Skip to main content
Top
Published in: Journal of Inequalities and Applications 1/2018

Open Access 01-12-2018 | Research

Identities associated with Milne–Thomson type polynomials and special numbers

Authors: Yilmaz Simsek, Nenad Cakic

Published in: Journal of Inequalities and Applications | Issue 1/2018

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The purpose of this paper is to give identities and relations including the Milne–Thomson polynomials, the Hermite polynomials, the Bernoulli numbers, the Euler numbers, the Stirling numbers, the central factorial numbers, and the Cauchy numbers. By using fermionic and bosonic p-adic integrals, we derive some new relations and formulas related to these numbers and polynomials, and also the combinatorial sums.
Notes

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

1 Introduction

Recently, many authors have studied special numbers and polynomials with their generating functions. Because these special numbers and polynomials including the Bernoulli numbers and polynomials, the Euler numbers and polynomials, the Stirling numbers, the Milne–Thomson numbers and polynomials, the Hermite numbers and polynomials, Central factorial numbers, Cauchy numbers, and the others have many applications not only in mathematics, but also in other related areas. It is well-known that there are also many combinatorial interpretations of these special numbers especially, the Stirling numbers and the central factorial numbers in partition theory, in set theory, in probability theory and in other sciences. For combinatorial interpretations of these special numbers and polynomials with their generating functions see for details [131], and the references therein.
In this paper the following notation is used.
\(\mathbb{N}=\{1,2,3,\ldots\}\), \(\mathbb{N}_{0}=\{0,1,2,3,\ldots\}= \mathbb{N}\cup\{0\}\) and \(\mathbb{Z}\) denotes the set of integers, \(\mathbb{R}\) denotes the set of real numbers and \(\mathbb{C}\) denotes the set of complex numbers. Assuming that \(\ln(z)\) denotes the principal branch of the multi-valued function \(\ln(z)\) with the imaginary part \(\operatorname{Im} ( \ln (z) ) \) constrained by \(-\pi<\operatorname{Im} ( \ln(z) ) \leq\pi\). Furthermore, \(0^{n}=1\) if \(n=0\), and, \(0^{n}=0\) if \(n\in\mathbb{N}\).
$$ \left ( \begin{matrix} x \\ v\end{matrix} \right ) = \frac{x(x-1)\cdots(x-v+1)}{v!}=\frac{(x)_{v}}{v!} $$
(cf. [131], and the references therein).
In order to prove identities, relations, formulas, and combinatorial sums related to the special numbers and polynomials of this paper, we need the following generating functions for these special numbers and polynomials including some basic properties of them.
The Bernoulli polynomials are defined by
$$ F_{B}(t,x)=\frac{te^{xt}}{e^{t}-1}=\sum_{n=0}^{\infty}B_{n}(x) \frac {t^{n}}{n!}. $$
(1)
Substituting \(x=0\) into (1), we have the Bernoulli numbers \(B_{n}\):
$$ B_{n}=B_{n}(0). $$
The Euler polynomials are defined by
$$ F_{E}(t,x)=\frac{2e^{xt}}{e^{t}+1}=\sum_{n=0}^{\infty}E_{n}(x) \frac {t^{n}}{n!}. $$
(2)
Substituting \(x=0\) into (2), we have the Euler numbers \(E_{n}\):
$$ E_{n}=E_{n}(0) $$
(cf. [131], and the references therein).
The array polynomials are defined by
$$ F_{A}(t,x,v)=\frac{ ( e^{t}-1 ) ^{v}e^{xt}}{v!}=\sum_{n=0}^{\infty }S_{v}^{n}(x) \frac{t^{n}}{n!}, $$
(3)
where \(v\in\mathbb{N}_{0}\). By (3), we have
$$ S_{v}^{n}(x)=\frac{1}{v!}\sum _{j=0}^{v}(-1)^{v-j}\left ( \begin{matrix} v \\ j\end{matrix} \right ) ( x+j ) ^{n} $$
