Skip to main content
Top
Published in: Neural Computing and Applications 11/2018

10-03-2017 | Original Article

Hydromagnetic nanofluid flow past a stretching cylinder embedded in non-Darcian Forchheimer porous media

Authors: Ahmad Zeeshan, Muhammad Muddassar Maskeen, Obaid Ullah Mehmood

Published in: Neural Computing and Applications | Issue 11/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The present article presents the hydromagnetic nanofluid flow past a stretching cylinder embedded in non-Darcian Forchheimer porous media by using Buongiorno’s mathematical model (Buongiorno in J Heat Transf 128:240–250, 2006; Nadeem et al. in J Taiwan Inst Chem Eng 45:121, 2014, Nadeem et al. Appl Nanosci 4:625–631, 2014). Thermal radiation via Roseland’s approximation (Akbar et al. in Chin J Aeronaut 26:1389–1397, 2013; Nadeem and Haq in J Aerosp Eng 28:04014061, 2012), Brownian motion, thermophoresis and Joule heating effects are also considered. To explore thermal characteristics, prescribed heat flux and prescribed mass flux boundary conditions are deployed. Governing flow problem consists of PDEs in the cylindrical form, which are converted into system of nonlinear ODEs by applying applicable similarity transforms. ODEs are tackled by RK–Fehlberg fourth–fifth-order numerical integration scheme with shooting algorithm. Impact of numerous involving physical parameters on flow features like temperature distribution, velocity distribution, Sherwood number, local Nusselt number and skin friction coefficient is shown through graphs and tables.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Choi SU (1995) Enhancing thermal conductivity of fluids with nanoparticles. ASME Publ Fed 231:99–106 Choi SU (1995) Enhancing thermal conductivity of fluids with nanoparticles. ASME Publ Fed 231:99–106
2.
go back to reference Buongiorno J (2006) Convective transport in nanofluids. J Heat Transf 128:240–250CrossRef Buongiorno J (2006) Convective transport in nanofluids. J Heat Transf 128:240–250CrossRef
3.
go back to reference Nadeem S, Haq RU, Khan ZH (2014) Numerical study of MHD boundary layer flow of a Maxwell fluid past a stretching sheet in the presence of nanoparticles. J Taiwan Inst Chem Eng 45:121–126CrossRef Nadeem S, Haq RU, Khan ZH (2014) Numerical study of MHD boundary layer flow of a Maxwell fluid past a stretching sheet in the presence of nanoparticles. J Taiwan Inst Chem Eng 45:121–126CrossRef
4.
go back to reference Nadeem S, Haq RU, Khan ZH (2014) Numerical solution of non-Newtonian nanofluid flow over a stretching sheet. Appl Nanosci 4:625–631CrossRef Nadeem S, Haq RU, Khan ZH (2014) Numerical solution of non-Newtonian nanofluid flow over a stretching sheet. Appl Nanosci 4:625–631CrossRef
5.
go back to reference Akbar NS, Nadeem S, Haq RU, Khan ZH (2013) Radiation effects on MHD stagnation point flow of nanofluid towards a stretching surface with convective boundary condition. Chin J Aeronaut 26:1389–1397CrossRef Akbar NS, Nadeem S, Haq RU, Khan ZH (2013) Radiation effects on MHD stagnation point flow of nanofluid towards a stretching surface with convective boundary condition. Chin J Aeronaut 26:1389–1397CrossRef
6.
go back to reference Nadeem S, Haq RU (2012) MHD boundary layer flow of a nanofluid passed through a porous shrinking sheet with thermal radiation. J Aerosp Eng 28:04014061CrossRef Nadeem S, Haq RU (2012) MHD boundary layer flow of a nanofluid passed through a porous shrinking sheet with thermal radiation. J Aerosp Eng 28:04014061CrossRef
7.
go back to reference Sakiadis BC (1961) Boundary-layer behavior on continuous solid surfaces: I. Boundary-layer equations for two-dimensional and axisymmetric flow. AIChE J 7:26–28CrossRef Sakiadis BC (1961) Boundary-layer behavior on continuous solid surfaces: I. Boundary-layer equations for two-dimensional and axisymmetric flow. AIChE J 7:26–28CrossRef
8.
