Skip to main content
Top
Published in: International Journal of Material Forming 1/2024

01-01-2024 | Manufacturing empowered by digital technologies and twins

Identification of material parameters in low-data limit: application to gradient-enhanced continua

Authors: Duc-Vinh Nguyen, Mohamed Jebahi, Victor Champaney, Francisco Chinesta

Published in: International Journal of Material Forming | Issue 1/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Due to the growing trend towards miniaturization, small-scale manufacturing processes have become widely used in various engineering fields to manufacture miniaturized products. These processes generally exhibit complex size effects, making the behavior of materials highly dependent on their geometric dimensions. As a result, accurate understanding and modeling of such effects are crucial for optimizing manufacturing outcomes and achieving high-performance final products. To this end, advanced gradient-enhanced plasticity theories have emerged as powerful tools for capturing these complex phenomena, offering a level of accuracy significantly greater than that provided by classical plasticity approaches. However, these advanced theories often require the identification of a large number of material parameters, which poses a significant challenge due to limited experimental data at small scales and high computation costs. The present paper aims at evaluating and comparing the effectiveness of various optimization techniques, including evolutionary algorithm, response surface methodology and Bayesian optimization, in identifying the material parameter of a recent flexible gradient-enhanced plasticity model developed by the authors. The paper findings represent an attempt to bridge the gap between advanced material behavior theories and their practical industrial applications, by offering insights into efficient and reliable material parameter identification procedures.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Aifantis EC (1984) On the Microstructural Origin of Certain Inelastic Models. J Eng Mater Technol 106:326–330CrossRef Aifantis EC (1984) On the Microstructural Origin of Certain Inelastic Models. J Eng Mater Technol 106:326–330CrossRef
2.
go back to reference Gurtin ME (2002) A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations. J Mech Phys Solids 50:5–32MathSciNetCrossRef Gurtin ME (2002) A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations. J Mech Phys Solids 50:5–32MathSciNetCrossRef
3.
go back to reference Panteghini A, Bardella L, Niordson CF (2019) A potential for higher-order phenomenological strain gradient plasticity to predict reliable response under non-proportional loading. Proc Royal Soc A Math Phys Eng Sci 475:20190258MathSciNet Panteghini A, Bardella L, Niordson CF (2019) A potential for higher-order phenomenological strain gradient plasticity to predict reliable response under non-proportional loading. Proc Royal Soc A Math Phys Eng Sci 475:20190258MathSciNet
4.
go back to reference Forest S (2020) Continuum thermomechanics of nonlinear micromorphic, strain and stress gradient media. Phil Trans R Soc A Math Phys Eng Sci 378:20190169MathSciNetCrossRef Forest S (2020) Continuum thermomechanics of nonlinear micromorphic, strain and stress gradient media. Phil Trans R Soc A Math Phys Eng Sci 378:20190169MathSciNetCrossRef
5.
go back to reference Jebahi M, Cai L, Abed-Meraim F (2020) Strain gradient crystal plasticity model based on generalized non-quadratic defect energy and uncoupled dissipation. Int J Plast 126:102617CrossRef Jebahi M, Cai L, Abed-Meraim F (2020) Strain gradient crystal plasticity model based on generalized non-quadratic defect energy and uncoupled dissipation. Int J Plast 126:102617CrossRef
6.
go back to reference Yuan H, Chen J (2001) Identification of the intrinsic material length in gradient plasticity theory from micro-indentation tests. Int J Solids Struct Yuan H, Chen J (2001) Identification of the intrinsic material length in gradient plasticity theory from micro-indentation tests. Int J Solids Struct
7.
go back to reference Abu Al-Rub RK, Voyiadjis GZ (2004) Analytical and experimental determination of the material intrinsic length scale of strain gradient plasticity theory from micro- and nano-indentation experiments. Int J Plast 20:1139–1182CrossRef Abu Al-Rub RK, Voyiadjis GZ (2004) Analytical and experimental determination of the material intrinsic length scale of strain gradient plasticity theory from micro- and nano-indentation experiments. Int J Plast 20:1139–1182CrossRef
8.
