Skip to main content
Top

2019 | OriginalPaper | Chapter

9. Imaging Techniques for Probing Nanoparticles in Cells and Skin

Authors : Christina Graf, Eckart Rühl

Published in: Biological Responses to Nanoscale Particles

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Imaging techniques for probing the interactions of nanoparticles with cells and skin are essential for a qualitative and quantitative understanding of uptake and penetration processes. A variety of important visualization techniques is reviewed for providing an overview on established and recently developed techniques. This includes optical microscopy, fluorescence microscopy, electron microscopy, Raman microscopy, optical near-field microscopy, X-ray microscopy, as well as recent and emerging developments in the field of spectromicroscopy.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Stark, W.J.: Nanoparticles in biological systems. Angew. Chem. Int. Ed. 50(6), 1242–1258 (2011) Stark, W.J.: Nanoparticles in biological systems. Angew. Chem. Int. Ed. 50(6), 1242–1258 (2011)
2.
go back to reference Shang, L., Nienhaus, G.U.: Small fluorescent nanoparticles at the nano-bio interface. Mater. Today 16(3), 58–66 (2013) Shang, L., Nienhaus, G.U.: Small fluorescent nanoparticles at the nano-bio interface. Mater. Today 16(3), 58–66 (2013)
3.
go back to reference Treuel, L., Jiang, X.E., Nienhaus, G.U.: New views on cellular uptake and trafficking of manufactured nanoparticles. J. R. Soc. Interface 10(82), 20120939 (2013) Treuel, L., Jiang, X.E., Nienhaus, G.U.: New views on cellular uptake and trafficking of manufactured nanoparticles. J. R. Soc. Interface 10(82), 20120939 (2013)
4.
go back to reference Pelaz, B., et al.: Interfacing Engineered nanoparticles with biological systems: anticipating adverse nano-bio interactions. Small 9(9–10), 1573–1584 (2013) Pelaz, B., et al.: Interfacing Engineered nanoparticles with biological systems: anticipating adverse nano-bio interactions. Small 9(9–10), 1573–1584 (2013)
5.
go back to reference Geiser, M., Kreyling, W.G.: Deposition and biokinetics of inhaled nanoparticles. Part. Fibre Toxicol. 7(2), 17 (2010) Geiser, M., Kreyling, W.G.: Deposition and biokinetics of inhaled nanoparticles. Part. Fibre Toxicol. 7(2), 17 (2010)
6.
go back to reference Shang, L., et al.: Nanoparticle interactions with live cells: quantitative fluorescence microscopy of nanoparticle size effects. Beilstein J. Nanotechnol. 5, 2388–2397 (2014) Shang, L., et al.: Nanoparticle interactions with live cells: quantitative fluorescence microscopy of nanoparticle size effects. Beilstein J. Nanotechnol. 5, 2388–2397 (2014)
7.
go back to reference Lundqvist, M., et al.: Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc. Nat. Acad. Sci. 105(38), 14265–14270 (2008)ADS Lundqvist, M., et al.: Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc. Nat. Acad. Sci. 105(38), 14265–14270 (2008)ADS
8.
go back to reference Treuel, L., Nienhaus, G.U.: Toward a molecular understanding of nanoparticle–protein interactions. Biophys. Rev. 4(2), 137–147 (2012) Treuel, L., Nienhaus, G.U.: Toward a molecular understanding of nanoparticle–protein interactions. Biophys. Rev. 4(2), 137–147 (2012)
9.
go back to reference Monopoli, M.P., et al.: Biomolecular coronas provide the biological identity of nanosized materials. Nat. Nanotechnol. 7(12), 779–786 (2012)ADS Monopoli, M.P., et al.: Biomolecular coronas provide the biological identity of nanosized materials. Nat. Nanotechnol. 7(12), 779–786 (2012)ADS
10.
go back to reference Xiao Wen, L., et al.: Penetration of Nanoparticles into Human Skin. Curr. Pharm. Des. 19(35), 6353–6366 (2013) Xiao Wen, L., et al.: Penetration of Nanoparticles into Human Skin. Curr. Pharm. Des. 19(35), 6353–6366 (2013)
11.
go back to reference Döge, N., et al.: Identification of polystyrene nanoparticle penetration across intact skin barrier as rare event at sites of focal particle aggregations. J. Biophotonics 11(4), e201700169 (2018) Döge, N., et al.: Identification of polystyrene nanoparticle penetration across intact skin barrier as rare event at sites of focal particle aggregations. J. Biophotonics 11(4), e201700169 (2018)
12.
go back to reference Graf, C., et al.: Penetration of spherical and rod-like gold nanoparticles into intact and barrier-disrupted human skin. In: SPIE BiOS, vol. 9338, pp. 93381L–933811. SPIE 9338 (2015) Graf, C., et al.: Penetration of spherical and rod-like gold nanoparticles into intact and barrier-disrupted human skin. In: SPIE BiOS, vol. 9338, pp. 93381L–933811. SPIE 9338 (2015)
13.
go back to reference Graf, C., et al.: Shape-dependent dissolution and cellular uptake of silver nanoparticles. Langmuir 34(4), 1506–1519 (2018) Graf, C., et al.: Shape-dependent dissolution and cellular uptake of silver nanoparticles. Langmuir 34(4), 1506–1519 (2018)
14.
go back to reference Wang, H., et al.: Optical sizing of immunolabel clusters through multispectral plasmon coupling microscopy. Nano Lett. 11(2), 498–504 (2011)ADS Wang, H., et al.: Optical sizing of immunolabel clusters through multispectral plasmon coupling microscopy. Nano Lett. 11(2), 498–504 (2011)ADS
15.
go back to reference Blank, H., et al.: Application of low-energy scanning transmission electron microscopy for the study of Pt-nanoparticle uptake in human colon carcinoma cells. Nanotoxicology 8(4), 433–446 (2014) Blank, H., et al.: Application of low-energy scanning transmission electron microscopy for the study of Pt-nanoparticle uptake in human colon carcinoma cells. Nanotoxicology 8(4), 433–446 (2014)
16.
go back to reference Peckys, D.B., et al.: Epidermal growth factor receptor subunit locations determined in hydrated cells with environmental scanning electron microscopy. Sci. Rep. 3, 2626 (2013) Peckys, D.B., et al.: Epidermal growth factor receptor subunit locations determined in hydrated cells with environmental scanning electron microscopy. Sci. Rep. 3, 2626 (2013)
17.
go back to reference Peckys, D.B., de Jonge, N.: Liquid scanning transmission electron microscopy: imaging protein complexes in their native environment in whole eukaryotic cells. Microsc. Microanal. 20(2), 346–365 (2014) Peckys, D.B., de Jonge, N.: Liquid scanning transmission electron microscopy: imaging protein complexes in their native environment in whole eukaryotic cells. Microsc. Microanal. 20(2), 346–365 (2014)
18.
go back to reference Yamamoto, K., et al.: Selective probing of the penetration of dexamethasone into human skin by soft X-ray spectromicroscopy. Anal. Chem. 87(12), 6173–6179 (2015) Yamamoto, K., et al.: Selective probing of the penetration of dexamethasone into human skin by soft X-ray spectromicroscopy. Anal. Chem. 87(12), 6173–6179 (2015)
19.
go back to reference Yamamoto, K., et al.: Core-multishell nanocarriers: transport and release of dexamethasone probed by soft X-ray spectromicroscopy. J. Control. Release 242, 64–70 (2016) Yamamoto, K., et al.: Core-multishell nanocarriers: transport and release of dexamethasone probed by soft X-ray spectromicroscopy. J. Control. Release 242, 64–70 (2016)
20.