go back to reference Crane LJ (1970) Flow past a stretching plate. Z fur Angew Math Phys ZAMP 21:645–647CrossRef Crane LJ (1970) Flow past a stretching plate. Z fur Angew Math Phys ZAMP 21:645–647CrossRef
9.
go back to reference Freidoonimehr N, Rashidi MM, Mahmud S (2015) Unsteady MHD free convective flow past a permeable stretching vertical surface in a nanofluid. Int J Therm Sci 87:136–145CrossRef Freidoonimehr N, Rashidi MM, Mahmud S (2015) Unsteady MHD free convective flow past a permeable stretching vertical surface in a nanofluid. Int J Therm Sci 87:136–145CrossRef
10.
go back to reference Maqbool K, Sohail A, Manzoor N, Ellahi R (2016) Hall effect on Falkner Skan boundary layer flow of FENE-P fluid over a stretching sheet. Commun Theor Phys 66:547MathSciNetCrossRef Maqbool K, Sohail A, Manzoor N, Ellahi R (2016) Hall effect on Falkner Skan boundary layer flow of FENE-P fluid over a stretching sheet. Commun Theor Phys 66:547MathSciNetCrossRef
11.
go back to reference Zeeshan A, Majeed A (2016) Non Darcy mixed convection flow of magnetic fluid over a permeable stretching sheet with Ohmic dissipation. J Magn 21:153–158CrossRef Zeeshan A, Majeed A (2016) Non Darcy mixed convection flow of magnetic fluid over a permeable stretching sheet with Ohmic dissipation. J Magn 21:153–158CrossRef
12.
go back to reference Sheikholeslami M (2015) Effect of uniform suction on nanofluid flow and heat transfer over a cylinder. J Braz Soc Mech Sci Eng 37:1623–1633CrossRef Sheikholeslami M (2015) Effect of uniform suction on nanofluid flow and heat transfer over a cylinder. J Braz Soc Mech Sci Eng 37:1623–1633CrossRef
13.
go back to reference Makinde OD, Aziz A (2011) Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition. Int J Therm Sci 50:1326–1332CrossRef Makinde OD, Aziz A (2011) Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition. Int J Therm Sci 50:1326–1332CrossRef
14.
go back to reference Nadeem S, Haq RU (2014) Effect of thermal radiation for megnetohydrodynamic boundary layer flow of a nanofluid past a stretching sheet with convective boundary conditions. J Comput Theor Nanosci 11:32–40CrossRef Nadeem S, Haq RU (2014) Effect of thermal radiation for megnetohydrodynamic boundary layer flow of a nanofluid past a stretching sheet with convective boundary conditions. J Comput Theor Nanosci 11:32–40CrossRef
15.
go back to reference Ishak A, Nazar R, Pop I (2008) Magnetohydrodynamic (MHD) flow and heat transfer due to a stretching cylinder. Energy Convers Manag 49:3265–3269CrossRef Ishak A, Nazar R, Pop I (2008) Magnetohydrodynamic (MHD) flow and heat transfer due to a stretching cylinder. Energy Convers Manag 49:3265–3269CrossRef
16.
go back to reference Kandelousi MS (2014) Effect of spatially variable magnetic field on ferrofluid flow and heat transfer considering constant heat flux boundary condition. Eur Phys J Plus 129:1–12CrossRef Kandelousi MS (2014) Effect of spatially variable magnetic field on ferrofluid flow and heat transfer considering constant heat flux boundary condition. Eur Phys J Plus 129:1–12CrossRef
17.
go back to reference Sheikholeslami M, Chamkha AJ (2016) Flow and convective heat transfer of a ferro nanofluid in a double-sided lid-driven cavity with a wavy wall in the presence of a variable magnetic field. Numer Heat Transf Part A Appl 69:1186–1200CrossRef Sheikholeslami M, Chamkha AJ (2016) Flow and convective heat transfer of a ferro nanofluid in a double-sided lid-driven cavity with a wavy wall in the presence of a variable magnetic field. Numer Heat Transf Part A Appl 69:1186–1200CrossRef
18.