go back to reference Peerlings RHJ, Geers MGD, de Borst R, Brekelmans WAM (2001) A critical comparison of nonlocal and gradient-enhanced softening continua. Int J Solids Struct 38:7723–7746CrossRef Peerlings RHJ, Geers MGD, de Borst R, Brekelmans WAM (2001) A critical comparison of nonlocal and gradient-enhanced softening continua. Int J Solids Struct 38:7723–7746CrossRef
9.
go back to reference Gurtin ME, Anand L, Lele SP (2007) Gradient single-crystal plasticity with free energy dependent on dislocation densities. J Mech Phys Solids 55:1853–1878MathSciNetCrossRef Gurtin ME, Anand L, Lele SP (2007) Gradient single-crystal plasticity with free energy dependent on dislocation densities. J Mech Phys Solids 55:1853–1878MathSciNetCrossRef
10.
go back to reference Poh LH, Peerlings RHJ, Geers MGD, Swaddiwudhipong S (2011) An implicit tensorial gradient plasticity model - Formulation and comparison with a scalar gradient model. Int J Solids Struct 48:2595–2604CrossRef Poh LH, Peerlings RHJ, Geers MGD, Swaddiwudhipong S (2011) An implicit tensorial gradient plasticity model - Formulation and comparison with a scalar gradient model. Int J Solids Struct 48:2595–2604CrossRef
11.
go back to reference Pardoen T, Massart TJ (2012) Interface controlled plastic flow modelled by strain gradient plasticity theory. Comptes Rendus - Mecanique 340:247–260CrossRef Pardoen T, Massart TJ (2012) Interface controlled plastic flow modelled by strain gradient plasticity theory. Comptes Rendus - Mecanique 340:247–260CrossRef
12.
go back to reference Fleck NA, Hutchinson JW, Willis JR (2015) Guidelines for Constructing Strain Gradient Plasticity Theories. J Appl Mech 82:071002CrossRef Fleck NA, Hutchinson JW, Willis JR (2015) Guidelines for Constructing Strain Gradient Plasticity Theories. J Appl Mech 82:071002CrossRef
13.
go back to reference Bayerschen E, Böhlke T (2016) Power-Law Defect Energy in a Single-Crystal Gradient Plasticity Framework: A Computational Study. Comput Mech 58:13–27MathSciNetCrossRef Bayerschen E, Böhlke T (2016) Power-Law Defect Energy in a Single-Crystal Gradient Plasticity Framework: A Computational Study. Comput Mech 58:13–27MathSciNetCrossRef
14.
go back to reference Petryk H, Stupkiewicz S (2016) A Minimal Gradient-Enhancement of the Classical Continuum Theory of Crystal Plasticity. Part I: The Hardening Law. Arch Mech 68:459–485MathSciNet Petryk H, Stupkiewicz S (2016) A Minimal Gradient-Enhancement of the Classical Continuum Theory of Crystal Plasticity. Part I: The Hardening Law. Arch Mech 68:459–485MathSciNet
15.
go back to reference Martínez-Pañeda E, Niordson CF, Bardella L (2016) A Finite Element Framework for Distortion Gradient Plasticity with Applications to Bending of Thin Foils. Int J Solids Struct 96:288–299 Martínez-Pañeda E, Niordson CF, Bardella L (2016) A Finite Element Framework for Distortion Gradient Plasticity with Applications to Bending of Thin Foils. Int J Solids Struct 96:288–299
16.
go back to reference Lebensohn RA, Needleman A (2016) Numerical implementation of non-local polycrystal plasticity using fast Fourier transforms. J Mech Phys Solids 97:333–351MathSciNetCrossRef Lebensohn RA, Needleman A (2016) Numerical implementation of non-local polycrystal plasticity using fast Fourier transforms. J Mech Phys Solids 97:333–351MathSciNetCrossRef
17.
go back to reference Panteghini A, Bardella L (2020) Modelling the cyclic torsion of polycrystalline micron-sized copper wires by distortion gradient plasticity. Philos Mag 100:2352–2364CrossRef Panteghini A, Bardella L (2020) Modelling the cyclic torsion of polycrystalline micron-sized copper wires by distortion gradient plasticity. Philos Mag 100:2352–2364CrossRef
18.