(cf. [1, 3, 24, 26]). Substituting \(x=0\) into (3), we have the Stirling numbers of the second kind \(S_{2}(n,v)\):
$$ S_{2}(n,v):=S_{v}^{n}(0) $$
which defined by means of the following generating function:
$$ F_{S}(t,v)=\frac{ ( e^{t}-1 ) ^{v}}{v!}=\sum_{n=0}^{\infty }S_{2}(n,v) \frac{t^{n}}{n!}, $$
(4)
where \(v\in\mathbb{N}_{0}\) (cf. [3, 5, 7, 24, 30, 31] and the references therein).
The Stirling numbers of the first kind are defined by the following generating function:
$$ F_{S1}(t,v)=\frac{ ( \log(1+t) ) ^{v}}{v!}=\sum_{n=0}^{\infty }S_{1}(n,v) \frac{t^{n}}{n!}, $$
(5)
where \(v\in\mathbb{N}_{0}\) (cf. [131], and the references therein).
The central factorial numbers \(T(n,k)\) of the second kind are defined by means of the following generating function:
$$ F_{T}(t,k)=\frac{1}{(2k)!} \bigl( e^{t}+e^{-t}-2 \bigr) ^{k}=\sum_{n=k}^{\infty}T(n,k) \frac{t^{2n}}{ ( 2n ) !}. $$
(6)
By using (6), for n, \(k\in\mathbb{N}\), \(T(0,k)=T(n,0)=0\), \(T(n,1)=1\) and also
$$ T(n,k)=\frac{1}{(2k)!}\sum_{j=0}^{2k}(-1)^{j} \left ( \begin{matrix} 2k \\ j\end{matrix} \right ) (j-k)^{2n} $$
(cf. [2, 4, 5, 26, 32], and the references therein).
Two-variable Hermite polynomials are defined by
$$ F(t,x,y:v)=e^{xt+yt^{v}}=\sum_{n=0}^{\infty}H_{n}^{ ( v ) } ( x,y ) \frac{t^{n}}{n!} $$
(7)
(cf. [7, 20, 22]).
Let v be integer \(v\geq2\). The polynomials \(H_{n}^{ ( v ) } ( x,y ) \) are given by the following explicit formula:
$$ H_{n}^{(v)} ( x,y ) =n!\sum_{r=0}^{[\frac{n}{v}]} \frac {x^{n-vr}y^{r}}{r! ( n-vr ) !} $$
(8)
(cf. [7, 20, 22]). Substituting \(y=-1\) and \(v=2\) into (8), we have classical Hermite polynomials
$$ H_{n} ( x ) =H_{n}^{(2)} ( x,-1 ) $$
(cf. [7, 20, 22]).
The Hermite numbers are defined by
$$ F_{H}(t)=e^{-t^{2}}=\sum_{n=0}^{\infty}H_{n} \frac{t^{n}}{n!} $$
(9)
(cf. [7, 10, 20, 22]).
Three-variable polynomials \(y_{6} ( n;x,y,z;a,b,v ) \) are defined by the first author [29] as follows:
$$ \mathcal{G} ( t,x,y,z;a,b,v ) = \bigl( b+f ( t,a ) \bigr) ^{z}e^{xt+yh ( t,v ) }= \sum_{n=0}^{\infty}y_{6} ( n;x,y,z;a,b,v ) \frac{t^{n}}{n!}, $$
(10)
where \(f ( t,a ) \) is a member of family of analytic functions or meromorphic functions, a and b are any real numbers, v is positive integer. When \(x=0\), \(y=z=1\), Equation (10) reduces to the following numbers:
$$ y_{6} ( n;0,1,1;a,b,v ) =y_{6} ( n;a,b,v ) $$
which defined by means of the following generating function:
$$ \mathcal{J} ( t;a,b,v ) = \bigl( b+f ( t,a ) \bigr) e^{h ( t,v ) }=\sum _{n=0}^{\infty}y_{6} ( n;a,b,v ) \frac{t^{n}}{n!} $$
(cf. [29]). When \(b=0\), in the numbers \(y_{6} ( n;a,b,v ) \) reduce to the Milne–Thomson numbers of order a, \(\phi _{n}^{(a)}\):
$$ y_{6} ( n;a,0,v ) =\phi_{n}^{(a)} $$
(cf. [19, p. 514, Eq-(2)], [9, 29]). Substituting \(z=1\) and \(b=0\) into (10), we have
$$ y_{6} ( n;x,y,1;a,0,v ) =\Psi_{n}^{(a)}(x,y,v) $$
which is related to a relation between the \(y_{6} ( n;x,y,z;a,b,v ) \) and the generalized Milne–Thomson’s polynomials [6]. Setting \(z=1\), \(b=0\), \(y=1\) and \(h ( t,0 ) =g ( t ) \) into (10), we also have a relation between the \(y_{6} ( n;x,y,z;a,b,v ) \) and the Milne–Thomson polynomials \(\Phi _{n}^{(a)}(x)\):
$$ y_{6} ( n;x,1,1;a,0,0 ) =\Phi_{n}^{(a)}(x) $$
(cf. [19, 29]). When \(z=1\), \(b=0\), \(y=1\), \(f ( t,a ) =1\) and \(h ( t,v ) =-\frac{vt^{2}}{2}\), Equation (10) reduces to the Hermite polynomials \(H_{n}^{ ( v ) } ( x ) \):
$$ y_{6} ( n;x,1,1;a,0,v ) =H_{n}^{ ( v ) } ( x ) $$
(cf. [10, 20, 22, 29]) and also the Hermite numbers
$$ y_{6} ( 2n;0,1,1;a,0,2 ) =H_{2n}=\frac{ ( -1 ) ^{n} ( 2n ) !}{n!} $$
for \(n\geq0\) (cf. [10, 20, 22]).

