Skip to main content
Top
Published in: Computational Mechanics 2/2020

09-05-2020 | Original Paper

Impact and penetration dynamics of inkjet droplet within paper-like fibrous substrate by mesoscopic modeling

Authors: Lei Zhang, Li Liu, Jie Chen, Zhongshang Jin, Pengpeng Li

Published in: Computational Mechanics | Issue 2/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Droplet impact and penetration into the paper-like medium are essential physical phenomena in variety of natural and industrial processes. The lattice Boltzmann model coupled with random-walk-based stochastic scheme is presented to calculate the interactions between inertial dominated droplet and fibrous medium. Results show that the droplet spreading regime is independent of surface wettability, volume fraction, and Ohnesorge number at very early impact stage. For fibrous medium with volume fraction ~ 50% and wettability 85°, three stages of penetration process are observed. Whereas for low-volume-fraction fibrous medium, the phases of droplet spreading and penetration are coupled which results in a small spreading width for hydrophilic wettability. It is found that the spaces of spreading width and penetration rate are divided by the curve of \( Oh = 0.038 \) and \( Re = 144 \). The effects of Ohnesorge and Reynolds numbers largely influence the behaviors of droplet spreading and penetration process. The in-depth insight of inkjet droplet impact onto the paper-like fibrous medium is beneficial for improving printed products in Paper Electronics.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
2.
go back to reference Lin Y, Gritsenko D, Liu Q et al (2016) Recent advancements in functionalized paper-based electronics. Acs Appl Mater Interfaces 8:20501–20515CrossRef Lin Y, Gritsenko D, Liu Q et al (2016) Recent advancements in functionalized paper-based electronics. Acs Appl Mater Interfaces 8:20501–20515CrossRef
3.
go back to reference Mitra KY, Polomoshnov M, Martínez-Domingo C et al (2017) Fully inkjet-printed thin-film transistor array manufactured on paper substrate for cheap electronic applications. Adv Electron Mater 3:1700275CrossRef Mitra KY, Polomoshnov M, Martínez-Domingo C et al (2017) Fully inkjet-printed thin-film transistor array manufactured on paper substrate for cheap electronic applications. Adv Electron Mater 3:1700275CrossRef
4.
go back to reference Zhang Y, Wang Y, Cheng T et al (2015) Flexible supercapacitors based on paper substrates: a new paradigm for low-cost energy storage. Chem Soc Rev 44:5181–5199CrossRef Zhang Y, Wang Y, Cheng T et al (2015) Flexible supercapacitors based on paper substrates: a new paradigm for low-cost energy storage. Chem Soc Rev 44:5181–5199CrossRef
5.
go back to reference Vena A, Perret E, Tedjini S et al (2013) Design of chipless RFID tags printed on paper by flexography. IEEE Trans Antennas Propag 61:5868–5877CrossRef Vena A, Perret E, Tedjini S et al (2013) Design of chipless RFID tags printed on paper by flexography. IEEE Trans Antennas Propag 61:5868–5877CrossRef
6.
go back to reference Denesuk M, Smith GL, Zelinski BJJ et al (1993) Capillary penetration of liquid droplets into porous materials. J Colloid Interface Sci 158:114–120CrossRef Denesuk M, Smith GL, Zelinski BJJ et al (1993) Capillary penetration of liquid droplets into porous materials. J Colloid Interface Sci 158:114–120CrossRef
7.
go back to reference Clarke A, Blake TD, Carruthers K et al (2002) Spreading and imbibition of liquid droplets on porous surfaces. Langmuir 18:2980–2984CrossRef Clarke A, Blake TD, Carruthers K et al (2002) Spreading and imbibition of liquid droplets on porous surfaces. Langmuir 18:2980–2984CrossRef
8.
go back to reference Davis SH, Hocking LM (1999) Spreading and imbibition of viscous liquid on a porous base. Phys Fluids 11:48–57CrossRef Davis SH, Hocking LM (1999) Spreading and imbibition of viscous liquid on a porous base. Phys Fluids 11:48–57CrossRef
9.
