Skip to main content
Top
Published in: Structural and Multidisciplinary Optimization 5/2017

15-10-2016 | RESEARCH PAPER

Identifying boundaries of topology optimization results using basic parametric features

Authors: Guilian Yi, Nam H. Kim

Published in: Structural and Multidisciplinary Optimization | Issue 5/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Topology optimization yields an overall layout of a structure in the form of discrete densities or continuous boundaries. One of important drawbacks, however, is that a serious gap exists between the topology results (e.g., greyscale images with irregular shapes) and parameterized CAD models that are ready for subsequent optimization and manufacturing. Without the corresponding CAD model, topology optimization design is difficult to be interpreted for manufacturing, as well as to be utilized in subsequent applications such as section and shape optimization. It is considered the most significant bottleneck to interpret topology optimization results and to produce a parameterized CAD model that can be used for subsequent optimization. The objective of this paper is to extract geometric features out of topology designs for parameterized CAD models with minimal manual intervention. The active contour method is first used to extract boundary segments from topology geometry. Using the information of roundness and curvature of segments, basic geometric features, such as lines, arcs, circles and fillets, are then identified. An optimization method is used to find parameters of these geometric features by minimizing errors between the boundary of geometric features and corresponding segments. Lastly, using the parameterized CAD model, section optimization is performed for beam-like structures, and surrogate-based shape optimization is employed to determine the final shapes. The entire process is automated with MATLAB and Python scripts in Abaqus, while manual intervention is needed only when defining geometric constraints and design parameters. Three examples are presented to demonstrate effectiveness of the proposed methods.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1(4):193–202CrossRef Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1(4):193–202CrossRef
go back to reference Bendsøe MP, Rodrigues HC (1991) Integrated topology and boundary shape optimization of 2-D Solid. Comput Methods Appl Mech Eng 87(1):15–34MathSciNetCrossRefMATH Bendsøe MP, Rodrigues HC (1991) Integrated topology and boundary shape optimization of 2-D Solid. Comput Methods Appl Mech Eng 87(1):15–34MathSciNetCrossRefMATH
go back to reference Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9–10):635–654MATH Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9–10):635–654MATH
go back to reference Brampton CJ, Dunning PD, Kim HA (2015) Topology optimization for stress using level set method. 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Kissimmee Brampton CJ, Dunning PD, Kim HA (2015) Topology optimization for stress using level set method. 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Kissimmee
go back to reference Bremicker M, Chirehdast M, Kikuchi N, Papalambros PY (1991) Integrated topology and shape optimization in structural design. Mech Struct Mach 19(4):551–587CrossRef Bremicker M, Chirehdast M, Kikuchi N, Papalambros PY (1991) Integrated topology and shape optimization in structural design. Mech Struct Mach 19(4):551–587CrossRef
go back to reference Chan TF, Vese LA (2001) Active contours without edges. IEEE T Image Process 10(2):266–277CrossRefMATH Chan TF, Vese LA (2001) Active contours without edges. IEEE T Image Process 10(2):266–277CrossRefMATH
go back to reference Change KH, Tang PS (2001) Integration of design and manufacturing for structural shape optimization. Adv Eng Softw 32(7):555–567CrossRef Change KH, Tang PS (2001) Integration of design and manufacturing for structural shape optimization. Adv Eng Softw 32(7):555–567CrossRef
go back to reference Chen S, Chen W (2011) A new level-set based approach to shape and topology optimization under geometric uncertainty. Struct Multidiscip Optim 44(1):1–18MathSciNetCrossRefMATH Chen S, Chen W (2011) A new level-set based approach to shape and topology optimization under geometric uncertainty. Struct Multidiscip Optim 44(1):1–18MathSciNetCrossRefMATH
