Skip to main content
Top

2021 | OriginalPaper | Chapter

Impact of Ambient Temperature on Electric Bus Energy Consumption in Cold Regions: Case Study of Meihekou City, China

Authors : Mingjie Hao, Jinhua Ji, Yiming Bie

Published in: Smart Transportation Systems 2021

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Electric buses are more environment-friendly due to their low noise and less air pollution. However, their electricity consumption on the route will change with operating conditions. According to field investigations, ambient temperature is one main contributing factor to energy consumption of an electric bus. When the temperature is very low, the energy consumption would increase significantly. The operational performance of the electric bus in cold regions should be examined carefully based on real world operation data. Thus, we choose Meihekou city, China which belongs to cold regions to collect ambient temperature and corresponding electricity consumption for six buses on a bus line. We gathered ambient temperature and corresponding electricity consumption of a trip in one day for six buses around a year to test the relationship between them. Pearson Correlation Coefficient is applied to verify the relevance of ambient temperature and electricity consumption. Results prove a negative correlation between them. After that, temperature and corresponding electricity consumption of the whole day for a year are studied. Ultimately, results illustrate electricity consumption variation is diverse during different seasons, and the largest electricity consumption is in winter. Results also show that when ambient temperature range drops from [−2, 3] to [−10, −2], change of electricity consumption is unstable and violent, which rises from 0.45 to 0.7 kWh/km. However, when ambient temperature ranges from −10 to −25.5 °C, the fluctuation of electricity consumption is small, which is dispersed between 0.6 and 0.7 kWh/km.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Wang, S., Zhang, W., Qu, X.: Trial-and-error train fare design scheme for addressing boarding/alighting congestion at CBD stations. Transp. Res. Part B 118, 318–335 (2018)CrossRef Wang, S., Zhang, W., Qu, X.: Trial-and-error train fare design scheme for addressing boarding/alighting congestion at CBD stations. Transp. Res. Part B 118, 318–335 (2018)CrossRef
2.
go back to reference Wang, S., Zhang, W., Bie, Y., Wang, K., Diabat, A.: Mixed-integer second-order cone programming model for bus route clustering problem. Transp. Res. Part C Emerg. Technol. 102, 351–369 (2019)CrossRef Wang, S., Zhang, W., Bie, Y., Wang, K., Diabat, A.: Mixed-integer second-order cone programming model for bus route clustering problem. Transp. Res. Part C Emerg. Technol. 102, 351–369 (2019)CrossRef
3.
go back to reference Bie, Y., Xiong, X., Yan, Y., Qu, X.: Dynamic headway control for high-frequency bus line based on speed guidance and intersection signal adjustment. Comput.-Aided Civ. Infrastruct. Eng. 35(1), 4–25 (2020)CrossRef Bie, Y., Xiong, X., Yan, Y., Qu, X.: Dynamic headway control for high-frequency bus line based on speed guidance and intersection signal adjustment. Comput.-Aided Civ. Infrastruct. Eng. 35(1), 4–25 (2020)CrossRef
4.
go back to reference Meng, Q., Qu, X.: Bus dwell time estimation at a bus bay: a probabilistic approach. Transp. Res. Part C 36, 61–71 (2013)CrossRef Meng, Q., Qu, X.: Bus dwell time estimation at a bus bay: a probabilistic approach. Transp. Res. Part C 36, 61–71 (2013)CrossRef
5.
go back to reference Gao, K., Yang, Y., Sun, L., Qu, X.: Revealing psychological inertia in mode shift behavior and its quantitative influences on commuting trips. Transp. Res. Part F Traffic Psychol. Behav. 71, 272–287 (2020)CrossRef Gao, K., Yang, Y., Sun, L., Qu, X.: Revealing psychological inertia in mode shift behavior and its quantitative influences on commuting trips. Transp. Res. Part F Traffic Psychol. Behav. 71, 272–287 (2020)CrossRef
6.
go back to reference Gao, K., Yang, Y., Li, A., Li, J., Yu, B.: Quantifying economic benefits from free-floating bike-sharing systems: a trip-level inference approach and city-scale analysis. Transp. Res. Part A Policy Pract. 144, 89–103 (2021)CrossRef Gao, K., Yang, Y., Li, A., Li, J., Yu, B.: Quantifying economic benefits from free-floating bike-sharing systems: a trip-level inference approach and city-scale analysis. Transp. Res. Part A Policy Pract. 144, 89–103 (2021)CrossRef