go back to reference Davis SH, Hocking LM (2000) Spreading and imbibition of viscous liquid on a porous base. Phys Fluids 12:1646–1655CrossRef Davis SH, Hocking LM (2000) Spreading and imbibition of viscous liquid on a porous base. Phys Fluids 12:1646–1655CrossRef
10.
go back to reference Espín L, Kumar S (2015) Droplet spreading and absorption on rough, permeable substrates. J Fluid Mech 784:465–486MathSciNetCrossRef Espín L, Kumar S (2015) Droplet spreading and absorption on rough, permeable substrates. J Fluid Mech 784:465–486MathSciNetCrossRef
11.
go back to reference Modaressi H, Garnier G (2002) Mechanism of wetting and absorption of water droplets on sized paper: effects of chemical and physical heterogeneity. Langmuir 18:642–649CrossRef Modaressi H, Garnier G (2002) Mechanism of wetting and absorption of water droplets on sized paper: effects of chemical and physical heterogeneity. Langmuir 18:642–649CrossRef
12.
go back to reference Lee JB, Derome D, Carmeliet J (2016) Drop impact on natural porous stones. J Colloid Interface Sci 469:147–156CrossRef Lee JB, Derome D, Carmeliet J (2016) Drop impact on natural porous stones. J Colloid Interface Sci 469:147–156CrossRef
13.
go back to reference Lee JB, Radu AI, Vontobel P et al (2016) Absorption of impinging water droplet in porous stones. J Colloid Interface Sci 471:59–70CrossRef Lee JB, Radu AI, Vontobel P et al (2016) Absorption of impinging water droplet in porous stones. J Colloid Interface Sci 471:59–70CrossRef
14.
go back to reference Aslannejad H, Hassanizadeh SM (2017) Study of hydraulic properties of uncoated paper: image analysis and pore-scale modeling. Transp Porous Med 120:67–81MathSciNetCrossRef Aslannejad H, Hassanizadeh SM (2017) Study of hydraulic properties of uncoated paper: image analysis and pore-scale modeling. Transp Porous Med 120:67–81MathSciNetCrossRef
15.
go back to reference Alam P, Toivakka M, Backfolk K et al (2007) Impact spreading and absorption of Newtonian droplets on topographically irregular porous materials. Chem Eng Sci 62:3142–3158CrossRef Alam P, Toivakka M, Backfolk K et al (2007) Impact spreading and absorption of Newtonian droplets on topographically irregular porous materials. Chem Eng Sci 62:3142–3158CrossRef
16.
go back to reference Tan H (2017) Absorption of picoliter droplets by thin porous substrates. AIChE J 63:1690–1703CrossRef Tan H (2017) Absorption of picoliter droplets by thin porous substrates. AIChE J 63:1690–1703CrossRef
17.
go back to reference Choi M, Son G, Shim W (2017) A level-set method for droplet impact and penetration into a porous medium. Comput Fluids 145:153–166MathSciNetCrossRef Choi M, Son G, Shim W (2017) A level-set method for droplet impact and penetration into a porous medium. Comput Fluids 145:153–166MathSciNetCrossRef
18.
go back to reference Fu F, Li P, Wang K et al (2019) Numerical simulation of sessile droplet spreading and penetration on porous substrates. Langmuir 35:2917–2924CrossRef Fu F, Li P, Wang K et al (2019) Numerical simulation of sessile droplet spreading and penetration on porous substrates. Langmuir 35:2917–2924CrossRef
19.
go back to reference He Y, Liu Q, Li Q et al (2019) Lattice Boltzmann methods for single-phase and solid-liquid phase-change heat transfer in porous media: a review. Int J Heat Mass Transf 129:160–197CrossRef He Y, Liu Q, Li Q et al (2019) Lattice Boltzmann methods for single-phase and solid-liquid phase-change heat transfer in porous media: a review. Int J Heat Mass Transf 129:160–197CrossRef
20.