go back to reference Chen S, Chen W, Lee S (2010) Level-set based robust shape and topology optimization under random field uncertainties. Struct Multidiscip Optim 41(4):507–524MathSciNetCrossRefMATH Chen S, Chen W, Lee S (2010) Level-set based robust shape and topology optimization under random field uncertainties. Struct Multidiscip Optim 41(4):507–524MathSciNetCrossRefMATH
go back to reference Chirehdast M, Gea H-C, Kikuchi N, Papalambros PY (1994) Structural configuration examples of an integrated optimal design process. J Mech Des 116(4):997–1004CrossRef Chirehdast M, Gea H-C, Kikuchi N, Papalambros PY (1994) Structural configuration examples of an integrated optimal design process. J Mech Des 116(4):997–1004CrossRef
go back to reference Deaton JD, Grandhi RV (2014) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip Optim 49(1):1–38MathSciNetCrossRef Deaton JD, Grandhi RV (2014) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip Optim 49(1):1–38MathSciNetCrossRef
go back to reference Garrido-Jurado S, Muñoz-Salinas R, Madrid-Cuevas FJ, Marín-Jiménez MJ (2014) Automatic generation and detection of highly reliable fiducial markers under occlusion. Pattern Recogn 47(6):2280–2292CrossRef Garrido-Jurado S, Muñoz-Salinas R, Madrid-Cuevas FJ, Marín-Jiménez MJ (2014) Automatic generation and detection of highly reliable fiducial markers under occlusion. Pattern Recogn 47(6):2280–2292CrossRef
go back to reference Guo X, Zhang W, Zhong W (2014) Doing topology optimization explicitly and geometrically – a new moving morphable components based framework. J Appl Mech 81(8):1–12CrossRef Guo X, Zhang W, Zhong W (2014) Doing topology optimization explicitly and geometrically – a new moving morphable components based framework. J Appl Mech 81(8):1–12CrossRef
go back to reference He K, Sigal L, Sclaroff S (2014) Parameterizing object detectors in the continuous pose space. Computer Vision – ECCV 2014, Volume 8692 of the series Lecture Notes in Computer Science, 450–465. doi: 10.1007/978-3-319-10593-2_30 He K, Sigal L, Sclaroff S (2014) Parameterizing object detectors in the continuous pose space. Computer Vision – ECCV 2014, Volume 8692 of the series Lecture Notes in Computer Science, 450–465. doi: 10.​1007/​978-3-319-10593-2_​30
go back to reference Hsu MH, Hsu YL (2005) Interpreting three-dimensional structural topology optimization results. Comput Struct 83(4–5):327–337CrossRef Hsu MH, Hsu YL (2005) Interpreting three-dimensional structural topology optimization results. Comput Struct 83(4–5):327–337CrossRef
go back to reference Hsu YL, Hsu MS, Chen CT (2001) Interpreting results from topology optimization using density contours. Comput Struct 79(10):1049–1058CrossRef Hsu YL, Hsu MS, Chen CT (2001) Interpreting results from topology optimization using density contours. Comput Struct 79(10):1049–1058CrossRef
go back to reference Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vision 1(4):321–331CrossRefMATH Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vision 1(4):321–331CrossRefMATH
go back to reference Koguchi A, Kikuchi N (2006) A surface reconstruction algorithm for topology optimization. Eng Comput 22(1):1–10CrossRef Koguchi A, Kikuchi N (2006) A surface reconstruction algorithm for topology optimization. Eng Comput 22(1):1–10CrossRef
go back to reference Kumar AV, Gossard DC (1996) Synthesis of optimal shape and topology of structures. J Mech Des 118(1):68–74CrossRef Kumar AV, Gossard DC (1996) Synthesis of optimal shape and topology of structures. J Mech Des 118(1):68–74CrossRef
go back to reference Le C, Bruns T, Tortorelli D (2011) A gradient-based, parameter-free approach to shape optimization. Comput Methods Appl Mech Eng 200(9–12):985–996MathSciNetCrossRefMATH Le C, Bruns T, Tortorelli D (2011) A gradient-based, parameter-free approach to shape optimization. Comput Methods Appl Mech Eng 200(9–12):985–996MathSciNetCrossRefMATH