7.
go back to reference Xu, Y., Zheng, Y., Yang, Y.: On the movement simulations of electric vehicles: a behavioral model-based approach. Appl. Energy 283, 116356 (2021)CrossRef Xu, Y., Zheng, Y., Yang, Y.: On the movement simulations of electric vehicles: a behavioral model-based approach. Appl. Energy 283, 116356 (2021)CrossRef
9.
go back to reference Qu, X., Yu, Y., Zhou, M., Lin, C.T., Wang, X.: Jointly dampening traffic oscillations and improving energy consumption with electric, connected and automated vehicles: a reinforcement learning based approach. Appl. Energy 257, 114030 (2020)CrossRef Qu, X., Yu, Y., Zhou, M., Lin, C.T., Wang, X.: Jointly dampening traffic oscillations and improving energy consumption with electric, connected and automated vehicles: a reinforcement learning based approach. Appl. Energy 257, 114030 (2020)CrossRef
10.
go back to reference Al-Ogaili, A.S., Ramasamy, A., Hashim, T.J.T., Al-Masri, A.N., Hoon, Y., Jebur, M.N., Verayiah, R., Marsadek, M.: Estimation of the energy consumption of battery driven electric buses by integrating digital elevation and longitudinal dynamic models: Malaysia as a case study. Appl. Energy 280, 115873 (2020)CrossRef Al-Ogaili, A.S., Ramasamy, A., Hashim, T.J.T., Al-Masri, A.N., Hoon, Y., Jebur, M.N., Verayiah, R., Marsadek, M.: Estimation of the energy consumption of battery driven electric buses by integrating digital elevation and longitudinal dynamic models: Malaysia as a case study. Appl. Energy 280, 115873 (2020)CrossRef
11.
go back to reference Ma, X., Miao, R., Wu, X., Liu, X.: Examining influential factors on the energy consumption of electric and diesel buses: a data-driven analysis of large-scale public transit network in Beijing. Energy 216, 119196 (2021)CrossRef Ma, X., Miao, R., Wu, X., Liu, X.: Examining influential factors on the energy consumption of electric and diesel buses: a data-driven analysis of large-scale public transit network in Beijing. Energy 216, 119196 (2021)CrossRef
12.
go back to reference Mahmoud, M., Garnett, R., Ferguson, M., Kanaroglou, P.: Electric buses: a review of alternative powertrains. Renew. Sustain. Energy Rev. 62, 673–684 (2016)CrossRef Mahmoud, M., Garnett, R., Ferguson, M., Kanaroglou, P.: Electric buses: a review of alternative powertrains. Renew. Sustain. Energy Rev. 62, 673–684 (2016)CrossRef
13.
go back to reference Lajunen, A., Kivekäs, K., Baldi, F., Vepsäläinen, J., Tammi, K.: Different approaches to improve energy consumption of battery electric buses. In: 15th IEEE Vehicle Power and Propulsion Conference (VPPC), pp. 1–6. IEEE, Chicago, Illinois (2018) Lajunen, A., Kivekäs, K., Baldi, F., Vepsäläinen, J., Tammi, K.: Different approaches to improve energy consumption of battery electric buses. In: 15th IEEE Vehicle Power and Propulsion Conference (VPPC), pp. 1–6. IEEE, Chicago, Illinois (2018)
14.
go back to reference Xie, S., Hu, X., Xin, Z., Li, L.: Time-efficient stochastic model predictive energy management for a plug-in hybrid electric bus with an adaptive reference state-of-charge advisory. IEEE Trans. Veh. Technol. 67(7), 5671–5682 (2018)CrossRef Xie, S., Hu, X., Xin, Z., Li, L.: Time-efficient stochastic model predictive energy management for a plug-in hybrid electric bus with an adaptive reference state-of-charge advisory. IEEE Trans. Veh. Technol. 67(7), 5671–5682 (2018)CrossRef
15.
go back to reference He, X., Zhang, S., Ke, W., Zheng, Y., Zhou, B., Liang, X., Wu, Y.: Energy consumption and well-to-wheels air pollutant emissions of battery electric buses under complex operating conditions and implications on fleet electrification. J. Clean. Prod. 171, 714–722 (2018)CrossRef He, X., Zhang, S., Ke, W., Zheng, Y., Zhou, B., Liang, X., Wu, Y.: Energy consumption and well-to-wheels air pollutant emissions of battery electric buses under complex operating conditions and implications on fleet electrification. J. Clean. Prod. 171, 714–722 (2018)CrossRef
16.
go back to reference Shao, S., Guan, W., Bi, J.: Electric vehicle-routing problem with charging demands and energy consumption. IET Intell. Transp. Syst. 12(3), 202–212 (2017)CrossRef Shao, S., Guan, W., Bi, J.: Electric vehicle-routing problem with charging demands and energy consumption. IET Intell. Transp. Syst. 12(3), 202–212 (2017)CrossRef