go back to reference Russo R, Girot Mata FA, Forest S, Jacquin D (2020) A Review on Strain Gradient Plasticity Approaches in Simulation of Manufacturing Processes. J Manuf Mater Process 4:87 Russo R, Girot Mata FA, Forest S, Jacquin D (2020) A Review on Strain Gradient Plasticity Approaches in Simulation of Manufacturing Processes. J Manuf Mater Process 4:87
19.
go back to reference Cai L, Jebahi M, Abed-Meraim F (2021) Strain Localization Modes within Single Crystals Using Finite Deformation Strain Gradient Crystal Plasticity. Crystals 11:1235CrossRef Cai L, Jebahi M, Abed-Meraim F (2021) Strain Localization Modes within Single Crystals Using Finite Deformation Strain Gradient Crystal Plasticity. Crystals 11:1235CrossRef
20.
go back to reference Jebahi M, Forest S (2021) Scalar-based strain gradient plasticity theory to model size-dependent kinematic hardening effects. Continuum Mech Thermodyn Jebahi M, Forest S (2021) Scalar-based strain gradient plasticity theory to model size-dependent kinematic hardening effects. Continuum Mech Thermodyn
21.
go back to reference Jebahi M, Forest S (2023) An alternative way to describe thermodynamically-consistent higher-order dissipation within strain gradient plasticity. J Mech Phys Solids 170:105103MathSciNetCrossRef Jebahi M, Forest S (2023) An alternative way to describe thermodynamically-consistent higher-order dissipation within strain gradient plasticity. J Mech Phys Solids 170:105103MathSciNetCrossRef
22.
go back to reference Liu K, Melkote SN (2005) Material Strengthening Mechanisms and Their Contribution to Size Effect in Micro-Cutting. J Manuf Sci Eng 128:730–738CrossRef Liu K, Melkote SN (2005) Material Strengthening Mechanisms and Their Contribution to Size Effect in Micro-Cutting. J Manuf Sci Eng 128:730–738CrossRef
23.
go back to reference Guha S, Sangal S, Basu S (2014) Numerical investigations of flat punch molding using a higher order strain gradient plasticity theory. Int J Mater Form 7:459–467CrossRef Guha S, Sangal S, Basu S (2014) Numerical investigations of flat punch molding using a higher order strain gradient plasticity theory. Int J Mater Form 7:459–467CrossRef
24.
go back to reference Nielsen K, Niordson C, Hutchinson J (2014) Strain gradient effects in periodic flat punch indenting at small scales. Int J Solids Struct 51:3549–3556CrossRef Nielsen K, Niordson C, Hutchinson J (2014) Strain gradient effects in periodic flat punch indenting at small scales. Int J Solids Struct 51:3549–3556CrossRef
25.
go back to reference Nielsen KL, Niordson CF, Hutchinson JW (2015) Rolling at Small Scales. J Manuf Sci Eng 138 Nielsen KL, Niordson CF, Hutchinson JW (2015) Rolling at Small Scales. J Manuf Sci Eng 138
26.
go back to reference Zhang X, Aifantis K (2015) Interpreting the internal length scale in strain gradient plasticity. Rev Adv Mater Sci 41:72–83 Zhang X, Aifantis K (2015) Interpreting the internal length scale in strain gradient plasticity. Rev Adv Mater Sci 41:72–83
27.
go back to reference Liu D, Dunstan D (2017) Material length scale of strain gradient plasticity: A physical interpretation. Int J Plast 98:156–174CrossRef Liu D, Dunstan D (2017) Material length scale of strain gradient plasticity: A physical interpretation. Int J Plast 98:156–174CrossRef
28.
go back to reference Begley MR, Hutchinson JW (1998) The mechanics of size-dependent indentation. J Mech Phys Solids 46:2049–2068CrossRef Begley MR, Hutchinson JW (1998) The mechanics of size-dependent indentation. J Mech Phys Solids 46:2049–2068CrossRef
29.