go back to reference Yamamoto, K., et al.: Influence of the skin barrier on the penetration of topically-applied dexamethasone probed by soft X-ray spectromicroscopy. Eur. J. Pharm. Biopharm. 118(SI), 30–37 (2017) Yamamoto, K., et al.: Influence of the skin barrier on the penetration of topically-applied dexamethasone probed by soft X-ray spectromicroscopy. Eur. J. Pharm. Biopharm. 118(SI), 30–37 (2017)
21.
go back to reference Meinke, M.C., et al.: Evaluation of carotenoids and reactive oxygen species in human skin after UV irradiation: a critical comparison between in vivo and ex vivo investigations. Exp. Dermatol. 24(3), 194–197 (2015) Meinke, M.C., et al.: Evaluation of carotenoids and reactive oxygen species in human skin after UV irradiation: a critical comparison between in vivo and ex vivo investigations. Exp. Dermatol. 24(3), 194–197 (2015)
22.
go back to reference Honeywell-Nguyen, P.L., Gooris, G.S., Bouwstra, J.A.: Quantitative assessment of the transport of elastic and rigid vesicle components and a model drug from these vesicle formulations into human skin in vivo. J. Invest. Dermatol. 123(5), 902–910 (2004) Honeywell-Nguyen, P.L., Gooris, G.S., Bouwstra, J.A.: Quantitative assessment of the transport of elastic and rigid vesicle components and a model drug from these vesicle formulations into human skin in vivo. J. Invest. Dermatol. 123(5), 902–910 (2004)
23.
go back to reference Witting, M., et al.: Interactions of hyaluronic acid with the skin and implications for the dermal delivery of biomacromolecules. Mol. Pharm. 12(5), 1391–1401 (2015) Witting, M., et al.: Interactions of hyaluronic acid with the skin and implications for the dermal delivery of biomacromolecules. Mol. Pharm. 12(5), 1391–1401 (2015)
24.
go back to reference Lewin, M., et al.: Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat. Biotechnol. 18(4), 410–414 (2000) Lewin, M., et al.: Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat. Biotechnol. 18(4), 410–414 (2000)
25.
go back to reference Selvi, B.R., et al.: Intrinsically fluorescent carbon nanospheres as a nuclear targeting vector: delivery of membrane-impermeable molecule to modulate gene expression in vivo. Nano Lett. 8(10), 3182–3188 (2008)ADS Selvi, B.R., et al.: Intrinsically fluorescent carbon nanospheres as a nuclear targeting vector: delivery of membrane-impermeable molecule to modulate gene expression in vivo. Nano Lett. 8(10), 3182–3188 (2008)ADS
26.
go back to reference Song, Z., et al.: Background free imaging of upconversion nanoparticle distribution in human skin. J. Biomed. Opt. 18(6), 061215 (2013)ADS Song, Z., et al.: Background free imaging of upconversion nanoparticle distribution in human skin. J. Biomed. Opt. 18(6), 061215 (2013)ADS
27.
go back to reference Huang, Y., Fenech, M., Shi, Q.H.: Micronucleus formation detected by live-cell imaging. Mutagenesis 26(1), 133–138 (2011) Huang, Y., Fenech, M., Shi, Q.H.: Micronucleus formation detected by live-cell imaging. Mutagenesis 26(1), 133–138 (2011)
28.
go back to reference Seynhaeve, A.L.B., ten Hagen, T.L.M.: Using in vitro live-cell imaging to explore chemotherapeutics delivered by lipid-based nanoparticles. J. Vis. Exp. 129, e55405 (2017) Seynhaeve, A.L.B., ten Hagen, T.L.M.: Using in vitro live-cell imaging to explore chemotherapeutics delivered by lipid-based nanoparticles. J. Vis. Exp. 129, e55405 (2017)
29.
go back to reference Wildt, B.E., et al.: Intracellular accumulation and dissolution of silver nanoparticles in L-929 fibroblast cells using live cell time-lapse microscopy. Nanotoxicology 10(6), 710–719 (2016) Wildt, B.E., et al.: Intracellular accumulation and dissolution of silver nanoparticles in L-929 fibroblast cells using live cell time-lapse microscopy. Nanotoxicology 10(6), 710–719 (2016)
30.
go back to reference Boreham, A., et al.: Determination of nanostructures and drug distribution in lipid nanoparticles by single molecule microscopy. Eur. J. Pharm. Biopharm. 110, 31–38 (2017) Boreham, A., et al.: Determination of nanostructures and drug distribution in lipid nanoparticles by single molecule microscopy. Eur. J. Pharm. Biopharm. 110, 31–38 (2017)
31.
go back to reference Volz, P., et al.: Application of single molecule fluorescence microscopy to characterize the penetration of a large amphiphilic molecule in the stratum corneum of human skin. Int. J. Mol. Sci. 16(4), 6960–6977 (2015) Volz, P., et al.: Application of single molecule fluorescence microscopy to characterize the penetration of a large amphiphilic molecule in the stratum corneum of human skin. Int. J. Mol. Sci. 16(4), 6960–6977 (2015)
32.
go back to reference van der Zwaag, D., et al.: Super resolution imaging of nanoparticles cellular uptake and trafficking. ACS Appl. Mater. Inter. 8(10), 6391–6399 (2016) van der Zwaag, D., et al.: Super resolution imaging of nanoparticles cellular uptake and trafficking. ACS Appl. Mater. Inter. 8(10), 6391–6399 (2016)
33.
go back to reference Peuschel, H., et al.: Quantification of internalized silica nanoparticles via STED microscopy. Biomed. Res. Int. 2015, 961208 (2015) Peuschel, H., et al.: Quantification of internalized silica nanoparticles via STED microscopy. Biomed. Res. Int. 2015, 961208 (2015)
34.
go back to reference Wang, S.H., et al.: Evolution of gold nanoparticle clusters in living cells studied by sectional dark-field optical microscopy and chromatic analysis. J. Biophotonics 9(7), 738–749 (2016) Wang, S.H., et al.: Evolution of gold nanoparticle clusters in living cells studied by sectional dark-field optical microscopy and chromatic analysis. J. Biophotonics 9(7), 738–749 (2016)
35.
go back to reference Deka, G., et al.: Nonlinear plasmonic imaging techniques and their biological applications. Nanophotonics 6(1), 31–49 (2017)MathSciNet Deka, G., et al.: Nonlinear plasmonic imaging techniques and their biological applications. Nanophotonics 6(1), 31–49 (2017)MathSciNet
36.
go back to reference Alexiev, U., et al.: Time-resolved fluorescence microscopy (FLIM) as an analytical tool in skin nanomedicine. Eur. J. Pharm. Biopharm. 116(SI), 111–124 (2017) Alexiev, U., et al.: Time-resolved fluorescence microscopy (FLIM) as an analytical tool in skin nanomedicine. Eur. J. Pharm. Biopharm. 116(SI), 111–124 (2017)
37.
go back to reference Vogt, A., et al.: Nanocarriers for drug delivery into and through the skin—do existing technologies match clinical challenges? J. Control. Release 242, 3–15 (2016) Vogt, A., et al.: Nanocarriers for drug delivery into and through the skin—do existing technologies match clinical challenges? J. Control. Release 242, 3–15 (2016)
38.