go back to reference Dhanai R, Rana P, Kumar L (2016) MHD mixed convection nanofluid flow and heat transfer over an inclined cylinder due to velocity and thermal slip effects: Buongiorno’s model. Powder Technol 288:140–150CrossRef Dhanai R, Rana P, Kumar L (2016) MHD mixed convection nanofluid flow and heat transfer over an inclined cylinder due to velocity and thermal slip effects: Buongiorno’s model. Powder Technol 288:140–150CrossRef
19.
go back to reference Hussain T, Shehzad SA, Hayat T, Alsaedi A (2015) Hydromagnetic flow of third grade nanofluid with viscous dissipation and flux conditions. AIP Adv 5:087169CrossRef Hussain T, Shehzad SA, Hayat T, Alsaedi A (2015) Hydromagnetic flow of third grade nanofluid with viscous dissipation and flux conditions. AIP Adv 5:087169CrossRef
20.
go back to reference Sheikholeslami M, Ellahi R (2015) Electrohydrodynamic nanofluid hydrothermal treatment in an enclosure with sinusoidal upper wall. Appl Sci 5:294–306CrossRef Sheikholeslami M, Ellahi R (2015) Electrohydrodynamic nanofluid hydrothermal treatment in an enclosure with sinusoidal upper wall. Appl Sci 5:294–306CrossRef
21.
go back to reference Das K, Duari PR, Kundu PK (2015) Numerical simulation of nanofluid flow with convective boundary condition. J Egypt Math Soc 23:435–439MathSciNetCrossRef Das K, Duari PR, Kundu PK (2015) Numerical simulation of nanofluid flow with convective boundary condition. J Egypt Math Soc 23:435–439MathSciNetCrossRef
22.
go back to reference Turkyilmazoglu M (2012) Exact analytical solutions for heat and mass transfer of MHD slip flow in nanofluids. Chem Eng Sci 84:182–187CrossRef Turkyilmazoglu M (2012) Exact analytical solutions for heat and mass transfer of MHD slip flow in nanofluids. Chem Eng Sci 84:182–187CrossRef
23.
go back to reference Bachok N, Ishak A (2010) Flow and heat transfer over a stretching cylinder with prescribed surface heat flux. Malays J Math Sci 4:159–169MATH Bachok N, Ishak A (2010) Flow and heat transfer over a stretching cylinder with prescribed surface heat flux. Malays J Math Sci 4:159–169MATH
24.
go back to reference Hayat T, Abbas T, Ayub M, Farooq M, Alsaedi A (2016) Flow of nanofluid due to convectively heated Riga plate with variable thickness. J Mol Liq 222:854–862CrossRef Hayat T, Abbas T, Ayub M, Farooq M, Alsaedi A (2016) Flow of nanofluid due to convectively heated Riga plate with variable thickness. J Mol Liq 222:854–862CrossRef
25.
go back to reference Dogonchi AS, Ganji DD (2016) Thermal radiation effect on the nano-fluid buoyancy flow and heat transfer over a stretching sheet considering Brownian motion. J Mol Liq 223:521–527CrossRef Dogonchi AS, Ganji DD (2016) Thermal radiation effect on the nano-fluid buoyancy flow and heat transfer over a stretching sheet considering Brownian motion. J Mol Liq 223:521–527CrossRef
26.
go back to reference Rokni HB, Alsaad DM, Valipour P (2016) Electrohydrodynamic nanofluid flow and heat transfer between two plates. J Mol Liq 216:583–589CrossRef Rokni HB, Alsaad DM, Valipour P (2016) Electrohydrodynamic nanofluid flow and heat transfer between two plates. J Mol Liq 216:583–589CrossRef
27.
go back to reference Rashidi MM, Abelman S, Mehr NF (2013) Entropy generation in steady MHD flow due to a rotating porous disk in a nanofluid. Int J Heat Mass Transf 62:515–525CrossRef Rashidi MM, Abelman S, Mehr NF (2013) Entropy generation in steady MHD flow due to a rotating porous disk in a nanofluid. Int J Heat Mass Transf 62:515–525CrossRef
28.