go back to reference Stölken J, Evans A (1998) A microbend test method for measuring the plasticity length scale. Acta Materialia 46:5109–5115CrossRef Stölken J, Evans A (1998) A microbend test method for measuring the plasticity length scale. Acta Materialia 46:5109–5115CrossRef
30.
go back to reference Voyiadjis GZ, Song Y (2019) Strain gradient continuum plasticity theories: Theoretical, numerical and experimental investigations. Int J Plast 121:21–75CrossRef Voyiadjis GZ, Song Y (2019) Strain gradient continuum plasticity theories: Theoretical, numerical and experimental investigations. Int J Plast 121:21–75CrossRef
31.
go back to reference Fra̧ś T, Nowak Z, Perzyna P, Pȩcherski R (2011) Identification of the model describing viscoplastic behaviour of high strength metals. Inverse Probl Sci Eng 19:17–30 Fra̧ś T, Nowak Z, Perzyna P, Pȩcherski R (2011) Identification of the model describing viscoplastic behaviour of high strength metals. Inverse Probl Sci Eng 19:17–30
32.
go back to reference Gelin J, Ghouati O (1994) An inverse method for determining viscoplastic properties of aluminium alloys. J Mater Process Technol 45:435–440CrossRef Gelin J, Ghouati O (1994) An inverse method for determining viscoplastic properties of aluminium alloys. J Mater Process Technol 45:435–440CrossRef
33.
go back to reference Herrera-Solaz V, LLorca J, Dogan E, Karaman I, Segurado J (2014) An inverse optimization strategy to determine single crystal mechanical behavior from polycrystal tests: Application to AZ31 Mg alloy. Int J Plast 57:1–15 Herrera-Solaz V, LLorca J, Dogan E, Karaman I, Segurado J (2014) An inverse optimization strategy to determine single crystal mechanical behavior from polycrystal tests: Application to AZ31 Mg alloy. Int J Plast 57:1–15
34.
go back to reference Meraghni F et al (2014) Parameter identification of a thermodynamic model for superelastic shape memory alloys using analytical calculation of the sensitivity matrix. Eur J Mech A Solids 45:226–237CrossRef Meraghni F et al (2014) Parameter identification of a thermodynamic model for superelastic shape memory alloys using analytical calculation of the sensitivity matrix. Eur J Mech A Solids 45:226–237CrossRef
35.
go back to reference Saleeb A, Arnold S, Castelli M, Wilt T, Graf W (2001) A general hereditary multimechanism-based deformation model with application to the viscoelastoplastic response of titanium alloys. Int J Plast 17:1305–1350CrossRef Saleeb A, Arnold S, Castelli M, Wilt T, Graf W (2001) A general hereditary multimechanism-based deformation model with application to the viscoelastoplastic response of titanium alloys. Int J Plast 17:1305–1350CrossRef
36.
go back to reference Andrade-Campos A, Thuillier S, Pilvin P, Teixeira-Dias F (2007) On the determination of material parameters for internal variable thermoelastic–viscoplastic constitutive models. Int J Plast 23:1349–1379 Andrade-Campos A, Thuillier S, Pilvin P, Teixeira-Dias F (2007) On the determination of material parameters for internal variable thermoelastic–viscoplastic constitutive models. Int J Plast 23:1349–1379
37.
38.
go back to reference Kolda TG, Lewis RM, Torczon V (2003) Optimization by Direct Search: New Perspectives on Some Classical and Modern Methods. SIAM Review 45:385–482MathSciNetCrossRef Kolda TG, Lewis RM, Torczon V (2003) Optimization by Direct Search: New Perspectives on Some Classical and Modern Methods. SIAM Review 45:385–482MathSciNetCrossRef
39.
go back to reference Slowik A, Kwasnicka H (2020) Evolutionary algorithms and their applications to engineering problems. Neural Comput & Applic 32:12363–12379CrossRef Slowik A, Kwasnicka H (2020) Evolutionary algorithms and their applications to engineering problems. Neural Comput & Applic 32:12363–12379CrossRef
41.
go back to reference Lewis RM, Torczon V (1999) Pattern Search Algorithms for Bound Constrained Minimization. SIAM J Optim 9:1082–1099MathSciNetCrossRef Lewis RM, Torczon V (1999) Pattern Search Algorithms for Bound Constrained Minimization. SIAM J Optim 9:1082–1099MathSciNetCrossRef
42.