1.1 p-adic integral

Here, we survey some properties of the p-adic integral. Thus, we give some notations and definitions. \(\mathbb{Z}_{p}\) denotes the set of p-adic integers, \(\mathbb{Q}_{p}\) denotes the set of p-adic rational numbers, \(\mathbb{K}\) denotes a field with a complete valuation and \(\mathbb{C}_{p}\) is completion of the algebraic closure of \(\mathbb{Q}_{p}\). \(C^{1}(\mathbb{Z}_{p}\rightarrow\mathbb{K)}\) denotes the set of continuous derivative functions. Let \(f(x)\in C^{1}(\mathbb{Z}_{p}\rightarrow\mathbb{K)}\). Kim [14] defined the p-adic q-integral as follows:
$$ I_{q}\bigl(f(x)\bigr)= \int_{\mathbb{Z}_{p}}f(x)\,d\mu_{q}(x)=\lim_{N\rightarrow \infty} \frac{1}{[p^{N}]_{q}}\sum_{x=0}^{p^{N}-1}f(x)q^{x}, $$
(11)
where \(q\in\mathbb{C}_{p}\) with \(\vert 1-q \vert _{p}<1\), \(f\in C^{1}(\mathbb{Z}_{p}\rightarrow\mathbb{K)}\),
$$ [ x ] = [ x:q ] = \textstyle\begin{cases} \frac{1-q^{x}}{1-q},&q\neq1, \\ x,&q=1\end{cases} $$
and
$$ \mu_{q}(x)=\mu_{q} \bigl( x+p^{N} \mathbb{Z}_{p} \bigr) =\frac {q^{x}}{ [ p^{N} ] } $$
is a q-distribution on \(\mathbb{Z}_{p}\) (cf. [14]).
Remark 1
If \(q\rightarrow1\), then (11) reduces to the Volkenborn integral (or so-called the bosonic integral):
$$ \lim_{q\rightarrow1}I_{q}\bigl(f(x)\bigr)=I_{1} \bigl(f(x)\bigr)= \int_{\mathbb{Z}_{p}}f ( x ) \,d\mu_{1} ( x ) =\underset{N \rightarrow \infty}{\lim}\frac{1}{p^{N}}\sum_{x=0}^{p^{N}-1}f ( x ) , $$
(12)
where
$$ \mu_{1} ( x ) =\mu_{1} \bigl( x+p^{N} \mathbb{Z}_{p} \bigr) =\frac{1}{p^{N}} $$
denotes the Haar distribution on \(\mathbb{Z}_{p}\) (cf. [23]), and the references therein).
Remark 2
If \(q\rightarrow-1\), then (11) reduces to the fermionic p-adic integral:
$$ \lim_{q\rightarrow-1}I_{q}\bigl(f(x)\bigr)=I_{-1} \bigl(f(x)\bigr)= \int_{\mathbb{Z}_{p}}f ( x ) \,d\mu_{-1} ( x ) =\underset{N \rightarrow \infty}{\lim}\sum_{x=0}^{p^{N}-1} ( -1 ) ^{x}f ( x ) $$
(13)
and
$$ \mu_{-1} ( x ) =\mu_{-1} \bigl( x+p^{N} \mathbb{Z}_{p} \bigr) =\frac{(-1)^{x}}{p^{N}} $$
(cf. [13]).
The Bernoulli numbers are also given by the following bosonic p-adic integral:
$$ B_{n}= \int_{\mathbb{Z}_{p}}x^{n}\,d\mu_{1} ( x ) $$
(14)
(cf. [14, 23]).
On the other hand, the Euler numbers are also given by the following fermionic p-adic integral:
$$ E_{n}= \int_{\mathbb{Z}_{p}}x^{n}\,d\mu_{-1} ( x ) $$
(15)
(cf. [13]).
The Daehee numbers \(D_{n}\) are introduced by the following bosonic p-adic integral:
$$ D_{n}= \int_{\mathbb{Z}_{p}} ( x ) _{n}\,d\mu_{1} ( x ) =\sum _{k=0}^{n}S_{1}(n,k)B_{k}= \frac{(-1)^{n}n!}{n+1} $$
(16)
(cf. [8, 11], [21, p. 45], and the references therein).
The Changhee numbers \(\mathit{Ch}_{n}\) are introduced by the following fermionic p-adic integral:
$$ \mathit{Ch}_{n}= \int_{\mathbb{Z}_{p}} ( x ) _{n}\,d\mu_{-1} ( x ) =\sum _{k=0}^{n}S_{1}(n,k)E_{k}=(-1)^{n}2^{-n}n! $$
(17)
(cf. [1214], and the references therein).
We now summarize the results of this paper as follows:
In Sect. 2, by using generating functions and their functional equations, we give some identities including the three-variable polynomials \(y_{6} ( n;x,y,z;a,b,v ) \), the Hermite polynomials, the array polynomials and the Stirling numbers of the second kind.