go back to reference Ostrowski, A., et al.: Overview about the localization of nanoparticles in tissue and cellular context by different imaging techniques. Beilstein J. Nanotechnol. 6, 263–280 (2015) Ostrowski, A., et al.: Overview about the localization of nanoparticles in tissue and cellular context by different imaging techniques. Beilstein J. Nanotechnol. 6, 263–280 (2015)
39.
go back to reference Baeza, A., et al.: Electron microscopy for inorganic-type drug delivery nanocarriers for antitumoral applications: what does it reveal? J. Mater. Chem. B 5(15), 2714–2725 (2017) Baeza, A., et al.: Electron microscopy for inorganic-type drug delivery nanocarriers for antitumoral applications: what does it reveal? J. Mater. Chem. B 5(15), 2714–2725 (2017)
40.
go back to reference Chen, D.D., Monteiro-Riviere, N.A., Zhang, L.S.W.: Intracellular imaging of quantum dots, gold, and iron oxide nanoparticles with associated endocytic pathways. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 9(2), e1419 (2017) Chen, D.D., Monteiro-Riviere, N.A., Zhang, L.S.W.: Intracellular imaging of quantum dots, gold, and iron oxide nanoparticles with associated endocytic pathways. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 9(2), e1419 (2017)
41.
go back to reference Lin, L.L., et al.: Non-invasive nanoparticle imaging technologies for cosmetic and skin care products. Cosmetics 2, 196–210 (2015) Lin, L.L., et al.: Non-invasive nanoparticle imaging technologies for cosmetic and skin care products. Cosmetics 2, 196–210 (2015)
42.
go back to reference Potocnik, J.: Commission recommendation of 18 October 2011 on the defnition of nanomaterals. Official J. Europ. Union L275/38 (2011) Potocnik, J.: Commission recommendation of 18 October 2011 on the defnition of nanomaterals. Official J. Europ. Union L275/38 (2011)
43.
go back to reference Panyam, J., Labhasetwar, V.: Dynamics of endocytosis and exocytosis of poly(D, L-Lactide-co-Glycolide) nanoparticles in vascular smooth muscle cells. Pharm. Res. 20(2), 212–220 (2003) Panyam, J., Labhasetwar, V.: Dynamics of endocytosis and exocytosis of poly(D, L-Lactide-co-Glycolide) nanoparticles in vascular smooth muscle cells. Pharm. Res. 20(2), 212–220 (2003)
44.
go back to reference Jiang, X., et al.: Endo- and exocytosis of zwitterionic quantum dot nanoparticles by live HeLa cells. ACS Nano 4(11), 6787–6797 (2010) Jiang, X., et al.: Endo- and exocytosis of zwitterionic quantum dot nanoparticles by live HeLa cells. ACS Nano 4(11), 6787–6797 (2010)
45.
go back to reference Clift, M.J.D., et al.: The impact of different nanoparticle surface chemistry and size on uptake and toxicity in a murine macrophage cell line. Toxicol. Appl. Pharmacol. 232(3), 418–427 (2008) Clift, M.J.D., et al.: The impact of different nanoparticle surface chemistry and size on uptake and toxicity in a murine macrophage cell line. Toxicol. Appl. Pharmacol. 232(3), 418–427 (2008)
46.
go back to reference dos Santos, T., et al.: Quantitative assessment of the comparative nanoparticle-uptake efficiency of a range of cell lines. Small 7(23), 3341–3349 (2011) dos Santos, T., et al.: Quantitative assessment of the comparative nanoparticle-uptake efficiency of a range of cell lines. Small 7(23), 3341–3349 (2011)
47.
go back to reference Byrne, G.D., et al.: Live imaging of cellular internalization of single colloidal particle by combined label-free and fluorescence total internal reflection microscopy. Mol. Pharm. 12(11), 3862–3870 (2015) Byrne, G.D., et al.: Live imaging of cellular internalization of single colloidal particle by combined label-free and fluorescence total internal reflection microscopy. Mol. Pharm. 12(11), 3862–3870 (2015)
48.
go back to reference Ann, F.H., et al.: Nanotechnology: toxicologic pathology. Toxicol. Pathol. 41(2), 395–409 (2013) Ann, F.H., et al.: Nanotechnology: toxicologic pathology. Toxicol. Pathol. 41(2), 395–409 (2013)
49.
go back to reference Song, C.X., et al.: Formulation and characterization of biodegradable nanoparticles for intravascular local drug delivery. J. Control. Release 43(2), 197–212 (1997)MathSciNet Song, C.X., et al.: Formulation and characterization of biodegradable nanoparticles for intravascular local drug delivery. J. Control. Release 43(2), 197–212 (1997)MathSciNet
50.
go back to reference Haase, M., Schaefer, H.: Upconverting Nanoparticles. Ang. Chem. Int. Ed. 50(26), 5808–5829 (2011) Haase, M., Schaefer, H.: Upconverting Nanoparticles. Ang. Chem. Int. Ed. 50(26), 5808–5829 (2011)
51.
go back to reference Song, C.X., et al.: Bifunctional cationic solid lipid nanoparticles of β-NaYF4: Yb, Er upconversion nanoparticles coated with a lipid for bioimaging and gene delivery. RSC Adv. 7(43), 26633–26639 (2017) Song, C.X., et al.: Bifunctional cationic solid lipid nanoparticles of β-NaYF4: Yb, Er upconversion nanoparticles coated with a lipid for bioimaging and gene delivery. RSC Adv. 7(43), 26633–26639 (2017)
52.
go back to reference Kuo, T.-R., et al.: Chemical enhancer induced changes in the mechanisms of transdermal delivery of zinc oxide nanoparticles. Biomaterials 30(16), 3002–3008 (2009) Kuo, T.-R., et al.: Chemical enhancer induced changes in the mechanisms of transdermal delivery of zinc oxide nanoparticles. Biomaterials 30(16), 3002–3008 (2009)
53.
go back to reference Prow, T.W., et al.: Quantum dot penetration into viable human skin. Nanotoxicology 6(2), 173–185 (2012) Prow, T.W., et al.: Quantum dot penetration into viable human skin. Nanotoxicology 6(2), 173–185 (2012)
54.
go back to reference Labouta, H.I., et al.: Gold nanoparticle penetration and reduced metabolism in human skin by toluene. Pharm. Res. 28(11), 2931–2944 (2011) Labouta, H.I., et al.: Gold nanoparticle penetration and reduced metabolism in human skin by toluene. Pharm. Res. 28(11), 2931–2944 (2011)
55.
go back to reference Prow, T., et al.: Nanoparticle tethered antioxidant response element as a biosensor for oxygen induced toxicity in retinal endothelial cells. Mol. Vis. 12(67–69), 616–625 (2006) Prow, T., et al.: Nanoparticle tethered antioxidant response element as a biosensor for oxygen induced toxicity in retinal endothelial cells. Mol. Vis. 12(67–69), 616–625 (2006)
56.
go back to reference Prow, T.W., et al.: Nanoparticles and microparticles for skin drug delivery. Adv. Drug. Del. Rev. 63(6), 470–491 (2011) Prow, T.W., et al.: Nanoparticles and microparticles for skin drug delivery. Adv. Drug. Del. Rev. 63(6), 470–491 (2011)
57.
go back to reference de Campos, A.M., et al.: Chitosan nanoparticles as new ocular drug delivery systems: in vitro stability, in vivo fate, and cellular toxicity. Pharm. Res. 21(5), 803–810 (2004) de Campos, A.M., et al.: Chitosan nanoparticles as new ocular drug delivery systems: in vitro stability, in vivo fate, and cellular toxicity. Pharm. Res. 21(5), 803–810 (2004)
58.