go back to reference Chakraborty A, Eisenlohr P (2017) Evaluation of an inverse methodology for estimating constitutive parameters in face-centered cubic materials from single crystal indentations. Eur J Mech A Solids 66:114–124MathSciNetCrossRef Chakraborty A, Eisenlohr P (2017) Evaluation of an inverse methodology for estimating constitutive parameters in face-centered cubic materials from single crystal indentations. Eur J Mech A Solids 66:114–124MathSciNetCrossRef
43.
go back to reference Vaz M, Luersen MA, Muñoz-Rojas PA, Trentin RG (2016) Identification of inelastic parameters based on deep drawing forming operations using a global–local hybrid Particle Swarm approach. Comptes Rendus Mécanique 344:319–334 Vaz M, Luersen MA, Muñoz-Rojas PA, Trentin RG (2016) Identification of inelastic parameters based on deep drawing forming operations using a global–local hybrid Particle Swarm approach. Comptes Rendus Mécanique 344:319–334
44.
go back to reference Agius D et al (2017) Sensitivity and optimisation of the Chaboche plasticity model parameters in strain-life fatigue predictions. Mater Des 118:107–121CrossRef Agius D et al (2017) Sensitivity and optimisation of the Chaboche plasticity model parameters in strain-life fatigue predictions. Mater Des 118:107–121CrossRef
45.
go back to reference Kapoor K et al (2021) Modeling Ti–6Al–4V using crystal plasticity, calibrated with multi-scale experiments, to understand the effect of the orientation and morphology of the \(\alpha \) and \(\beta \) phases on time dependent cyclic loading. J Mech Phys Solids 146:104192 Kapoor K et al (2021) Modeling Ti–6Al–4V using crystal plasticity, calibrated with multi-scale experiments, to understand the effect of the orientation and morphology of the \(\alpha \) and \(\beta \) phases on time dependent cyclic loading. J Mech Phys Solids 146:104192
46.
go back to reference Qu J, Jin Q, Xu B (2005) Parameter identification for improved viscoplastic model considering dynamic recrystallization. Int J Plast 21:1267–1302CrossRef Qu J, Jin Q, Xu B (2005) Parameter identification for improved viscoplastic model considering dynamic recrystallization. Int J Plast 21:1267–1302CrossRef
47.
go back to reference Chaparro B, Thuillier S, Menezes L, Manach P, Fernandes J (2008) Material parameters identification: Gradient-based, genetic and hybrid optimization algorithms. Comput Mater Sci 44:339–346CrossRef Chaparro B, Thuillier S, Menezes L, Manach P, Fernandes J (2008) Material parameters identification: Gradient-based, genetic and hybrid optimization algorithms. Comput Mater Sci 44:339–346CrossRef
48.
go back to reference Furukawa T, Sugata T, Yoshimura S, Hoffman M (2002) An automated system for simulation and parameter identification of inelastic constitutive models. Comput Methods Appl Mech Eng 191:2235–2260CrossRef Furukawa T, Sugata T, Yoshimura S, Hoffman M (2002) An automated system for simulation and parameter identification of inelastic constitutive models. Comput Methods Appl Mech Eng 191:2235–2260CrossRef
49.
go back to reference Lundstedt T, Seifert E, Abramo L, Thelin B (1998) Experimental design and optimization Lundstedt T, Seifert E, Abramo L, Thelin B (1998) Experimental design and optimization
50.
go back to reference Stander N, Craig K, Müllerschön H, Reichert R (2005) Material identification in structural optimization using response surfaces. Struct Multidiscip Optim 29:93–102CrossRef Stander N, Craig K, Müllerschön H, Reichert R (2005) Material identification in structural optimization using response surfaces. Struct Multidiscip Optim 29:93–102CrossRef
51.
go back to reference Sedighiani K et al (2020) An efficient and robust approach to determine material parameters of crystal plasticity constitutive laws from macro-scale stress–strain curves. Int J Plast 134:102779 Sedighiani K et al (2020) An efficient and robust approach to determine material parameters of crystal plasticity constitutive laws from macro-scale stress–strain curves. Int J Plast 134:102779
52.