go back to reference Li C, Kao CY, Gore JC, Ding Z (2008) Minimizing of region-scalable fitting energy for image segmentation. IEEE T Image Process 17(10):1940–1949CrossRef Li C, Kao CY, Gore JC, Ding Z (2008) Minimizing of region-scalable fitting energy for image segmentation. IEEE T Image Process 17(10):1940–1949CrossRef
go back to reference Li C, Kim IY, Jeswiet J (2015) Conceptual and detailed design of an automotive engine cradle by using topology, shape, and size optimization. Struct Multidiscip Optim 51(2):547–564. doi:10.1007/s00158-014-1151-6 CrossRef Li C, Kim IY, Jeswiet J (2015) Conceptual and detailed design of an automotive engine cradle by using topology, shape, and size optimization. Struct Multidiscip Optim 51(2):547–564. doi:10.​1007/​s00158-014-1151-6 CrossRef
go back to reference Lin CY, Chao LS (2000) Automated image interpretation for integrated topology and shape optimization. Struct Multidiscip Optim 20(2):125–137CrossRef Lin CY, Chao LS (2000) Automated image interpretation for integrated topology and shape optimization. Struct Multidiscip Optim 20(2):125–137CrossRef
go back to reference Olhoff N, Bendsøe MP, Rasmussen J (1991) On CAD-integrated structural topology and design optimization. Comput Methods Appl Mech Eng 89(1–3):259–279CrossRefMATH Olhoff N, Bendsøe MP, Rasmussen J (1991) On CAD-integrated structural topology and design optimization. Comput Methods Appl Mech Eng 89(1–3):259–279CrossRefMATH
go back to reference Pedersen C, Allinger P (2006) Industrial implementation and applications of topology optimization and future needs. In: Bendsøe MP, Olhoff N, Sigmund O: IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials: Status and Perspectives, 137 (Part 6), Springer Netherlands, 229–238 Pedersen C, Allinger P (2006) Industrial implementation and applications of topology optimization and future needs. In: Bendsøe MP, Olhoff N, Sigmund O: IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials: Status and Perspectives, 137 (Part 6), Springer Netherlands, 229–238
go back to reference Rozvany GIN, Lewiński T (2014) Topology optimization in structural and continuum mechanics. CISM International Centre for Mechanical Sciences 549, Springer-Verlag, WienCrossRefMATH Rozvany GIN, Lewiński T (2014) Topology optimization in structural and continuum mechanics. CISM International Centre for Mechanical Sciences 549, Springer-Verlag, WienCrossRefMATH
go back to reference Schramm U, Zhou M (2006) Recent developments in the commercial implementation of topology optimization Needs. In: Bendsøe MP, Olhoff N, Sigmund O: IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials: Status and Perspectives, 137 (Part 6), Springer Netherlands, 239–248 Schramm U, Zhou M (2006) Recent developments in the commercial implementation of topology optimization Needs. In: Bendsøe MP, Olhoff N, Sigmund O: IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials: Status and Perspectives, 137 (Part 6), Springer Netherlands, 239–248
go back to reference Seo YD, Kim HJ, Youn SK (2010) Shape optimization and its extension to topological design based on isogeometric analysis. Int J Solids Struct 47(11–12):1618–1640CrossRefMATH Seo YD, Kim HJ, Youn SK (2010) Shape optimization and its extension to topological design based on isogeometric analysis. Int J Solids Struct 47(11–12):1618–1640CrossRefMATH
go back to reference Sigmund O (2001) A 99 line topology optimization code written in Matlab. Struct Multidiscip Optim 21(2):120–127CrossRef Sigmund O (2001) A 99 line topology optimization code written in Matlab. Struct Multidiscip Optim 21(2):120–127CrossRef
go back to reference Sutradhar A, Park J, Carrau D, Nguyen TH, Miller MJ, Paulino GH (2015) Designing patient-specific 3D printed craniofacial implants using a novel topology optimization method. Medical & Biological Engineering & Computing, 1–13. doi: 10.1007/s11517-015-1418-0 Sutradhar A, Park J, Carrau D, Nguyen TH, Miller MJ, Paulino GH (2015) Designing patient-specific 3D printed craniofacial implants using a novel topology optimization method. Medical & Biological Engineering & Computing, 1–13. doi: 10.​1007/​s11517-015-1418-0
go back to reference Tang PS, Change KH (2001) Integration of topology and shape optimization for design of structural components. Struct Multidiscip Optim 22(1):65–82CrossRef Tang PS, Change KH (2001) Integration of topology and shape optimization for design of structural components. Struct Multidiscip Optim 22(1):65–82CrossRef