go back to reference Hayat T, Qayyum S, Alsaedi A, Shafiq A (2016) Inclined magnetic field and heat source/sink aspects in flow of nanofluid with nonlinear thermal radiation. Int J Heat Mass Transf 103:99–107CrossRef Hayat T, Qayyum S, Alsaedi A, Shafiq A (2016) Inclined magnetic field and heat source/sink aspects in flow of nanofluid with nonlinear thermal radiation. Int J Heat Mass Transf 103:99–107CrossRef
29.
go back to reference Nadeem S, Masood S, Mehmood R, Sadiq MA (2015) Optimal and numerical solutions for an MHD micropolar nanofluid between rotating horizontal parallel plates. PLoS ONE 10:0124016CrossRef Nadeem S, Masood S, Mehmood R, Sadiq MA (2015) Optimal and numerical solutions for an MHD micropolar nanofluid between rotating horizontal parallel plates. PLoS ONE 10:0124016CrossRef
30.
go back to reference Bahiraei M, Abdi F (2016) Development of a model for entropy generation of water-TiO2 nanofluid flow considering nanoparticle migration within a minichannel. Chemometr Intell Lab Syst 157:16–28CrossRef Bahiraei M, Abdi F (2016) Development of a model for entropy generation of water-TiO2 nanofluid flow considering nanoparticle migration within a minichannel. Chemometr Intell Lab Syst 157:16–28CrossRef
31.
go back to reference Awais M, Saleem S, Hayat T, Irum S (2016) Hydromagnetic couple-stress nanofluid flow over a moving convective wall: OHAM analysis. Acta Astronaut 129:271–276CrossRef Awais M, Saleem S, Hayat T, Irum S (2016) Hydromagnetic couple-stress nanofluid flow over a moving convective wall: OHAM analysis. Acta Astronaut 129:271–276CrossRef
32.
go back to reference Si X, Li H, Zheng L, Shen Y, Zhang X (2017) A mixed convection flow and heat transfer of pseudo-plastic power law nanofluids past a stretching vertical plate. Int J Heat Mass Transf 105:350–358CrossRef Si X, Li H, Zheng L, Shen Y, Zhang X (2017) A mixed convection flow and heat transfer of pseudo-plastic power law nanofluids past a stretching vertical plate. Int J Heat Mass Transf 105:350–358CrossRef
33.
go back to reference Shehzad N, Zeeshan A, Ellahi R, Vafai K (2016) Convective heat transfer of nanofluid in a wavy channel: Buongiorno’s mathematical model. J Mol Liq 222:446–455CrossRef Shehzad N, Zeeshan A, Ellahi R, Vafai K (2016) Convective heat transfer of nanofluid in a wavy channel: Buongiorno’s mathematical model. J Mol Liq 222:446–455CrossRef
34.
go back to reference Bhatti MM, Abbas T, Rashidi MM, Ali MES (2016) Numerical simulation of entropy generation with thermal radiation on MHD Carreau nanofluid towards a shrinking sheet. Entropy 18:200MathSciNetCrossRef Bhatti MM, Abbas T, Rashidi MM, Ali MES (2016) Numerical simulation of entropy generation with thermal radiation on MHD Carreau nanofluid towards a shrinking sheet. Entropy 18:200MathSciNetCrossRef
35.
go back to reference Ayub M, Abbas T, Bhatti MM (2016) Inspiration of slip effects on electromagnetohydrodynamics (EMHD) nanofluid flow through a horizontal Riga plate. Eur Phys J Plus 131:1–9CrossRef Ayub M, Abbas T, Bhatti MM (2016) Inspiration of slip effects on electromagnetohydrodynamics (EMHD) nanofluid flow through a horizontal Riga plate. Eur Phys J Plus 131:1–9CrossRef
36.
go back to reference Sheikholeslami M (2017) Numerical simulation of magnetic nanofluid natural convection in porous media. Phys Lett A 381:494–503CrossRef Sheikholeslami M (2017) Numerical simulation of magnetic nanofluid natural convection in porous media. Phys Lett A 381:494–503CrossRef
37.
go back to reference Sheikholeslami M, Chamkha AJ (2017) Influence of Lorentz forces on nanofluid forced convection considering Marangoni convection. J Mol Liq 225:750–757CrossRef Sheikholeslami M, Chamkha AJ (2017) Influence of Lorentz forces on nanofluid forced convection considering Marangoni convection. J Mol Liq 225:750–757CrossRef
38.