In Sect. 3, by using p-adic integrals, we give some identities, combinatorial sums and relations related to the three-variable polynomials \(y_{6} ( n;x,y,z;a,b,v ) \), the Bernoulli numbers, the Euler numbers, the Stirling numbers, the Cauchy numbers (or the Bernoulli numbers of the second kind) and other special numbers such as the Daehee numbers and the Changhee numbers.
In Sect. 4, by using generating functions associated with trigonometric functions and the central factorial numbers of the second kind, we derive identities related to the central factorial numbers of the second kind, the array polynomials, and combinatorial sum.
In this section, by applying generating functions and their functional approach, we derive some identities including the three-variable polynomials \(y_{6} ( n;x,y,z;a,b,v ) \), the Hermite polynomials, the array polynomials and the Stirling numbers of the second kind.
Theorem 1
$$ y_{6} ( n;x,y,1;a,0,v ) =n!\sum_{j=0}^{ [ \frac {n}{v} ] } \frac{S_{a}^{n-vj}(x)y^{j}}{j!(n-vj)!}, $$
(18)
where \([ x ] \) denotes the greatest integer function.
Proof
Substituting \(b=0\), \(h ( t,v ) =t^{v}\)and \(f ( t,a ) =\frac{1}{a!} ( e^{t}-1 ) ^{a}\) with \(a\in\mathbb{N}_{0}\) and \(z=1\) into (10), we get the following functional equation:
$$ \mathcal{G} ( t,x,y,1;a,0,v ) =e^{yt^{v}}F_{A}(t,x,v). $$
Combining the above equation with (10), and (3), we obtain
$$ \sum_{n=0}^{\infty}y_{6} ( n;x,y,1;a,0,v ) \frac{t^{n}}{n!}=\sum_{n=0}^{\infty}S_{a}^{n}(x) \frac{t^{n}}{n!}\sum_{n=0}^{\infty } \frac{y^{n} t^{vn}}{n!}. $$
Now, combining the above equation with the following well-known series identity:
$$ \sum_{n=0}^{\infty}\sum _{k=0}^{\infty}A(n,k)=\sum_{n=0}^{\infty } \sum_{k=0}^{ [ \frac{n}{v} ] }A(n,n-vk) $$
(cf. [20, Lemma 11, Eq-(7)]), we get
$$ \sum_{n=0}^{\infty}y_{6} ( n;x,y,1;a,0,v ) \frac{t^{n}}{n!}=\sum_{n=0}^{\infty} \Biggl( n!\sum_{j=0}^{ [ \frac{n}{v} ] }\frac{S_{a}^{n-vj}(x)y^{j}}{j!(n-vj)!} \Biggr) \frac{t^{n}}{n!}. $$
Equating the coefficients of \(\frac{t^{n}}{n!}\) on both sides of the equation, we arrive at the desired result. □
Theorem 2
$$ y_{6} ( n;x,y,1;a,0,v ) =\sum_{j=0}^{n} \left ( \begin{matrix} n \\ j\end{matrix} \right ) S_{2}(n-j,a)H_{j}^{(v)}(x,y). $$
(19)
Proof
Proof of this theorem was also given in [33, Theorem 2]. We now briefly give another proof of this theorem. Substituting \(b=0\), \(h ( t,v ) =t^{v}\)and \(f ( t,a ) =\frac{1}{a!} ( e^{t}-1 ) ^{a}\) with \(a\in\mathbb{N}_{0}\) and \(z=1\) into (10), we construct the following functional equation:
$$ \mathcal{G} ( t,x,y,1;a,0,v ) =F(t,x,y:v)F_{S}(t,a). $$
Combining the above equation with (10), (7), and (4), we get
$$ \sum_{n=0}^{\infty}y_{6} ( n;x,y,1;a,0,v ) \frac{t^{n}}{n!}=\sum_{n=0}^{\infty}S_{2}(n,a) \frac{t^{n}}{n!}\sum_{n=0}^{\infty }H_{n}^{(v)}(x,y) \frac{t^{n}}{n!}. $$
Therefore
$$ \sum_{n=0}^{\infty}y_{6} ( n;x,y,1;a,0,v ) \frac{t^{n}}{n!}=\sum_{n=0}^{\infty} \left ( \sum_{j=0}^{n}\left ( \begin{matrix} n \\ j\end{matrix} \right ) S_{2}(n-j,a)H_{j}^{(v)}(x,y) \right ) \frac{t^{n}}{n!}. $$
Equating the coefficients \(\frac{t^{n}}{n!}\) on both sides of the equation, we arrive at the desired result. □
Combining (18) and (19), we arrive at the following theorem.
Theorem 3
$$ \sum_{j=0}^{n}\left ( \begin{matrix} n \\ j\end{matrix} \right ) S_{2}(n-j,a)H_{j}^{(v)}(x,y)=n! \sum_{j=0}^{ [ \frac {n}{v} ] }\frac{S_{a}^{n-vj}(x)y^{j}}{j!(n-vj)!}. $$