go back to reference Hyväluoma J, Raiskinmäki P, Jäsberg A et al (2006) Simulation of liquid penetration in paper. Phys Rev E 73:36705CrossRef Hyväluoma J, Raiskinmäki P, Jäsberg A et al (2006) Simulation of liquid penetration in paper. Phys Rev E 73:36705CrossRef
21.
go back to reference Kang H, Lourenço SDN, Yan WM (2018) Lattice Boltzmann simulation of droplet dynamics on granular surfaces with variable wettability. Phys Rev E 98:12902CrossRef Kang H, Lourenço SDN, Yan WM (2018) Lattice Boltzmann simulation of droplet dynamics on granular surfaces with variable wettability. Phys Rev E 98:12902CrossRef
22.
go back to reference Sadeghi R, Shadloo MS, Hopp-Hirschler M et al (2018) Three-dimensional lattice Boltzmann simulations of high density ratio two-phase flows in porous media. Comput Math Appl 75:2445–2465MathSciNetCrossRef Sadeghi R, Shadloo MS, Hopp-Hirschler M et al (2018) Three-dimensional lattice Boltzmann simulations of high density ratio two-phase flows in porous media. Comput Math Appl 75:2445–2465MathSciNetCrossRef
23.
go back to reference Shi Y, Tang GH, Lin HF et al (2019) Dynamics of droplet and liquid layer penetration in three-dimensional porous media: a lattice Boltzmann study. Phys Fluids 31:42106CrossRef Shi Y, Tang GH, Lin HF et al (2019) Dynamics of droplet and liquid layer penetration in three-dimensional porous media: a lattice Boltzmann study. Phys Fluids 31:42106CrossRef
24.
go back to reference Altendorf H, Jeulin D (2011) Random-walk-based stochastic modeling of three-dimensional fiber systems. Phys Rev E 83:41804CrossRef Altendorf H, Jeulin D (2011) Random-walk-based stochastic modeling of three-dimensional fiber systems. Phys Rev E 83:41804CrossRef
25.
go back to reference Lallemand P, Luo LS (2000) Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability. Phys Rev E 61:6546–6562MathSciNetCrossRef Lallemand P, Luo LS (2000) Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability. Phys Rev E 61:6546–6562MathSciNetCrossRef
26.
go back to reference Kupershtokh AL, Medvedev DA, Karpov DI (2009) On equations of state in a lattice Boltzmann method. Comput Math Appl 58:965–974MathSciNetCrossRef Kupershtokh AL, Medvedev DA, Karpov DI (2009) On equations of state in a lattice Boltzmann method. Comput Math Appl 58:965–974MathSciNetCrossRef
27.
go back to reference Martys NS, Chen H (1996) Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice Boltzmann method. Phys Rev E 53:743CrossRef Martys NS, Chen H (1996) Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice Boltzmann method. Phys Rev E 53:743CrossRef
29.
go back to reference Zhang L, Zhu Y, Cheng X (2017) Numerical investigation of multi-droplets deposited lines morphology with a multiple-relaxation-time lattice Boltzmann model. Chem Eng Sci 171:534–544CrossRef Zhang L, Zhu Y, Cheng X (2017) Numerical investigation of multi-droplets deposited lines morphology with a multiple-relaxation-time lattice Boltzmann model. Chem Eng Sci 171:534–544CrossRef
30.
go back to reference Zhang L, Cheng X, Ku T et al (2018) Lattice Boltzmann study of successive droplets impingement on the non-ideal recessed microchannel for high-resolution features. Int J Heat Mass Transf 120:1085–1100CrossRef Zhang L, Cheng X, Ku T et al (2018) Lattice Boltzmann study of successive droplets impingement on the non-ideal recessed microchannel for high-resolution features. Int J Heat Mass Transf 120:1085–1100CrossRef
31.
go back to reference Benzi R, Biferale L, Sbragaglia M et al (2006) Mesoscopic modeling of a two-phase flow in the presence of boundaries: the contact angle. Phys Rev E 74:21509MathSciNetCrossRef Benzi R, Biferale L, Sbragaglia M et al (2006) Mesoscopic modeling of a two-phase flow in the presence of boundaries: the contact angle. Phys Rev E 74:21509MathSciNetCrossRef
32.