go back to reference Kakaletsis S, Lejeune E, Rausch MK (2023) Can machine learning accelerate soft material parameter identification from complex mechanical test data? Biomech Model Mechanobiol 22:57–70CrossRef Kakaletsis S, Lejeune E, Rausch MK (2023) Can machine learning accelerate soft material parameter identification from complex mechanical test data? Biomech Model Mechanobiol 22:57–70CrossRef
53.
go back to reference Greenhill S, Rana S, Gupta S, Vellanki P, Venkatesh S (2020) Bayesian Optimization for Adaptive Experimental Design: A Review. IEEE Access 8:13937–13948CrossRef Greenhill S, Rana S, Gupta S, Vellanki P, Venkatesh S (2020) Bayesian Optimization for Adaptive Experimental Design: A Review. IEEE Access 8:13937–13948CrossRef
54.
go back to reference Kuhn J, Spitz J, Sonnweber-Ribic P, Schneider M, Böhlke T (2022) Identifying material parameters in crystal plasticity by Bayesian optimization. Optim Eng 23:1489–1523MathSciNetCrossRef Kuhn J, Spitz J, Sonnweber-Ribic P, Schneider M, Böhlke T (2022) Identifying material parameters in crystal plasticity by Bayesian optimization. Optim Eng 23:1489–1523MathSciNetCrossRef
55.
go back to reference Veasna K, Feng Z, Zhang Q, Knezevic M (2023) Machine learning-based multi-objective optimization for efficient identification of crystal plasticity model parameters. Comput Methods Appl Mech Eng 403:115740MathSciNetCrossRef Veasna K, Feng Z, Zhang Q, Knezevic M (2023) Machine learning-based multi-objective optimization for efficient identification of crystal plasticity model parameters. Comput Methods Appl Mech Eng 403:115740MathSciNetCrossRef
56.
go back to reference Shahriari B, Swersky K, Wang Z, Adams RP, de Freitas N (2016) Taking the Human Out of the Loop: A Review of Bayesian Optimization. Proc IEEE 104:148–175CrossRef Shahriari B, Swersky K, Wang Z, Adams RP, de Freitas N (2016) Taking the Human Out of the Loop: A Review of Bayesian Optimization. Proc IEEE 104:148–175CrossRef
57.
go back to reference Vrajitoru D (2000) in Large Population or Many Generations for Genetic Algorithms? Implications in Information Retrieval (eds Crestani F, Pasi G) Soft Computing in Information Retrieval: Techniques and Applications Studies in Fuzziness and Soft Computing, 199–222 (Physica-Verlag HD, Heidelberg) Vrajitoru D (2000) in Large Population or Many Generations for Genetic Algorithms? Implications in Information Retrieval (eds Crestani F, Pasi G) Soft Computing in Information Retrieval: Techniques and Applications Studies in Fuzziness and Soft Computing, 199–222 (Physica-Verlag HD, Heidelberg)
58.
go back to reference Hansen N, Ostermeier A (2001) Completely Derandomized Self-Adaptation in Evolution Strategies. Evol Comput 9:159–195 Hansen N, Ostermeier A (2001) Completely Derandomized Self-Adaptation in Evolution Strategies. Evol Comput 9:159–195
59.
go back to reference Hansen N (2006) in The CMA Evolution Strategy: A Comparing Review (eds Lozano JA, Larrañaga P, Inza I, Bengoetxea E) Towards a New Evolutionary Computation: Advances in the Estimation of Distribution Algorithms Studies in Fuzziness and Soft Computing, 75–102 (Springer, Berlin, Heidelberg) Hansen N (2006) in The CMA Evolution Strategy: A Comparing Review (eds Lozano JA, Larrañaga P, Inza I, Bengoetxea E) Towards a New Evolutionary Computation: Advances in the Estimation of Distribution Algorithms Studies in Fuzziness and Soft Computing, 75–102 (Springer, Berlin, Heidelberg)
60.