go back to reference Prow, T.W., et al.: Ocular nanoparticle toxicity and transfection of the retina and retinal pigment epithelium. Nanomedicine 4(4), 340–349 (2008) Prow, T.W., et al.: Ocular nanoparticle toxicity and transfection of the retina and retinal pigment epithelium. Nanomedicine 4(4), 340–349 (2008)
59.
go back to reference Kang, J.H., Jang, W.Y., Ko, Y.T.: The effect of surface charges on the cellular uptake of liposomes investigated by live cell imaging. Pharm. Res. 34(4), 704–717 (2017) Kang, J.H., Jang, W.Y., Ko, Y.T.: The effect of surface charges on the cellular uptake of liposomes investigated by live cell imaging. Pharm. Res. 34(4), 704–717 (2017)
60.
go back to reference Oreopoulos, J., Berman, R., Browne, M.: Spinning-disk confocal microscopy: present technology and future trends. In: Waters, Wittmann, T. (eds.) Quantitative Imaging in Cell Biology, pp. 153–175. Elsevier Academic Press Inc, San Diego (2014) Oreopoulos, J., Berman, R., Browne, M.: Spinning-disk confocal microscopy: present technology and future trends. In: Waters, Wittmann, T. (eds.) Quantitative Imaging in Cell Biology, pp. 153–175. Elsevier Academic Press Inc, San Diego (2014)
61.
go back to reference Baroli, B., et al.: Penetration of metallic nanoparticles in human full-thickness skin. J. Invest. Dermatol. 127(7), 1701–1712 (2007) Baroli, B., et al.: Penetration of metallic nanoparticles in human full-thickness skin. J. Invest. Dermatol. 127(7), 1701–1712 (2007)
62.
go back to reference Cross, S.E., et al.: Human skin penetration of sunscreen nanoparticles: in-vitro assessment of a novel micronized zinc oxide formulation. Skin Pharmacol. Physiol. 20(3), 148–154 (2007) Cross, S.E., et al.: Human skin penetration of sunscreen nanoparticles: in-vitro assessment of a novel micronized zinc oxide formulation. Skin Pharmacol. Physiol. 20(3), 148–154 (2007)
63.
go back to reference Gratieri, T., et al.: Penetration of quantum dot particles through human skin. J. Biomed. Nanotechnol. 6(5), 586–595 (2010) Gratieri, T., et al.: Penetration of quantum dot particles through human skin. J. Biomed. Nanotechnol. 6(5), 586–595 (2010)
64.
go back to reference Alvarez-Roman, R., et al.: Skin penetration and distribution of polymeric nanoparticles. J. Control. Release 99(1), 53–62 (2004) Alvarez-Roman, R., et al.: Skin penetration and distribution of polymeric nanoparticles. J. Control. Release 99(1), 53–62 (2004)
65.
go back to reference Mortensen, L.J., et al.: In vivo skin penetration of quantum dot nanoparticles in the murine model: the effect of UVR. Nano Lett. 8(9), 2779–2787 (2008)ADS Mortensen, L.J., et al.: In vivo skin penetration of quantum dot nanoparticles in the murine model: the effect of UVR. Nano Lett. 8(9), 2779–2787 (2008)ADS
66.
go back to reference Ostrowski, A., et al.: Skin barrier disruptions in tape stripped and allergic dermatitis models have no effect on dermal penetration and systemic distribution of AHAPS-functionalized silica nanoparticles. Nanomedicine 10(7), 1571–1581 (2014) Ostrowski, A., et al.: Skin barrier disruptions in tape stripped and allergic dermatitis models have no effect on dermal penetration and systemic distribution of AHAPS-functionalized silica nanoparticles. Nanomedicine 10(7), 1571–1581 (2014)
67.
go back to reference Rouse, J.G., et al.: Effects of mechanical flexion on the penetration of fullerene amino acid-derivatized peptide nanoparticles through skin. Nano Lett. 7(1), 155–160 (2007)ADS Rouse, J.G., et al.: Effects of mechanical flexion on the penetration of fullerene amino acid-derivatized peptide nanoparticles through skin. Nano Lett. 7(1), 155–160 (2007)ADS
68.
go back to reference Gonzalez, S., et al.: Changing paradigms in dermatology: Confocal microscopy in clinical and surgical dermatology. Clin. Dermatol. 21(5), 359–369 (2003) Gonzalez, S., et al.: Changing paradigms in dermatology: Confocal microscopy in clinical and surgical dermatology. Clin. Dermatol. 21(5), 359–369 (2003)
69.
go back to reference Shahriari, N., et al.: In vivo reflectance confocal microscopy image interpretation for the dermatopathologist. J. Cutan. Pathol. 45(3), 187–197 (2018) Shahriari, N., et al.: In vivo reflectance confocal microscopy image interpretation for the dermatopathologist. J. Cutan. Pathol. 45(3), 187–197 (2018)
70.
go back to reference Summers, H.D., et al.: Statistical analysis of nanoparticle dosing in a dynamic cellular system. Nat. Nanotechnol. 6(3), 170–174 (2011)ADS Summers, H.D., et al.: Statistical analysis of nanoparticle dosing in a dynamic cellular system. Nat. Nanotechnol. 6(3), 170–174 (2011)ADS
71.
go back to reference Vranic, S., et al.: Deciphering the mechanisms of cellular uptake of engineered nanoparticles by accurate evaluation of internalization using imaging flow cytometry. Part. Fibre Toxicol. 10, 2 (2013) Vranic, S., et al.: Deciphering the mechanisms of cellular uptake of engineered nanoparticles by accurate evaluation of internalization using imaging flow cytometry. Part. Fibre Toxicol. 10, 2 (2013)
72.
go back to reference Gao, N.Y., et al.: Shape-dependent two-photon photoluminescence of single gold nanoparticles. J. Phys. Chem. B 118(25), 13904–13911 (2014) Gao, N.Y., et al.: Shape-dependent two-photon photoluminescence of single gold nanoparticles. J. Phys. Chem. B 118(25), 13904–13911 (2014)
73.
go back to reference Richter, T., et al.: Dead but highly dynamic—the stratum corneum is divided into three hydration zones. Skin Pharmacol. Physiol. 17(5), 246–257 (2004) Richter, T., et al.: Dead but highly dynamic—the stratum corneum is divided into three hydration zones. Skin Pharmacol. Physiol. 17(5), 246–257 (2004)
74.
go back to reference Rane, T.D., Armani, A.M.: Two-photon microscopy analysis of gold nanoparticle uptake in 3D cell spheroids. PLoS ONE 11(12), e0167548 (2016) Rane, T.D., Armani, A.M.: Two-photon microscopy analysis of gold nanoparticle uptake in 3D cell spheroids. PLoS ONE 11(12), e0167548 (2016)
75.
go back to reference Zhu, Y.J., et al.: Penetration of silver nanoparticles into porcine skin ex vivo using fluorescence lifetime imaging microscopy, Raman microscopy, and surface-enhanced Raman scattering microscopy. J. Biomed. Opt. 20(5), 051006 (2015)ADS Zhu, Y.J., et al.: Penetration of silver nanoparticles into porcine skin ex vivo using fluorescence lifetime imaging microscopy, Raman microscopy, and surface-enhanced Raman scattering microscopy. J. Biomed. Opt. 20(5), 051006 (2015)ADS
76.