go back to reference Sheikholeslami M, Chamkha AJ (2016) Electrohydrodynamic free convection heat transfer of a nanofluid in a semi-annulus enclosure with a sinusoidal wall. Numer Heat Transf Part A Appl 69(7):781–793CrossRef Sheikholeslami M, Chamkha AJ (2016) Electrohydrodynamic free convection heat transfer of a nanofluid in a semi-annulus enclosure with a sinusoidal wall. Numer Heat Transf Part A Appl 69(7):781–793CrossRef
39.
go back to reference Shirvan KM, Mamourian M, Mirzakhanlari S, Ellahi R, Vafai K (2017) Numerical investigation and sensitivity analysis of effective parameters on combined heat transfer performance in a porous solar cavity receiver by response surface methodology. Int J Heat Mass Transf 105:811–825CrossRef Shirvan KM, Mamourian M, Mirzakhanlari S, Ellahi R, Vafai K (2017) Numerical investigation and sensitivity analysis of effective parameters on combined heat transfer performance in a porous solar cavity receiver by response surface methodology. Int J Heat Mass Transf 105:811–825CrossRef
40.
go back to reference Umavathi JC, Ojjela O, Vajravelu K (2017) Numerical analysis of natural convective flow and heat transfer of nanofluids in a vertical rectangular duct using Darcy–Forchheimer–Brinkman model. Int J Therm Sci 111:511–524CrossRef Umavathi JC, Ojjela O, Vajravelu K (2017) Numerical analysis of natural convective flow and heat transfer of nanofluids in a vertical rectangular duct using Darcy–Forchheimer–Brinkman model. Int J Therm Sci 111:511–524CrossRef
41.
go back to reference Ibanez G, Lopez A, Pantoja J, Moreira J (2016) Entropy generation analysis of a nanofluid flow in MHD porous microchannel with hydrodynamic slip and thermal radiation. Int J Heat Mass Transf 100:89–97CrossRef Ibanez G, Lopez A, Pantoja J, Moreira J (2016) Entropy generation analysis of a nanofluid flow in MHD porous microchannel with hydrodynamic slip and thermal radiation. Int J Heat Mass Transf 100:89–97CrossRef
42.
go back to reference Ellahi R, Shivanian E, Abbasbandy S, Hayat T (2015) Analysis of some magnetohydrodynamic flows of third-order fluid saturating porous space. J Porous Media 18:89–98CrossRef Ellahi R, Shivanian E, Abbasbandy S, Hayat T (2015) Analysis of some magnetohydrodynamic flows of third-order fluid saturating porous space. J Porous Media 18:89–98CrossRef
43.
go back to reference Shirvan KM, Ellahi R, Mirzakhanlari S, Mamourian M (2016) Enhancement of heat transfer and heat exchanger effectiveness in a double pipe heat exchanger filled with porous media: numerical simulation and sensitivity analysis of turbulent fluid flow. Appl Therm Eng 109:761–774CrossRef Shirvan KM, Ellahi R, Mirzakhanlari S, Mamourian M (2016) Enhancement of heat transfer and heat exchanger effectiveness in a double pipe heat exchanger filled with porous media: numerical simulation and sensitivity analysis of turbulent fluid flow. Appl Therm Eng 109:761–774CrossRef
44.
go back to reference Bhatti MM, Rashidi MM (2016) Effects of thermo-diffusion and thermal radiation on Williamson nanofluid over a porous shrinking/stretching sheet. J Mol Liq 221:567–573CrossRef Bhatti MM, Rashidi MM (2016) Effects of thermo-diffusion and thermal radiation on Williamson nanofluid over a porous shrinking/stretching sheet. J Mol Liq 221:567–573CrossRef
Metadata
Title
Hydromagnetic nanofluid flow past a stretching cylinder embedded in non-Darcian Forchheimer porous media
Authors
Ahmad Zeeshan
Muhammad Muddassar Maskeen
Obaid Ullah Mehmood
Publication date
10-03-2017
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 11/2018
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-017-2934-7

Other articles of this Issue 11/2018

Neural Computing and Applications 11/2018 Go to the issue

Premium Partner