go back to reference Hansen N (2023) The CMA Evolution Strategy: A Tutorial. arXiv Hansen N (2023) The CMA Evolution Strategy: A Tutorial. arXiv
61.
go back to reference Cauvin L, Raghavan B, Bouvier S, Wang X, Meraghni F (2018) Multi-scale investigation of highly anisotropic zinc alloys using crystal plasticity and inverse analysis. Mater Sci Eng A 729:106–118CrossRef Cauvin L, Raghavan B, Bouvier S, Wang X, Meraghni F (2018) Multi-scale investigation of highly anisotropic zinc alloys using crystal plasticity and inverse analysis. Mater Sci Eng A 729:106–118CrossRef
62.
go back to reference Sobol’ I (1967) On the distribution of points in a cube and the approximate evaluation of integrals. USSR Comput Math Math Phys 7:86–112MathSciNetCrossRef Sobol’ I (1967) On the distribution of points in a cube and the approximate evaluation of integrals. USSR Comput Math Math Phys 7:86–112MathSciNetCrossRef
63.
go back to reference Owen AB (1998) Scrambling Sobol’ and Niederreiter–Xing Points. J Complex 14:466–489 Owen AB (1998) Scrambling Sobol’ and Niederreiter–Xing Points. J Complex 14:466–489
64.
go back to reference Matoušek J (1998) On theL2-Discrepancy for Anchored Boxes. J Complex 14:527–556CrossRef Matoušek J (1998) On theL2-Discrepancy for Anchored Boxes. J Complex 14:527–556CrossRef
65.
go back to reference Hussain MF, Barton RR, Joshi SB (2002) Metamodeling: Radial basis functions, versus polynomials. Eur J Oper Res 138:142–154 Hussain MF, Barton RR, Joshi SB (2002) Metamodeling: Radial basis functions, versus polynomials. Eur J Oper Res 138:142–154
66.
go back to reference Roy A, Chakraborty S (2020) Support vector regression based metamodel by sequential adaptive sampling for reliability analysis of structures. Reliab Eng Syst Saf 200:106948CrossRef Roy A, Chakraborty S (2020) Support vector regression based metamodel by sequential adaptive sampling for reliability analysis of structures. Reliab Eng Syst Saf 200:106948CrossRef
67.
go back to reference Dasari SK, Cheddad A, Andersson P (2019) MacIntyre J, Maglogiannis I, Iliadis L, Pimenidis E (eds) Random Forest Surrogate Models to Support Design Space Exploration in Aerospace Use-Case. (eds MacIntyre J, Maglogiannis I, Iliadis L, Pimenidis E) Artificial Intelligence Applications and Innovations, IFIP Advances in Information and Communication Technology, 532–544 (Springer International Publishing, Cham) Dasari SK, Cheddad A, Andersson P (2019) MacIntyre J, Maglogiannis I, Iliadis L, Pimenidis E (eds) Random Forest Surrogate Models to Support Design Space Exploration in Aerospace Use-Case. (eds MacIntyre J, Maglogiannis I, Iliadis L, Pimenidis E) Artificial Intelligence Applications and Innovations, IFIP Advances in Information and Communication Technology, 532–544 (Springer International Publishing, Cham)
68.
go back to reference Rasmussen CE, Williams CKI (2006) Gaussian Processes for Machine Learning Adaptive Computation and Machine Learning. MIT Press, Cambridge, Mass Rasmussen CE, Williams CKI (2006) Gaussian Processes for Machine Learning Adaptive Computation and Machine Learning. MIT Press, Cambridge, Mass
69.
go back to reference Gardner M, Dorling S (1998) Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmos Environ 32:2627–2636 Gardner M, Dorling S (1998) Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmos Environ 32:2627–2636
70.
go back to reference Torregrosa S, Champaney V, Ammar A, Herbert V, Chinesta F (2022) Surrogate parametric metamodel based on Optimal Transport. Math Comput Simul 194:36–63MathSciNetCrossRef Torregrosa S, Champaney V, Ammar A, Herbert V, Chinesta F (2022) Surrogate parametric metamodel based on Optimal Transport. Math Comput Simul 194:36–63MathSciNetCrossRef
71.