go back to reference Li, K., Schneider, M.: Quantitative evaluation and visualization of size effect on cellular uptake of gold nanoparticles by multiphoton imaging-UV/Vis spectroscopic analysis. J. Biomed. Opt. 19(10), 101505 (2014)ADS Li, K., Schneider, M.: Quantitative evaluation and visualization of size effect on cellular uptake of gold nanoparticles by multiphoton imaging-UV/Vis spectroscopic analysis. J. Biomed. Opt. 19(10), 101505 (2014)ADS
77.
go back to reference Graf, B.W., et al.: In vivo imaging of immune cell dynamics in skin in response to zinc-oxide nanoparticle exposure. Biomed. Opt. Exp. 4(10), 1817–1828 (2013) Graf, B.W., et al.: In vivo imaging of immune cell dynamics in skin in response to zinc-oxide nanoparticle exposure. Biomed. Opt. Exp. 4(10), 1817–1828 (2013)
78.
go back to reference Basuki, J.S., et al.: Using fluorescence lifetime imaging microscopy to monitor theranostic nanoparticle uptake and intracellular doxorubicin release. ACS Nano 7(11), 10175–10189 (2013) Basuki, J.S., et al.: Using fluorescence lifetime imaging microscopy to monitor theranostic nanoparticle uptake and intracellular doxorubicin release. ACS Nano 7(11), 10175–10189 (2013)
79.
go back to reference Boreham, A., et al.: Exploiting fluorescence lifetime plasticity in FLIM: target molecule localization in cells and tissues. ACS Med. Chem. Lett. 2(10), 724–728 (2011) Boreham, A., et al.: Exploiting fluorescence lifetime plasticity in FLIM: target molecule localization in cells and tissues. ACS Med. Chem. Lett. 2(10), 724–728 (2011)
80.
go back to reference Roberts, M.S., et al.: Non-invasive imaging of skin physiology and percutaneous penetration using fluorescence spectral and lifetime imaging with multiphoton and confocal microscopy. Eur. J. Pharm. Biopharm. 77(3), 469–488 (2011) Roberts, M.S., et al.: Non-invasive imaging of skin physiology and percutaneous penetration using fluorescence spectral and lifetime imaging with multiphoton and confocal microscopy. Eur. J. Pharm. Biopharm. 77(3), 469–488 (2011)
81.
go back to reference Hanson, K.M., et al.: Two-photon fluorescence lifetime imaging of the skin stratum corneum pH gradient. Biophys. J. 83(3), 1682–1690 (2002)ADS Hanson, K.M., et al.: Two-photon fluorescence lifetime imaging of the skin stratum corneum pH gradient. Biophys. J. 83(3), 1682–1690 (2002)ADS
82.
go back to reference Hell, S.W.: Nanoscopy with focused light (Nobel Lecture). Angew. Chem. Int. Ed. 54(28), 8054–8066 (2015) Hell, S.W.: Nanoscopy with focused light (Nobel Lecture). Angew. Chem. Int. Ed. 54(28), 8054–8066 (2015)
83.
go back to reference Kamiyama, D., Huang, B.: Development in the STORM. Dev. Cell 23(6), 1103–1110 (2012) Kamiyama, D., Huang, B.: Development in the STORM. Dev. Cell 23(6), 1103–1110 (2012)
84.
go back to reference Betzig, E.: Single molecules, cells, and super-resolution optics (Nobel Lecture). Ang. Chem. Int. Ed. 54(28), 8034–8053 (2015) Betzig, E.: Single molecules, cells, and super-resolution optics (Nobel Lecture). Ang. Chem. Int. Ed. 54(28), 8034–8053 (2015)
85.
go back to reference Gustafsson, M.G.L.: Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc. Natl. Acad. Sci. U.S.A. 102(37), 13081–13086 (2005) Gustafsson, M.G.L.: Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc. Natl. Acad. Sci. U.S.A. 102(37), 13081–13086 (2005)
86.
go back to reference Schübbe, S., et al.: Size-dependent localization and quantitative evaluation of the intracellular migration of silica nanoparticles in Caco-2 cells. Chem. Mater. 24(5), 914–923 (2012) Schübbe, S., et al.: Size-dependent localization and quantitative evaluation of the intracellular migration of silica nanoparticles in Caco-2 cells. Chem. Mater. 24(5), 914–923 (2012)
87.
go back to reference Nedosekin, D.A., et al.: Photothermal confocal multicolor microscopy of nanoparticles and nanodrugs in live cells. Drug Metab. Rev. 47(3), 346–355 (2015) Nedosekin, D.A., et al.: Photothermal confocal multicolor microscopy of nanoparticles and nanodrugs in live cells. Drug Metab. Rev. 47(3), 346–355 (2015)
88.
go back to reference Vermeulen, P., Cognet, L., Lounis, B.: Photothermal microscopy: optical detection of small absorbers in scattering environments. J. Microsc. 254(3), 115–121 (2014) Vermeulen, P., Cognet, L., Lounis, B.: Photothermal microscopy: optical detection of small absorbers in scattering environments. J. Microsc. 254(3), 115–121 (2014)
89.
go back to reference Galanzha, E., Zharov, V.P.: Circulating tumor cell detection and capture by photoacoustic flow cytometry in vivo and ex vivo. Cancers 5(4), 1691–1738 (2013) Galanzha, E., Zharov, V.P.: Circulating tumor cell detection and capture by photoacoustic flow cytometry in vivo and ex vivo. Cancers 5(4), 1691–1738 (2013)
90.
go back to reference Nieves, D.J., et al.: Photothermal raster image correlation spectroscopy of gold nanoparticles in solution and on live cells. R. Soc. Open Sci. 2(6), 140454 (2015)ADS Nieves, D.J., et al.: Photothermal raster image correlation spectroscopy of gold nanoparticles in solution and on live cells. R. Soc. Open Sci. 2(6), 140454 (2015)ADS
91.
go back to reference Erni, R., et al.: Atomic-resolution imaging with a sub-50-pm electron probe. Phys. Rev. Lett. 102(9), 096101 (2009)ADS Erni, R., et al.: Atomic-resolution imaging with a sub-50-pm electron probe. Phys. Rev. Lett. 102(9), 096101 (2009)ADS
92.
go back to reference Jane, A.F., et al.: Ultrastructural analysis in preclinical safety evaluation. Toxicol. Pathol. 40(2), 391–402 (2012) Jane, A.F., et al.: Ultrastructural analysis in preclinical safety evaluation. Toxicol. Pathol. 40(2), 391–402 (2012)
93.
go back to reference Hoenger, A., McIntosh, J.R.: Probing the macromolecular organization of cells by electron tomography. Curr. Opin. Cell Biol. 21(1), 89–96 (2009) Hoenger, A., McIntosh, J.R.: Probing the macromolecular organization of cells by electron tomography. Curr. Opin. Cell Biol. 21(1), 89–96 (2009)
94.
go back to reference Leis, A., et al.: Visualizing cells at the nanoscale. Trends Biochem. Sci. 34(2), 60–70 (2009) Leis, A., et al.: Visualizing cells at the nanoscale. Trends Biochem. Sci. 34(2), 60–70 (2009)
95.
go back to reference Kourkoutis, L.F., Plitzko, J.M., Baumeister, W.: Electron microscopy of biological materials at the nanometer scale. Annu. Rev. Mater. Res. 42(1), 33–58 (2012)ADS Kourkoutis, L.F., Plitzko, J.M., Baumeister, W.: Electron microscopy of biological materials at the nanometer scale. Annu. Rev. Mater. Res. 42(1), 33–58 (2012)ADS
96.