go back to reference Li Q, Luo KH, Kang QJ et al (2014) Contact angles in the pseudopotential lattice Boltzmann modeling of wetting. Phys Rev E 90:53301CrossRef Li Q, Luo KH, Kang QJ et al (2014) Contact angles in the pseudopotential lattice Boltzmann modeling of wetting. Phys Rev E 90:53301CrossRef
33.
go back to reference Zhang L, Ku T, Cheng X et al (2018) Inkjet droplet deposition dynamics into square microcavities for OLEDs manufacturing. Microfluid Nanofluid 22:47CrossRef Zhang L, Ku T, Cheng X et al (2018) Inkjet droplet deposition dynamics into square microcavities for OLEDs manufacturing. Microfluid Nanofluid 22:47CrossRef
34.
go back to reference Dong H, Carr WW, Bucknall DG et al (2007) Temporally-resolved inkjet drop impaction on surfaces. AIChE J 53:2606–2617CrossRef Dong H, Carr WW, Bucknall DG et al (2007) Temporally-resolved inkjet drop impaction on surfaces. AIChE J 53:2606–2617CrossRef
35.
go back to reference Aslannejad H, Fathi H, Hassanizadeh SM et al (2018) Movement of a liquid droplet within a fibrous layer: direct pore-scale modeling and experimental observations. Chem Eng Sci 191:78–86CrossRef Aslannejad H, Fathi H, Hassanizadeh SM et al (2018) Movement of a liquid droplet within a fibrous layer: direct pore-scale modeling and experimental observations. Chem Eng Sci 191:78–86CrossRef
36.
go back to reference Rioboo R, Marengo M, Tropea C (2002) Time evolution of liquid drop impact onto solid, dry surfaces. Exp Fluids 33:112–124CrossRef Rioboo R, Marengo M, Tropea C (2002) Time evolution of liquid drop impact onto solid, dry surfaces. Exp Fluids 33:112–124CrossRef
37.
go back to reference Bird JC, Mandre S, Stone HA (2008) Short-time dynamics of partial wetting. Phys Rev Lett 100:234501CrossRef Bird JC, Mandre S, Stone HA (2008) Short-time dynamics of partial wetting. Phys Rev Lett 100:234501CrossRef
38.
go back to reference Winkels KG, Weijs JH, Eddi A et al (2012) Initial spreading of low-viscosity drops on partially wetting surfaces. Phys Rev E 85:55301CrossRef Winkels KG, Weijs JH, Eddi A et al (2012) Initial spreading of low-viscosity drops on partially wetting surfaces. Phys Rev E 85:55301CrossRef
39.
go back to reference Jian M, Wang C, Wang Q et al (2017) Advanced carbon materials for flexible and wearable sensors. Sci China Mater 60:1026–1062CrossRef Jian M, Wang C, Wang Q et al (2017) Advanced carbon materials for flexible and wearable sensors. Sci China Mater 60:1026–1062CrossRef
40.
go back to reference Li Q, Zhang L, Tao X et al (2017) Review of Flexible temperature sensing networks for wearable physiological monitoring. Adv Healthc Mater 6:1601371CrossRef Li Q, Zhang L, Tao X et al (2017) Review of Flexible temperature sensing networks for wearable physiological monitoring. Adv Healthc Mater 6:1601371CrossRef
Metadata
Title
Impact and penetration dynamics of inkjet droplet within paper-like fibrous substrate by mesoscopic modeling
Authors
Lei Zhang
Li Liu
Jie Chen
Zhongshang Jin
Pengpeng Li
Publication date
09-05-2020
Publisher
Springer Berlin Heidelberg
Published in
Computational Mechanics / Issue 2/2020
Print ISSN: 0178-7675
Electronic ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-020-01856-8

Other articles of this Issue 2/2020

Computational Mechanics 2/2020 Go to the issue