3 Identities and relations related to Stirling numbers and other special numbers: p-adic integral approach

In this section, by applying p-adic integrals approach, we derive some identities, combinatorial sums and relations related to the three-variable polynomials \(y_{6} ( n;x,y,z;a,b,v ) \), the Bernoulli numbers, the Euler numbers, the Stirling numbers, the Cauchy numbers (or the Bernoulli numbers of the second kind) and other special numbers such as the Daehee numbers and the Changhee numbers.
Theorem 4
Let \(m\in\mathbb{N}_{0}\) and \(z\in\mathbb{R}\). We have
$$ y_{6} ( m;0,0,z;1,1,1 ) =\sum_{n=0}^{m}S_{2}(m,n) (z)_{n}=z^{m}. $$
(20)
Proof
Substituting \(a=b=v=1\), \(x=y=0\) and \(f ( t,1 ) =e^{t}-1\) into (10), we get
$$ \mathcal{G} ( t,0,0,z;1,1,1 ) = \bigl( 1+\bigl(e^{t}-1\bigr) \bigr) ^{z}=\sum_{n=0}^{\infty}y_{6} ( n;0,0,z;1,1,1 ) \frac{t^{n}}{n!}. $$
We assume that \(\vert e^{t}-1 \vert <1\). We obtain
$$ \sum_{m=0}^{\infty}y_{6} ( m;0,0,z;1,1,1 ) \frac{t^{m}}{m!}=\sum_{n=0}^{\infty}(z)_{n} \frac{(e^{t}-1)^{n}}{n!}, $$
where
$$ (z)_{n}=z(z-1)\cdots(z-n+1). $$
Combining the above equation with (4), since \(S_{2}(m,n)=0\) for \(m< n \), we obtain
$$ \sum_{m=0}^{\infty}y_{6} ( m;0,0,z;1,1,1 ) \frac{t^{m}}{m!}=\sum_{m=0}^{\infty} \Biggl( \sum_{n=0}^{m}S_{2}(m,n) (z)_{n} \Biggr) \frac{t^{m}}{m!}. $$
Equating the coefficients of \(\frac{t^{m}}{m!}\) on both sides of the equation, we arrive at the desired result. □
It is time to give integral formulas for the three-variable polynomials \(y_{6} ( n;x,y,z;a,b,v ) \).
By applying the bosonic p-adic integral (or the Volkenborn integral) to (20), we obtain
$$ \int_{\mathbb{Z}_{p}}y_{6} ( m;0,0,z;1,1,1 ) \,d\mu _{1} ( z ) =\sum_{n=0}^{m}S_{2}(m,n) \int_{\mathbb{Z}_{p}} ( z ) _{n}\,d\mu_{1} ( z ). $$
By combining the above equation with (16), we obtain the following p-adic integral formulas, respectively:
$$ \begin{gathered} \int_{\mathbb{Z}_{p}}y_{6} ( m;0,0,z;1,1,1 ) \,d\mu _{1} ( z ) =\sum_{n=0}^{m}S_{2}(m,n)D_{n}, \\ \int_{\mathbb{Z}_{p}}y_{6} ( m;0,0,z;1,1,1 ) \,d\mu _{1} ( z ) =\sum_{n=0}^{m} ( -1 ) ^{n}\frac {n!S_{2}(m,n)}{n+1}, \end{gathered} $$
(21)
and we also have
$$ \int_{\mathbb{Z}_{p}}y_{6} ( m;0,0,z;1,1,1 ) \,d\mu _{1} ( z ) =\sum_{n=0}^{m}\sum _{j=0}^{n}S_{2}(m,n)S_{1}(n,j)B_{j}. $$
(22)
Combining Eqs. (21) and (22), we get the following theorem.
Theorem 5
Let \(m\in\mathbb{N}_{0}\). We have
$$ \sum_{n=0}^{m}\sum _{j=0}^{n}S_{2}(m,n)S_{1}(n,j)B_{j}= \sum_{n=0}^{m} ( -1 ) ^{n} \frac{n!S_{2}(m,n)}{n+1}. $$
(23)
We observe that, using the orthogonality relation of the Stirling numbers, Eq. (23) reduces to the following well-known relations for the Bernoulli numbers:
$$ B_{m}=\sum_{n=0}^{m} ( -1 ) ^{n}\frac{n!S_{2}(m,n)}{n+1} $$
(cf. [3, 7, 11, 17, 18, 25], and the references therein).
By applying the fermionic p-adic integral to (20), we obtain
$$ \int_{\mathbb{Z}_{p}}y_{6} ( m;0,0,z;1,1,1 ) \,d\mu _{-1} ( z ) =\sum_{n=0}^{m}S_{2}(m,n) \int_{\mathbb{Z}_{p}} ( z ) _{n}\,d\mu_{-1} ( z ). $$
By combining the above equation with (17), we obtain
$$ \int_{\mathbb{Z}_{p}}y_{6} ( m;0,0,z;1,1,1 ) \,d\mu _{-1} ( z ) =\sum_{n=0}^{m} ( -1 ) ^{n}\frac {n!}{2^{n}}S_{2}(m,n), $$
(24)
and we also obtain
$$ \int_{\mathbb{Z}_{p}}y_{6} ( m;0,0,z;1,1,1 ) \,d\mu _{-1} ( z ) =\sum_{n=0}^{m}\sum _{j=0}^{n}S_{2}(m,n)S_{1}(n,j)E_{j}. $$
(25)
Combining the above equations, we get the following theorem.
Theorem 6
Let \(m\in\mathbb{N}_{0}\). We have
$$ \sum_{n=0}^{m}\sum _{j=0}^{n}S_{2}(m,n)S_{1}(n,j)E_{j}= \sum_{n=0}^{m} ( -1 ) ^{n} \frac{n!}{2^{n}}S_{2}(m,n). $$
(26)
We also observe that, using the orthogonality relation of the Stirling numbers, Eq. (26) reduces to the following well-known relations for the Bernoulli numbers:
$$ E_{m}=\sum_{n=0}^{m} ( -1 ) ^{n}\frac{n!}{2^{n}}S_{2}(m,n) $$
(cf. [7, 12, 17, 18, 25], and the references therein).
Integrating Eq. (20) with respect to z from 0 to 1, we obtain
$$ \int_{0}^{1}y_{6} ( m;0,0,z;1,1,1 ) \,dz= \sum_{n=0}^{m}S_{2}(m,n) \int_{0}^{1} ( z ) _{n}\,dz. $$
Combining the above integral equation with the integral equation for the Cauchy numbers (the Bernoulli numbers of the second kind),
$$ b_{n}(0)= \int_{0}^{1} ( z ) _{n}\,dz $$
(cf. [22, p. 114]), we get the following integral representation of the polynomials \(y_{6} ( m;0,0,z;1,1,1 ) \).
Corollary 1
Let \(m\in\mathbb{N}_{0}\). We have
$$ \int_{0}^{1}y_{6} ( m;0,0,z;1,1,1 ) \,dz= \sum_{n=0}^{m}S_{2}(m,n)b_{n}(0). $$