go back to reference Pierson, J., et al.: Toward visualization of nanomachines in their native cellular environment. Histochem. Cell Biol. 132(3), 253–262 (2009) Pierson, J., et al.: Toward visualization of nanomachines in their native cellular environment. Histochem. Cell Biol. 132(3), 253–262 (2009)
97.
go back to reference Medalia, O., et al.: Macromolecular architecture in eukaryotic cells visualized by cryoelectron tomography. Science 298(5596), 1209–1213 (2002)ADS Medalia, O., et al.: Macromolecular architecture in eukaryotic cells visualized by cryoelectron tomography. Science 298(5596), 1209–1213 (2002)ADS
98.
go back to reference Fujimoto, K.: Freeze-fracture replica electron microscopy combined with SDS digestion for cytochemical labeling of integral membrane proteins. Application to the immunogold labeling of intercellular junctional complexes. J. Cell. Sci. 108(11), 3443–3449 (1995) Fujimoto, K.: Freeze-fracture replica electron microscopy combined with SDS digestion for cytochemical labeling of integral membrane proteins. Application to the immunogold labeling of intercellular junctional complexes. J. Cell. Sci. 108(11), 3443–3449 (1995)
99.
go back to reference Bushby, A.J., et al.: Imaging three-dimensional tissue architectures by focused ion beam scanning electron microscopy. Nat. Protoc. 6(6), 845–858 (2011) Bushby, A.J., et al.: Imaging three-dimensional tissue architectures by focused ion beam scanning electron microscopy. Nat. Protoc. 6(6), 845–858 (2011)
100.
go back to reference Gontier, E., et al.: Is there penetration of titania nanoparticles in sunscreens through skin? A comparative electron and ion microscopy study. Nanotoxicology 2(4), 218–231 (2008) Gontier, E., et al.: Is there penetration of titania nanoparticles in sunscreens through skin? A comparative electron and ion microscopy study. Nanotoxicology 2(4), 218–231 (2008)
101.
go back to reference Hubbs, A.F., et al.: Nanotoxicology-a pathologist’s perspective. Toxicol. Pathol. 39(2), 301–324 (2011) Hubbs, A.F., et al.: Nanotoxicology-a pathologist’s perspective. Toxicol. Pathol. 39(2), 301–324 (2011)
102.
go back to reference Adachi, K., et al.: In vivo effect of industrial titanium dioxide nanoparticles experimentally exposed to hairless rat skin. Nanotoxicology 4(3), 296–306 (2010) Adachi, K., et al.: In vivo effect of industrial titanium dioxide nanoparticles experimentally exposed to hairless rat skin. Nanotoxicology 4(3), 296–306 (2010)
103.
go back to reference Marquis, B.J., et al.: Analytical methods to assess nanoparticle toxicity. Analyst 134(3), 425–439 (2009)MathSciNetADS Marquis, B.J., et al.: Analytical methods to assess nanoparticle toxicity. Analyst 134(3), 425–439 (2009)MathSciNetADS
104.
go back to reference Kempen, P.J., et al.: A scanning transmission electron microscopy approach to analyzing large volumes of tissue to detect nanoparticles. Microsc. Microanal. 19(5), 1290–1297 (2013)ADS Kempen, P.J., et al.: A scanning transmission electron microscopy approach to analyzing large volumes of tissue to detect nanoparticles. Microsc. Microanal. 19(5), 1290–1297 (2013)ADS
105.
go back to reference Droste, M.S., et al.: Noninvasive measurement of cell volume changes by negative staining. J. Biomed. Opt. 10(6), 064017 (2005)ADS Droste, M.S., et al.: Noninvasive measurement of cell volume changes by negative staining. J. Biomed. Opt. 10(6), 064017 (2005)ADS
106.
go back to reference Richter, T., et al.: Pros and cons: cryo-electron microscopic evaluation of block faces versus cryo-sections from frozen-hydrated skin specimens prepared by different techniques. J. Microsc. Oxford 225(2), 201–207 (2007)MathSciNetADS Richter, T., et al.: Pros and cons: cryo-electron microscopic evaluation of block faces versus cryo-sections from frozen-hydrated skin specimens prepared by different techniques. J. Microsc. Oxford 225(2), 201–207 (2007)MathSciNetADS
107.
go back to reference Echlin, P.: Low-Temperature Microscopy and Analysis. Springer, Berlin (1992) Echlin, P.: Low-Temperature Microscopy and Analysis. Springer, Berlin (1992)
108.
go back to reference Lucas, M.S., Günthert, M., Gasser, P., Lucas, F., Wepf, R.: Bridging microscopes: 3D correlative light and scanning electron microscopy of complex biological structures. In: Müller-Reichert, T., Verkade, P. (eds.) Correlative Light and Electron Microscopy, pp. 325–356. Academic Press, Cambridge (2012) Lucas, M.S., Günthert, M., Gasser, P., Lucas, F., Wepf, R.: Bridging microscopes: 3D correlative light and scanning electron microscopy of complex biological structures. In: Müller-Reichert, T., Verkade, P. (eds.) Correlative Light and Electron Microscopy, pp. 325–356. Academic Press, Cambridge (2012)
109.
go back to reference McDonald, K.L.: A review of high-pressure freezing preparation techniques for correlative light and electron microscopy of the same cells and tissues. J. Microsc. 235(3), 273–281 (2009)MathSciNet McDonald, K.L.: A review of high-pressure freezing preparation techniques for correlative light and electron microscopy of the same cells and tissues. J. Microsc. 235(3), 273–281 (2009)MathSciNet
110.
go back to reference Webster, P., Schwarz, H., Griffiths, G.: Preparation of cells and tissues for immuno EM, Chap. 3. In: Methods Cell Biology, pp. 45–58. Academic Press, Amsterdam (2008) Webster, P., Schwarz, H., Griffiths, G.: Preparation of cells and tissues for immuno EM, Chap. 3. In: Methods Cell Biology, pp. 45–58. Academic Press, Amsterdam (2008)
111.
go back to reference Norlén, L.: Nanostructure of the stratum corneum extracellular lipid matrix as observed by cryo-electron microscopy of vitreous skin sections. Int. J. Cosmet. Sci. 29(5), 335–352 (2007) Norlén, L.: Nanostructure of the stratum corneum extracellular lipid matrix as observed by cryo-electron microscopy of vitreous skin sections. Int. J. Cosmet. Sci. 29(5), 335–352 (2007)
112.
go back to reference Asahina, S., Togashi, T., Terasaki, O., Takami, S., Adschiri, T., Shibata, M., Erdman, N.: High-resolution low-voltage scanning electron microscope study of nanostructured materials. Microsc. Anal. 26, S12–S14 (2012) Asahina, S., Togashi, T., Terasaki, O., Takami, S., Adschiri, T., Shibata, M., Erdman, N.: High-resolution low-voltage scanning electron microscope study of nanostructured materials. Microsc. Anal. 26, S12–S14 (2012)
113.
go back to reference Callaway, E.: The revolution will not be crystallized: a new method sweeps through structural biology. Nature 525(7568), 172–174 (2015)ADS Callaway, E.: The revolution will not be crystallized: a new method sweeps through structural biology. Nature 525(7568), 172–174 (2015)ADS
114.
go back to reference Engel, A., Dubochet, J., Kellenberger, E.: Some progress in the use of a scanning transmission electron microscope for the observation of biomacromolecules. J. Ultrastruct. Res. 57(3), 322–330 (1976) Engel, A., Dubochet, J., Kellenberger, E.: Some progress in the use of a scanning transmission electron microscope for the observation of biomacromolecules. J. Ultrastruct. Res. 57(3), 322–330 (1976)
115.
