyelectrolyte multilayers. ACS Macro Lett. 2, 826–829 (2013)
87.
Zurück zum Zitat S.A. Stern, Polymers for gas separations – the next decade. J. Membr. Sci. 94, 1–65 (1994) S.A. Stern, Polymers for gas separations – the next decade. J. Membr. Sci. 94, 1–65 (1994)
88.
Zurück zum Zitat D. Hofmann, M. Heuchel, Y. Yampolskii, V. Khotimskii, V. Shantarovich, Free volume distributions in ultrahigh and lower free volume polymers: comparison between molecular modeling and positron lifetime studies. Macromolecules 35, 2129–2140 (2002) D. Hofmann, M. Heuchel, Y. Yampolskii, V. Khotimskii, V. Shantarovich, Free volume distributions in ultrahigh and lower free volume polymers: comparison between molecular modeling and positron lifetime studies. Macromolecules 35, 2129–2140 (2002)
89.
Zurück zum Zitat D. Hofmann, J. Ulbrich, D. Fritsch, D. Paul, Molecular modelling simulation of gas transport in amorphous polyimide and poly(amide imide) membrane materials. Polymer 37, 4773–4785 (1996) D. Hofmann, J. Ulbrich, D. Fritsch, D. Paul, Molecular modelling simulation of gas transport in amorphous polyimide and poly(amide imide) membrane materials. Polymer 37, 4773–4785 (1996)
90.
Zurück zum Zitat H. Yao, C.-C. Chu, H.-J. Sue, R. Nishimura, Electrically conductive superhydrophobic octadecylamine-functionalized multiwall carbon nanotube films. Carbon 53, 366–373 (2013) H. Yao, C.-C. Chu, H.-J. Sue, R. Nishimura, Electrically conductive superhydrophobic octadecylamine-functionalized multiwall carbon nanotube films. Carbon 53, 366–373 (2013)
91.
Zurück zum Zitat A.T. Atimtay, Cleaner energy production with integrated gasification combined cycle systems and use of metal oxide sorbents for H2S cleanup from coal gas. Clean Products Process 2(4), 197–208 (2001) A.T. Atimtay, Cleaner energy production with integrated gasification combined cycle systems and use of metal oxide sorbents for H2S cleanup from coal gas. Clean Products Process 2(4), 197–208 (2001)
92.
Zurück zum Zitat P. Costamagna, S. Supramaniam, Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000: part II. Engineering, technology development and application aspects. J. Power Sources 156, 251–269 (2001) P. Costamagna, S. Supramaniam, Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000: part II. Engineering, technology development and application aspects. J. Power Sources 156, 251–269 (2001)
93.
Zurück zum Zitat S. Sá, J.M. Sousa, M. Adélio, Methanol steam reforming in a dual-bed membrane reactor for producing PEMFC grade hydrogen. Catal. Today 156, 254–260 (2010) S. Sá, J.M. Sousa, M. Adélio, Methanol steam reforming in a dual-bed membrane reactor for producing PEMFC grade hydrogen. Catal. Today 156, 254–260 (2010)
94.
Zurück zum Zitat S. Ahmed, M. Krumpelt, Hydrogen from hydrocarbon fuels for fuel cells. Int. J. Hydrog. Energy 26, 291–301 (2001) S. Ahmed, M. Krumpelt, Hydrogen from hydrocarbon fuels for fuel cells. Int. J. Hydrog. Energy 26, 291–301 (2001)
95.
Zurück zum Zitat C.K. Dyer, Fuel cells for portable applications. J. Power Sources 106, 31–34 (2002) C.K. Dyer, Fuel cells for portable applications. J. Power Sources 106, 31–34 (2002)
Metadaten
Titel
Hydrogen Separation Membranes of Polymeric Materials
verfasst von
Xiayun Huang
Haiqing Yao
Zhengdong Cheng
Copyright-Jahr
2017
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-53514-1_3

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.