4 Identities including the central factorial numbers of the second kind and array polynomials

In this section, by using special infinite series including trigonometric functions and the central factorial numbers of the second kind, we derive identities associated with the central factorial numbers of the second kind and the array polynomials.
In [2, Theorem 4.1.1 and Proposition 4.1.5], Butzer et al. gave the following alternative generating functions for the central factorial numbers of the second kind:
$$\begin{aligned}& \frac{1}{(2m)!} \biggl( 2\sin \biggl( \frac{t}{2} \biggr) \biggr) ^{2m}=\sum_{n=0}^{\infty}(-1)^{n+m}T(2n,2m) \frac{t^{2n}}{(2n)!} , \end{aligned}$$
(27)
$$\begin{aligned}& \biggl( \cos \biggl( \frac{t}{2} \biggr) \biggr) ^{2m}=\sum _{n=0}^{\infty}(-1)^{n+m}T(2n,2m) \frac{t^{2n}}{(2n)!}\sum_{j=0}^{m}\left ( \begin{matrix} m \\ j\end{matrix} \right ) 4^{-j}(2j)!T(2n,2j), \end{aligned}$$
(28)
\(m\in\mathbb{N}_{0}\).
Since
$$ \sin ( t ) =\frac{e^{it}-e^{-it}}{2i}, $$
where \(i^{2}=-1\), after some elementary calculations, we obtain
$$ \bigl( \sin ( t ) \bigr) ^{2m}=(2m)!\sum_{n=0}^{\infty }(-1)^{n-m}(i)^{n}2^{n-2m}S_{2m}^{n}(-m) \frac{t^{n}}{n!}. $$
(29)
Combining (27) and (28), and also using the Cauchy product formula for a series product, we also obtain
$$ \begin{aligned}[b] \biggl( 2\sin \biggl( \frac{t}{2} \biggr) \cos \biggl( \frac{t}{2} \biggr) \biggr) ^{2m}&=\sum_{n=0}^{\infty} \sum_{v=0}^{n}(-1)^{n+m}\left ( \begin{matrix} 2n \\ 2v\end{matrix} \right ) (2m)! \\ &\quad {} \times T(2n-2v,2m) \sum_{j=0}^{m} \left ( \begin{matrix} m \\ j\end{matrix} \right ) 4^{-j}(2j)!T(2v,2j)\frac{t^{2n}}{(2n)!}. \end{aligned} $$
(30)
Since
$$ 2\sin \biggl( \frac{t}{2} \biggr) \cos \biggl( \frac{t}{2} \biggr) =\sin ( t ) , $$
combining (29) and (30), after some calculations, we arrive at the following theorem including a relation between the central factorial numbers of the second kind and the array polynomials.
Theorem 7
For \(m,n\in\mathbb{N}_{0}\) we have
$$ S_{2m}^{2n}(-m)=\sum_{v=0}^{n} \left ( \begin{matrix} 2n \\ 2v\end{matrix} \right ) T(2n-2v,2m)\sum_{j=0}^{m}\left ( \begin{matrix} m \\ j\end{matrix} \right ) 4^{n-m-j}(2j)!T(2v,2j). $$
By combining (29) and (30), we also get following corollary.
Corollary 2
For \(m,n\in\mathbb{N}_{0}\) we have
$$ S_{2m}^{2n+1}(-m)=0. $$
(31)
With the help of Eq. (31), we also obtain the following combinatorial sum.
Corollary 3
For \(m,n\in\mathbb{N}_{0}\) we have
$$ \sum_{j=0}^{2m}\sum _{k=0}^{2n+1}(-1)^{-j-k}\left ( \begin{matrix} 2m \\ j\end{matrix} \right ) \left ( \begin{matrix} 2n+1 \\ k\end{matrix} \right ) j^{k}m^{2n+1-k}=0. $$

5 Conclusion

This paper contains many kind of identities and relations related to the Milne–Thomson polynomials, the Hermite polynomials, the Bernoulli numbers, the Euler numbers, the Stirling numbers, the central factorial numbers, and the Cauchy numbers. By applying not only p-adic integral, but also the Riemann integral methods, many identities relations and formulas related to the aforementioned numbers and polynomials, and also the combinatorial sums are given. By using the orthogonality relation of the Stirling numbers, explicit formulas for the Bernoulli numbers and the Euler numbers are provided.
The results of this paper have potential applicability to physics, engineering and other related fields, especially branches of mathematics.