go back to reference Ohtsuki, M.: Observation of unstained biological macromolecules with STEM. Ultramicroscopy 5(3), 317–323 (1980) Ohtsuki, M.: Observation of unstained biological macromolecules with STEM. Ultramicroscopy 5(3), 317–323 (1980)
116.
go back to reference Colliex, C., Mory, C.: Scanning transmission electron microscopy of biological structures. Biol. Cell 80(2–3), 175–180 (1994) Colliex, C., Mory, C.: Scanning transmission electron microscopy of biological structures. Biol. Cell 80(2–3), 175–180 (1994)
117.
go back to reference Porter, A.E., et al.: Direct imaging of single-walled carbon nanotubes in cells. Nat. Nanotechnol. 2(11), 713–717 (2007)ADS Porter, A.E., et al.: Direct imaging of single-walled carbon nanotubes in cells. Nat. Nanotechnol. 2(11), 713–717 (2007)ADS
118.
go back to reference Uchida, M., et al.: Intracellular distribution of macrophage targeting ferritin-iron oxide nanocomposite. Adv. Mater. 21(4), 458–462 (2009)MathSciNet Uchida, M., et al.: Intracellular distribution of macrophage targeting ferritin-iron oxide nanocomposite. Adv. Mater. 21(4), 458–462 (2009)MathSciNet
119.
go back to reference Donald, A.M.: The use of environmental scanning electron microscopy for imaging wet and insulating materials. Nat. Mater. 2, 511–516 (2003)ADS Donald, A.M.: The use of environmental scanning electron microscopy for imaging wet and insulating materials. Nat. Mater. 2, 511–516 (2003)ADS
120.
go back to reference de Jonge, N., Ross, F.M.: Electron microscopy of specimens in liquid. Nat. Nanotechnol. 6, 695–704 (2011)ADS de Jonge, N., Ross, F.M.: Electron microscopy of specimens in liquid. Nat. Nanotechnol. 6, 695–704 (2011)ADS
121.
go back to reference Stokes, D.J.: Principles and practice of variable pressure/environmental scanning electron microscopy (VP-ESEM). Wiley, Chichester, West-Sussex (2008) Stokes, D.J.: Principles and practice of variable pressure/environmental scanning electron microscopy (VP-ESEM). Wiley, Chichester, West-Sussex (2008)
122.
go back to reference Kirk, S.E., Skepper, J.N., Donald, A.M.: Application of environmental scanning electron microscopy to determine biological surface structure. J. Microsc. 233(2), 205–224 (2009)MathSciNet Kirk, S.E., Skepper, J.N., Donald, A.M.: Application of environmental scanning electron microscopy to determine biological surface structure. J. Microsc. 233(2), 205–224 (2009)MathSciNet
123.
go back to reference Bogner, A., et al.: Wet STEM: a new development in environmental SEM for imaging nano-objects included in a liquid phase. Ultramicroscopy 104(3), 290–301 (2005) Bogner, A., et al.: Wet STEM: a new development in environmental SEM for imaging nano-objects included in a liquid phase. Ultramicroscopy 104(3), 290–301 (2005)
124.
go back to reference Williamson, M.J., et al.: Dynamic microscopy of nanoscale cluster growth at the solid–liquid interface. Nat. Mater. 2(8), 532–536 (2003)ADS Williamson, M.J., et al.: Dynamic microscopy of nanoscale cluster growth at the solid–liquid interface. Nat. Mater. 2(8), 532–536 (2003)ADS
125.
go back to reference de Jonge, N., et al.: Scanning transmission electron microscopy of biological specimens in water. Microsc. Microanal. 13(S02), 242–243 (2007) de Jonge, N., et al.: Scanning transmission electron microscopy of biological specimens in water. Microsc. Microanal. 13(S02), 242–243 (2007)
126.
go back to reference de Jonge, N., et al.: Electron microscopy of whole cells in liquid with nanometer resolution. Proc. Natl. Acad. Sci. 106(7), 2159–2164 (2009) de Jonge, N., et al.: Electron microscopy of whole cells in liquid with nanometer resolution. Proc. Natl. Acad. Sci. 106(7), 2159–2164 (2009)
127.
go back to reference Peckys, D.B., et al.: Nanoscale imaging of whole cells using a liquid enclosure and a scanning transmission electron microscope. PLoS ONE 4(12), e8214 (2009)ADS Peckys, D.B., et al.: Nanoscale imaging of whole cells using a liquid enclosure and a scanning transmission electron microscope. PLoS ONE 4(12), e8214 (2009)ADS
128.
go back to reference Le Trequesser, Q., et al.: Single cell in situ detection and quantification of metal oxide nanoparticles using multimodal correlative microscopy. Anal. Chem. 86(15), 7311–7319 (2014) Le Trequesser, Q., et al.: Single cell in situ detection and quantification of metal oxide nanoparticles using multimodal correlative microscopy. Anal. Chem. 86(15), 7311–7319 (2014)
129.
go back to reference Peckys, D.B., Bandmann, V., de Jonge, N.: Correlative fluorescence and scanning transmission electron microscopy of quantum dot-labeled proteins on whole cells in liquid. In: Müller-Reichert, T., Verkade, P. (eds.) Methods in Cell Biology, vol. 124, pp. 305–322. Academic Press, Cambridge (2014) Peckys, D.B., Bandmann, V., de Jonge, N.: Correlative fluorescence and scanning transmission electron microscopy of quantum dot-labeled proteins on whole cells in liquid. In: Müller-Reichert, T., Verkade, P. (eds.) Methods in Cell Biology, vol. 124, pp. 305–322. Academic Press, Cambridge (2014)
130.
go back to reference Liu, M.M., et al.: Real-time visualization of clustering and intracellular transport of gold nanoparticles by correlative imaging. Nat. Commun. 8, 15646 (2017)ADS Liu, M.M., et al.: Real-time visualization of clustering and intracellular transport of gold nanoparticles by correlative imaging. Nat. Commun. 8, 15646 (2017)ADS
131.
go back to reference Jahn, K.A., et al.: Correlative microscopy: providing new understanding in the biomedical and plant sciences. Micron 43(5), 565–582 (2012) Jahn, K.A., et al.: Correlative microscopy: providing new understanding in the biomedical and plant sciences. Micron 43(5), 565–582 (2012)
132.
go back to reference Lal, S., Link, S., Halas, N.J.: Nano-optics from sensing to waveguiding. Nat. Photon. 1(11), 641–648 (2007)ADS Lal, S., Link, S., Halas, N.J.: Nano-optics from sensing to waveguiding. Nat. Photon. 1(11), 641–648 (2007)ADS
133.
go back to reference Krafft, C., et al.: Label-free molecular imaging of biological cells and tissues by linear and nonlinear Raman spectroscopic approaches. Ang. Chem. Int. Ed. 56, 4392–4430 (2017) Krafft, C., et al.: Label-free molecular imaging of biological cells and tissues by linear and nonlinear Raman spectroscopic approaches. Ang. Chem. Int. Ed. 56, 4392–4430 (2017)
134.
go back to reference Zhang, G.J., et al.: Imaging the prodrug-to-drug transformation of a 5-fluorouracil derivative in skin by confocal Raman microscopy. J. Invest. Dermatol. 127(5), 1205–1209 (2007) Zhang, G.J., et al.: Imaging the prodrug-to-drug transformation of a 5-fluorouracil derivative in skin by confocal Raman microscopy. J. Invest. Dermatol. 127(5), 1205–1209 (2007)
135.