17.
go back to reference Vepsäläinen, J., Kivekäs, K., Otto, K., Lajunen, A., Tammi, K.: Development and validation of energy demand uncertainty model for electric city buses. Transp. Res. Part D Transp. Environ. 63, 347–361 (2018)CrossRef Vepsäläinen, J., Kivekäs, K., Otto, K., Lajunen, A., Tammi, K.: Development and validation of energy demand uncertainty model for electric city buses. Transp. Res. Part D Transp. Environ. 63, 347–361 (2018)CrossRef
18.
go back to reference Huda, N., Kaleg, S., Hapid, A., Kurnia, M.R., Budiman, A.C.: The influence of the regenerative braking on the overall energy consumption of a converted electric vehicle. SN Appl. Sci. 2(4), 1–8 (2020)CrossRef Huda, N., Kaleg, S., Hapid, A., Kurnia, M.R., Budiman, A.C.: The influence of the regenerative braking on the overall energy consumption of a converted electric vehicle. SN Appl. Sci. 2(4), 1–8 (2020)CrossRef
20.
go back to reference Li, P., Zhang, Y., Zhang, K., Jiang, M.: The effects of dynamic traffic conditions, route characteristics and environmental conditions on trip-based electricity consumption prediction of electric bus. Energy 218, 119437 (2021)CrossRef Li, P., Zhang, Y., Zhang, K., Jiang, M.: The effects of dynamic traffic conditions, route characteristics and environmental conditions on trip-based electricity consumption prediction of electric bus. Energy 218, 119437 (2021)CrossRef
21.
go back to reference Pamua, T., Pamuła, W.: Estimation of the energy consumption of battery electric buses for public transport networks using real-world data and deep learning. Energies 13(9), 2340 (2020)CrossRef Pamua, T., Pamuła, W.: Estimation of the energy consumption of battery electric buses for public transport networks using real-world data and deep learning. Energies 13(9), 2340 (2020)CrossRef
22.
go back to reference Kivekäs, K., Vepsäläinen, J., Tammi, K.: Stochastic driving cycle synthesis for analyzing the energy consumption of a battery electric bus. IEEE Access 6, 55586–55598 (2018)CrossRef Kivekäs, K., Vepsäläinen, J., Tammi, K.: Stochastic driving cycle synthesis for analyzing the energy consumption of a battery electric bus. IEEE Access 6, 55586–55598 (2018)CrossRef
23.
go back to reference Lajunen, A.: Energy consumption and cost-benefit analysis of hybrid and electric city buses. Transp. Res. Part C Emerg. Technol. 38, 1–15 (2014)CrossRef Lajunen, A.: Energy consumption and cost-benefit analysis of hybrid and electric city buses. Transp. Res. Part C Emerg. Technol. 38, 1–15 (2014)CrossRef
24.
go back to reference Yi, Z., Smart, J., Shirk, M.: Energy impact evaluation for eco-routing and charging of autonomous electric vehicle fleet: ambient temperature consideration. Transp. Res. Part C Emerg. Technol. 89, 344–363 (2018)CrossRef Yi, Z., Smart, J., Shirk, M.: Energy impact evaluation for eco-routing and charging of autonomous electric vehicle fleet: ambient temperature consideration. Transp. Res. Part C Emerg. Technol. 89, 344–363 (2018)CrossRef
25.
go back to reference Iora, P., Tribioli, L.: Effect of ambient temperature on electric vehicles’ energy consumption and range: model definition and sensitivity analysis based on nissan leaf data. World Electr. Veh. J. 10(2), 1–15 (2019) Iora, P., Tribioli, L.: Effect of ambient temperature on electric vehicles’ energy consumption and range: model definition and sensitivity analysis based on nissan leaf data. World Electr. Veh. J. 10(2), 1–15 (2019)
26.
go back to reference Liu, K., Wang, J., Yamamoto, T., Morikawa, T.: Exploring the interactive effects of ambient temperature and vehicle auxiliary loads on electric vehicle energy consumption. Appl. Energy 227, 324–331 (2018)CrossRef Liu, K., Wang, J., Yamamoto, T., Morikawa, T.: Exploring the interactive effects of ambient temperature and vehicle auxiliary loads on electric vehicle energy consumption. Appl. Energy 227, 324–331 (2018)CrossRef
Metadata
Title
Impact of Ambient Temperature on Electric Bus Energy Consumption in Cold Regions: Case Study of Meihekou City, China
Authors
Mingjie Hao
Jinhua Ji
Yiming Bie
Copyright Year
2021
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-16-2324-0_10

Premium Partner