Acknowledgements

We would like to thank the referees for their valuable comments. The first author was supported by the Scientific Research Project Administration of Akdeniz University.

Competing interests

The authors declare that they have no competing interests.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literature
1.
go back to reference Bayad, A., Simsek, Y., Srivastava, H.M.: Some array type polynomials associated with special numbers and polynomials. Appl. Math. Comput. 244, 149–157 (2014) MathSciNetMATH Bayad, A., Simsek, Y., Srivastava, H.M.: Some array type polynomials associated with special numbers and polynomials. Appl. Math. Comput. 244, 149–157 (2014) MathSciNetMATH
2.
go back to reference Butzer, P.L., Schmidt, K., Stark, E.L., Vogt, L.: Central factorial numbers; their main properties and some applications. Numer. Funct. Anal. Optim. 10(5&6), 419–488 (1989) MathSciNetCrossRefMATH Butzer, P.L., Schmidt, K., Stark, E.L., Vogt, L.: Central factorial numbers; their main properties and some applications. Numer. Funct. Anal. Optim. 10(5&6), 419–488 (1989) MathSciNetCrossRefMATH
3.
go back to reference Cakic, N.P., Milovanovic, G.V.: On generalized Stirling numbers and polynomials. Math. Balk. 18, 241–248 (2004) MathSciNetMATH Cakic, N.P., Milovanovic, G.V.: On generalized Stirling numbers and polynomials. Math. Balk. 18, 241–248 (2004) MathSciNetMATH
4.
go back to reference Cigler, J.: Fibonacci polynomials and central factorial numbers. Preprint Cigler, J.: Fibonacci polynomials and central factorial numbers. Preprint
5.
go back to reference Comtet, L.: Advanced Combinatorics: The Art of Finite and Infinite Expansions. Reidel, Dordrecht (1974). Translated from the French by J.W. Nienhuys CrossRefMATH Comtet, L.: Advanced Combinatorics: The Art of Finite and Infinite Expansions. Reidel, Dordrecht (1974). Translated from the French by J.W. Nienhuys CrossRefMATH
6.
7.
go back to reference Djordjevic, G.B., Milovanovic, G.V.: Special Classes of Polynomials. University of Nis, Faculty of Technology, Leskovac (2014) Djordjevic, G.B., Milovanovic, G.V.: Special Classes of Polynomials. University of Nis, Faculty of Technology, Leskovac (2014)
8.
go back to reference El-Desouky, B.S., Mustafa, A.: New results and matrix representation for Daehee and Bernoulli numbers and polynomials. Appl. Math. Sci. 9, 3593–3610 (2015) El-Desouky, B.S., Mustafa, A.: New results and matrix representation for Daehee and Bernoulli numbers and polynomials. Appl. Math. Sci. 9, 3593–3610 (2015)
10.
go back to reference Kim, D.S., Kim, T., Rim, S.-H., Lee, S.H.: Hermite polynomials and their applications associated with Bernoulli and Euler numbers. Discrete Dyn. Nat. Soc. 2012, Article ID 974632 (2012) MathSciNetMATH Kim, D.S., Kim, T., Rim, S.-H., Lee, S.H.: Hermite polynomials and their applications associated with Bernoulli and Euler numbers. Discrete Dyn. Nat. Soc. 2012, Article ID 974632 (2012) MathSciNetMATH
11.
go back to reference Kim, D.S., Kim, T.: Daehee numbers and polynomials. Appl. Math. Sci. (Ruse) 7, 5969–5976 (2013) MathSciNet Kim, D.S., Kim, T.: Daehee numbers and polynomials. Appl. Math. Sci. (Ruse) 7, 5969–5976 (2013) MathSciNet
12.
go back to reference Kim, D.S., Kim, T., Seo, J.: A note on Changhee numbers and polynomials. Adv. Stud. Theor. Phys. 7, 993–1003 (2013) CrossRef Kim, D.S., Kim, T., Seo, J.: A note on Changhee numbers and polynomials. Adv. Stud. Theor. Phys. 7, 993–1003 (2013) CrossRef
13.
go back to reference Kim, T.: q-Euler numbers and polynomials associated with p-adic q-integral and basic q-zeta function. Trend Math. Information Center Math. Sciences 9, 7–12 (2006) Kim, T.: q-Euler numbers and polynomials associated with p-adic q-integral and basic q-zeta function. Trend Math. Information Center Math. Sciences 9, 7–12 (2006)
16.
go back to reference Kim, T., Rim, S.-H., Simsek, Y., Kim, D.: On the analogs of Bernoulli and Euler numbers, related identities and zeta and l-functions. J. Korean Math. Soc. 45(2), 435–453 (2008) MathSciNetCrossRefMATH Kim, T., Rim, S.-H., Simsek, Y., Kim, D.: On the analogs of Bernoulli and Euler numbers, related identities and zeta and l-functions. J. Korean Math. Soc. 45(2), 435–453 (2008) MathSciNetCrossRefMATH
17.