go back to reference Freudiger, C.W., et al.: Label-free biomedical imaging with high sensitivity by stimulated raman scattering microscopy. Science 322(5909), 1857–1861 (2008)ADS Freudiger, C.W., et al.: Label-free biomedical imaging with high sensitivity by stimulated raman scattering microscopy. Science 322(5909), 1857–1861 (2008)ADS
136.
go back to reference Klossek, A., et al.: Studies for improved understanding of lipid distributions in human skin by combining stimulated and spontaneous Raman microscopy. Eur. J. Pharm. Biopharm. 116(SI), 76–84 (2017) Klossek, A., et al.: Studies for improved understanding of lipid distributions in human skin by combining stimulated and spontaneous Raman microscopy. Eur. J. Pharm. Biopharm. 116(SI), 76–84 (2017)
137.
go back to reference Belsey, N.A., et al.: Evaluation of drug delivery to intact and porated skin by coherent Raman scattering and fluorescence microscopies. J. Control. Release, 174, 37–42 (2014) Belsey, N.A., et al.: Evaluation of drug delivery to intact and porated skin by coherent Raman scattering and fluorescence microscopies. J. Control. Release, 174, 37–42 (2014)
138.
go back to reference Saar, B.G., et al.: Imaging drug delivery to skin with stimulated Raman scattering microscopy. Mol. Pharm. 8(3), 969–975 (2011) Saar, B.G., et al.: Imaging drug delivery to skin with stimulated Raman scattering microscopy. Mol. Pharm. 8(3), 969–975 (2011)
139.
go back to reference Giulbudagian, M., et al.: Correlation between the chemical composition of thermoresponsive nanogels and their interaction with the skin barrier. J. Control. Release 243, 323–332 (2016) Giulbudagian, M., et al.: Correlation between the chemical composition of thermoresponsive nanogels and their interaction with the skin barrier. J. Control. Release 243, 323–332 (2016)
140.
go back to reference Zhang, C., Zhang, D.L., Cheng, J.X.: Coherent Raman scattering microscopy in biology and medicine. In: Yarmush, M.L. (ed.) Annual Review of Biomedical Engineering, vol. 17, pp. 415–445 (2015) Zhang, C., Zhang, D.L., Cheng, J.X.: Coherent Raman scattering microscopy in biology and medicine. In: Yarmush, M.L. (ed.) Annual Review of Biomedical Engineering, vol. 17, pp. 415–445 (2015)
141.
go back to reference Vo-Dinh, T., et al.: SERS nanosensors and nanoreporters: golden opportunities in biomedical applications. Wiley Interdiscip. Rev.-Nanomedicine Nanobiotechnology 7, 17–33 (2015) Vo-Dinh, T., et al.: SERS nanosensors and nanoreporters: golden opportunities in biomedical applications. Wiley Interdiscip. Rev.-Nanomedicine Nanobiotechnology 7, 17–33 (2015)
142.
go back to reference Li, Q., et al.: AFM-based force spectroscopy for bioimaging and biosensing. RSC Adv. 6(16), 12893–12912 (2016) Li, Q., et al.: AFM-based force spectroscopy for bioimaging and biosensing. RSC Adv. 6(16), 12893–12912 (2016)
143.
go back to reference Berweger, S., et al.: Nano-chemical infrared imaging of membrane proteins in lipid bilayers. J. Am. Chem. Soc. 135(49), 18292–18295 (2013) Berweger, S., et al.: Nano-chemical infrared imaging of membrane proteins in lipid bilayers. J. Am. Chem. Soc. 135(49), 18292–18295 (2013)
144.
go back to reference Hermann, P., et al.: Enhancing the sensitivity of nano-FTIR spectroscopy. Opt. Express 25(14), 16574–16588 (2017)ADS Hermann, P., et al.: Enhancing the sensitivity of nano-FTIR spectroscopy. Opt. Express 25(14), 16574–16588 (2017)ADS
145.
go back to reference Verma, P.: Tip-enhanced Raman spectroscopy: technique and recent advances. Chem. Rev. 117(9), 6447–6466 (2017) Verma, P.: Tip-enhanced Raman spectroscopy: technique and recent advances. Chem. Rev. 117(9), 6447–6466 (2017)
146.
go back to reference Dazzi, A., Prater, C.B.: AFM-IR: technology and applications in nanoscale infrared spectroscopy and chemical imaging. Chem. Rev. 117, 5146–5173 (2017) Dazzi, A., Prater, C.B.: AFM-IR: technology and applications in nanoscale infrared spectroscopy and chemical imaging. Chem. Rev. 117, 5146–5173 (2017)
147.
go back to reference Lawrence, J.R., et al.: Soft X-ray spectromicroscopy for speciation, quantitation and nano-eco-toxicology of nanomaterials. J. Microsc. 261, 130–147 (2016) Lawrence, J.R., et al.: Soft X-ray spectromicroscopy for speciation, quantitation and nano-eco-toxicology of nanomaterials. J. Microsc. 261, 130–147 (2016)
148.
go back to reference Karunakaran, C., et al.: Introduction of soft X-ray spectromicroscopy as an advanced technique for plant biopolymers research. PLoS ONE 10, e0122959 (2015) Karunakaran, C., et al.: Introduction of soft X-ray spectromicroscopy as an advanced technique for plant biopolymers research. PLoS ONE 10, e0122959 (2015)
149.
go back to reference Stöhr, J.: NEXAFS spectroscopy. In: Gomer, R. (ed.) Springer Series in Surface Science, vol. 25. Springer, Berlin (1992) Stöhr, J.: NEXAFS spectroscopy. In: Gomer, R. (ed.) Springer Series in Surface Science, vol. 25. Springer, Berlin (1992)
150.
go back to reference Schulz, R., et al.: Data-based modeling of drug penetration relates human skin barrier function to the interplay of diffusivity and free-energy profiles. Proc. Natl. Acad. Sci. U.S.A. 114(14), 3631–3636 (2017) Schulz, R., et al.: Data-based modeling of drug penetration relates human skin barrier function to the interplay of diffusivity and free-energy profiles. Proc. Natl. Acad. Sci. U.S.A. 114(14), 3631–3636 (2017)
151.
go back to reference Schneider, G., et al.: Three-dimensional cellular ultrastructure resolved by X-ray microscopy. Nat. Methods 7(12), 985–987 (2010) Schneider, G., et al.: Three-dimensional cellular ultrastructure resolved by X-ray microscopy. Nat. Methods 7(12), 985–987 (2010)
152.
go back to reference Graf, C., et al.: Qualitative detection of single submicron and nanoparticles in human skin by scanning transmission X-ray microscopy. J. Biomed. Opt. 14(2), 021015 (2009)ADS Graf, C., et al.: Qualitative detection of single submicron and nanoparticles in human skin by scanning transmission X-ray microscopy. J. Biomed. Opt. 14(2), 021015 (2009)ADS
153.
go back to reference Bos, J.D., Meinardi, M.: The 500 Dalton rule for the skin penetration of chemical compounds and drugs. Exp. Dermatol. 9(3), 165–169 (2000) Bos, J.D., Meinardi, M.: The 500 Dalton rule for the skin penetration of chemical compounds and drugs. Exp. Dermatol. 9(3), 165–169 (2000)
Metadata
Title
Imaging Techniques for Probing Nanoparticles in Cells and Skin
Authors
Christina Graf
Eckart Rühl
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-12461-8_9

Premium Partners