go back to reference Sancarlos A, Champaney V, Cueto E, Chinesta F (2023) Regularized regressions for parametric models based on separated representations. Adv Model Simul Eng Sci 10:4CrossRef Sancarlos A, Champaney V, Cueto E, Chinesta F (2023) Regularized regressions for parametric models based on separated representations. Adv Model Simul Eng Sci 10:4CrossRef
72.
go back to reference Soares do Amaral JV, Montevechi JAB, Miranda RdC, Junior WTdS (2022) Metamodel-based simulation optimization: A systematic literature review. Simul Model Pract Theory 114:102403 Soares do Amaral JV, Montevechi JAB, Miranda RdC, Junior WTdS (2022) Metamodel-based simulation optimization: A systematic literature review. Simul Model Pract Theory 114:102403
73.
go back to reference Yang K, Emmerich M, Deutz A, Bäck T (2019) Efficient computation of expected hypervolume improvement using box decomposition algorithms. J Glob Optim 75:3–34MathSciNetCrossRef Yang K, Emmerich M, Deutz A, Bäck T (2019) Efficient computation of expected hypervolume improvement using box decomposition algorithms. J Glob Optim 75:3–34MathSciNetCrossRef
74.
go back to reference Auger A, Bader J, Brockhoff D, Zitzler E (2012) Hypervolume-based multiobjective optimization: Theoretical foundations and practical implications. Theor Comput Sci 425:75–103MathSciNetCrossRef Auger A, Bader J, Brockhoff D, Zitzler E (2012) Hypervolume-based multiobjective optimization: Theoretical foundations and practical implications. Theor Comput Sci 425:75–103MathSciNetCrossRef
75.
go back to reference Blank J, Deb K (2020) Pymoo: Multi-Objective Optimization in Python. IEEE Access 8:89497–89509CrossRef Blank J, Deb K (2020) Pymoo: Multi-Objective Optimization in Python. IEEE Access 8:89497–89509CrossRef
76.
go back to reference Picheny V et al (2023) Trieste: Efficiently Exploring The Depths of Black-box Functions with TensorFlow. arXiv Picheny V et al (2023) Trieste: Efficiently Exploring The Depths of Black-box Functions with TensorFlow. arXiv
77.
go back to reference Pedregosa F et al (2011) Scikit-learn: Machine Learning in Python. J Mach Learn Res 12:2825–2830MathSciNet Pedregosa F et al (2011) Scikit-learn: Machine Learning in Python. J Mach Learn Res 12:2825–2830MathSciNet
78.
go back to reference Chen Z, Liu Y (2022) Individuals redistribution based on differential evolution for covariance matrix adaptation evolution strategy. Sci Rep 12:986CrossRef Chen Z, Liu Y (2022) Individuals redistribution based on differential evolution for covariance matrix adaptation evolution strategy. Sci Rep 12:986CrossRef
79.
go back to reference Daulton S, Balandat M, Bakshy E (2020) Differentiable expected hypervolume improvement for parallel multi-objective Bayesian optimization. Proc 34th Int Conf Neural Inf Process Syst 9851–9864 Daulton S, Balandat M, Bakshy E (2020) Differentiable expected hypervolume improvement for parallel multi-objective Bayesian optimization. Proc 34th Int Conf Neural Inf Process Syst 9851–9864
Metadata
Title
Identification of material parameters in low-data limit: application to gradient-enhanced continua
Authors
Duc-Vinh Nguyen
Mohamed Jebahi
Victor Champaney
Francisco Chinesta
Publication date
01-01-2024
Publisher
Springer Paris
Published in
International Journal of Material Forming / Issue 1/2024
Print ISSN: 1960-6206
Electronic ISSN: 1960-6214
DOI
https://doi.org/10.1007/s12289-023-01807-7

Other articles of this Issue 1/2024

International Journal of Material Forming 1/2024 Go to the issue

Manufacturing empowered by digital technologies and twins

Polymer extrusion die design using a data-driven autoencoders technique

Developments in modelling and simulation..Japan, South Korea and China

Finite difference based stress integration algorithm for crystal plasticity finite element method

Premium Partners