go back to reference Kim, T., Choi, J., Kim, Y.-H.: Some identities on the q-Bernstein polynomials, q-Stirling numbers and q-Bernoulli numbers. arXiv:1006.2033v1 Kim, T., Choi, J., Kim, Y.-H.: Some identities on the q-Bernstein polynomials, q-Stirling numbers and q-Bernoulli numbers. arXiv:​1006.​2033v1
18.
go back to reference Luo, Q.M., Srivastava, H.M.: Some relationships between the Apostol–Bernoulli and Apostol–Euler polynomials. Comput. Math. Appl. 51(3–4), 631–642 (2006) MathSciNetCrossRefMATH Luo, Q.M., Srivastava, H.M.: Some relationships between the Apostol–Bernoulli and Apostol–Euler polynomials. Comput. Math. Appl. 51(3–4), 631–642 (2006) MathSciNetCrossRefMATH
20.
go back to reference Rainville, E.D.: Special Functions. Macmillan Co., New York (1960) MATH Rainville, E.D.: Special Functions. Macmillan Co., New York (1960) MATH
21.
go back to reference Riordan, J.: Introduction to Combinatorial Analysis. Princeton University Press, Princeton (1958) MATH Riordan, J.: Introduction to Combinatorial Analysis. Princeton University Press, Princeton (1958) MATH
22.
23.
go back to reference Schikhof, W.H.: Ultrametric Calculus: An Introduction to p-Adic Analysis. Cambridge Studies in Advanced Mathematics, vol. 4. Cambridge University Press, Cambridge (1984) MATH Schikhof, W.H.: Ultrametric Calculus: An Introduction to p-Adic Analysis. Cambridge Studies in Advanced Mathematics, vol. 4. Cambridge University Press, Cambridge (1984) MATH
24.
go back to reference Simsek, Y.: Generating functions for generalized Stirling type numbers, array type polynomials, Eulerian type polynomials and their alications. Fixed Point Theory Appl. 2013, 87 (2013) CrossRefMATH Simsek, Y.: Generating functions for generalized Stirling type numbers, array type polynomials, Eulerian type polynomials and their alications. Fixed Point Theory Appl. 2013, 87 (2013) CrossRefMATH
26.
go back to reference Simsek, Y.: Special numbers on analytic functions. Appl. Math. 5, 1091–1098 (2014) CrossRef Simsek, Y.: Special numbers on analytic functions. Appl. Math. 5, 1091–1098 (2014) CrossRef
27.
go back to reference Simsek, Y.: Complete sum of products of \((h;q)\)-extension of Euler polynomials and numbers. J. Differ. Equ. Appl. 16, 1331–1348 (2010) MathSciNetCrossRefMATH Simsek, Y.: Complete sum of products of \((h;q)\)-extension of Euler polynomials and numbers. J. Differ. Equ. Appl. 16, 1331–1348 (2010) MathSciNetCrossRefMATH
28.
go back to reference Simsek, Y.: Twisted \((h;q)\)-Bernoulli numbers and polynomials related to twisted \((h;q)\)-zeta function and L-function. J. Math. Anal. Appl. 324, 790–804 (2006) MathSciNetCrossRefMATH Simsek, Y.: Twisted \((h;q)\)-Bernoulli numbers and polynomials related to twisted \((h;q)\)-zeta function and L-function. J. Math. Anal. Appl. 324, 790–804 (2006) MathSciNetCrossRefMATH
29.
30.
go back to reference Srivastava, H.M.: Some generalizations and basic (or q-) extensions of the Bernoulli, Euler and Genocchi polynomials. Appl. Math. Inf. Sci. 5, 390–444 (2011) MathSciNet Srivastava, H.M.: Some generalizations and basic (or q-) extensions of the Bernoulli, Euler and Genocchi polynomials. Appl. Math. Inf. Sci. 5, 390–444 (2011) MathSciNet
31.
go back to reference Srivastava, H.M., Choi, J.: Zeta and q-Zeta Functions and Associated Series and Integrals. Elsevier, Amsterdam (2012) MATH Srivastava, H.M., Choi, J.: Zeta and q-Zeta Functions and Associated Series and Integrals. Elsevier, Amsterdam (2012) MATH
32.
go back to reference Srivastava, H.M., Liu, G.-D.: Some identities and congruences involving a certain family of numbers. Russ. J. Math. Phys. 16, 536–542 (2009) MathSciNetCrossRefMATH Srivastava, H.M., Liu, G.-D.: Some identities and congruences involving a certain family of numbers. Russ. J. Math. Phys. 16, 536–542 (2009) MathSciNetCrossRefMATH
33.
go back to reference Yuluklu, E.: A note on the Milne–Thomson type polynomials. In: AIP Conf. Proc. (2018, in press) Yuluklu, E.: A note on the Milne–Thomson type polynomials. In: AIP Conf. Proc. (2018, in press)
Metadata
Title
Identities associated with Milne–Thomson type polynomials and special numbers
Authors
Yilmaz Simsek
Nenad Cakic
Publication date
01-12-2018
Publisher
Springer International Publishing
Published in
Journal of Inequalities and Applications / Issue 1/2018
Electronic ISSN: 1029-242X
DOI
https://doi.org/10.1186/s13660-018-1679-x

Other articles of this Issue 1/2018

Journal of Inequalities and Applications 1/2018 Go to the issue

Premium Partner