go back to reference Tompson J, Stein M, Lecun Y, Perlin K (2014) Real-time continuous pose recovery of human hands using convolutional networks. ACM T Graphic 33(5), article No.: 169 Tompson J, Stein M, Lecun Y, Perlin K (2014) Real-time continuous pose recovery of human hands using convolutional networks. ACM T Graphic 33(5), article No.: 169
go back to reference van Dijk NP, Maute K, Langelaar M, van Keulen F (2013) Level-set methods for structural topology optimization: a review. Struct Multidiscip Optim 48(3):437–472MathSciNetCrossRef van Dijk NP, Maute K, Langelaar M, van Keulen F (2013) Level-set methods for structural topology optimization: a review. Struct Multidiscip Optim 48(3):437–472MathSciNetCrossRef
go back to reference Yi GL (2014) Expanded SIMP method for structural topology optimization by transplanting ICM method. Dissertation, Beijing University of Technology Yi GL (2014) Expanded SIMP method for structural topology optimization by transplanting ICM method. Dissertation, Beijing University of Technology
go back to reference Yi GL, Sui YK (2015) Different effects of economic and structural performance indexes on model construction of structural topology optimization. Acta Mech Sinica 31(5):777–788MathSciNetCrossRefMATH Yi GL, Sui YK (2015) Different effects of economic and structural performance indexes on model construction of structural topology optimization. Acta Mech Sinica 31(5):777–788MathSciNetCrossRefMATH
go back to reference Yildiz AR, Ozturk N, Kaya N, Ozturk F (2003) Integrated optimal topology design and shape optimization using neural networks. Struct Multidiscip Optim 25(4):251–260CrossRef Yildiz AR, Ozturk N, Kaya N, Ozturk F (2003) Integrated optimal topology design and shape optimization using neural networks. Struct Multidiscip Optim 25(4):251–260CrossRef
go back to reference Youn SK, Park SH (1997) A Study on the shape extraction process in the structural topology optimization using homogenized material. Comput Struct 62(3):527–538MathSciNetCrossRefMATH Youn SK, Park SH (1997) A Study on the shape extraction process in the structural topology optimization using homogenized material. Comput Struct 62(3):527–538MathSciNetCrossRefMATH
go back to reference Zhou M, Rozvany GIN (1991) The COC algorithm, Part II: topological, geometry and generalized shape optimization. Comput Methods Appl Mech Eng 89(1–3):197–224 Zhou M, Rozvany GIN (1991) The COC algorithm, Part II: topological, geometry and generalized shape optimization. Comput Methods Appl Mech Eng 89(1–3):197–224
go back to reference Zhou M, Fleury R, Shyy YK, Thomas H, Brennan J (2002) Progress in topology optimization with manufacturing constraints, 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. Multidisciplinary Analysis Optimization Conferences, Atlanta. doi:10.2514/6.2002-5614 Zhou M, Fleury R, Shyy YK, Thomas H, Brennan J (2002) Progress in topology optimization with manufacturing constraints, 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. Multidisciplinary Analysis Optimization Conferences, Atlanta. doi:10.​2514/​6.​2002-5614
go back to reference Zhou M, Fleury R, Patten S, Stannard N, Mylett D, Gardner S (2011) Topology optimization-practical aspects for industrial application. Proceeding in the 9th World Congress on Structural and Multidisciplinary Optimization, Shizuoka Zhou M, Fleury R, Patten S, Stannard N, Mylett D, Gardner S (2011) Topology optimization-practical aspects for industrial application. Proceeding in the 9th World Congress on Structural and Multidisciplinary Optimization, Shizuoka
Metadata
Title
Identifying boundaries of topology optimization results using basic parametric features
Authors
Guilian Yi
Nam H. Kim
Publication date
15-10-2016
Publisher
Springer Berlin Heidelberg
Published in
Structural and Multidisciplinary Optimization / Issue 5/2017
Print ISSN: 1615-147X
Electronic ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-016-1597-9

Other articles of this Issue 5/2017

Structural and Multidisciplinary Optimization 5/2017 Go to the issue

Premium Partners