Skip to main content
Top

2020 | OriginalPaper | Chapter

7. Impact of Pretreatment Technologies for Biomass to Biofuel Production

Author : Sanjay Sahay

Published in: Substrate Analysis for Effective Biofuels Production

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Lignocellulose biomass (LCB) is a sustainable resource and raw materials for various products of human uses (fuel, adhesive, bioplastic, biopolymer, bionanomaterials, phenolics, etc.), biofuel being on the top. LCB however is a complex mass of three very different types of chemicals such as lignin, hemicelluloses, and cellulose. A pretreatment technique is applied to weaken or break the linkages between and within these three components. An ideal pretreatment technology to be used must ensure obtainment of three components from LCB in the purest form, at an affordable cost without concurrent production of any toxic by-products. For the last many decades, extensive works have been carried out with the objective to find out nearly an ideal pretreatment method. As a consequence, a number of pretreatment techniques have been reported that can be grouped into five major classes such as physical, physicochemical, chemical, biological, and nanoscale methods. They have their own pros and cons, and thus search for that ideal technique or improvising an existing one is still going on. In the following section, a critical assessment of the reported techniques under the above said categories and their impact on breaking of recalcitrance of LCB and in turn possible impact on 2G bioethanol technology is given.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Abbott AP, Capper G, Davies DL, Munro HL, Rasheed RK, Tambyrajah V (2001) Preparation of novel, moisture-stable, Lewis-acidic ionic liquids containing quaternary ammonium salts with functional side chains. Chem Commun 19:2010–2011CrossRef Abbott AP, Capper G, Davies DL, Munro HL, Rasheed RK, Tambyrajah V (2001) Preparation of novel, moisture-stable, Lewis-acidic ionic liquids containing quaternary ammonium salts with functional side chains. Chem Commun 19:2010–2011CrossRef
go back to reference Abe M, Fukaya Y, Ohno H (2010) Extraction of polysaccharides from bran with phosphonate or phosphinate-derived ionic liquids under short mixing time and low temperature. Green Chem 12:1274–1280CrossRef Abe M, Fukaya Y, Ohno H (2010) Extraction of polysaccharides from bran with phosphonate or phosphinate-derived ionic liquids under short mixing time and low temperature. Green Chem 12:1274–1280CrossRef
go back to reference Abe M, Yamada T, Ohno H (2014) Dissolution of wet wood biomass without heating. RSC Adv 4:17136–17140CrossRef Abe M, Yamada T, Ohno H (2014) Dissolution of wet wood biomass without heating. RSC Adv 4:17136–17140CrossRef
go back to reference An YX, Zong MH, Wu H, Li N (2015) Pretreatment of lignocellulosic biomass with renewable cholinium ionic liquids: biomass fractionation, enzymatic digestion and ionic liquid reuse. Bioresour Technol 192:165–171CrossRef An YX, Zong MH, Wu H, Li N (2015) Pretreatment of lignocellulosic biomass with renewable cholinium ionic liquids: biomass fractionation, enzymatic digestion and ionic liquid reuse. Bioresour Technol 192:165–171CrossRef
go back to reference Arnoul-Jarriault B, Lachenal D, Chirat C, Heux L (2015) Upgrading softwood bleached kraft pulp to dissolving pulp by cold caustic treatment and acid-hot caustic treatment. Ind Crop Prod 65:565–571CrossRef Arnoul-Jarriault B, Lachenal D, Chirat C, Heux L (2015) Upgrading softwood bleached kraft pulp to dissolving pulp by cold caustic treatment and acid-hot caustic treatment. Ind Crop Prod 65:565–571CrossRef
go back to reference Badger PC (2002) Ethanol from cellulose: a general review. In: Janick J, Whipkey A (eds) Trends in new crop and new uses. ASHS press, Alexandria, pp 17–21 Badger PC (2002) Ethanol from cellulose: a general review. In: Janick J, Whipkey A (eds) Trends in new crop and new uses. ASHS press, Alexandria, pp 17–21
go back to reference Bali G, Meng X, Deneff JI, Sun Q, Ragauskas AJ (2014) The effect of alkaline pretreatment methods on cellulose structure and accessibility. ChemSusChem 00:1–5 Bali G, Meng X, Deneff JI, Sun Q, Ragauskas AJ (2014) The effect of alkaline pretreatment methods on cellulose structure and accessibility. ChemSusChem 00:1–5
go back to reference Barakat A, Mayer C, Solhy A, Arancon RAD, De Vries H, Luque R, Barakat A, Mayer C, Solhy Arancon RAD, De Vries H (2014) Mechanical pretreatments of lignocellulosic biomass: towards facile and environmentally sound technologies for biofuels production. RSC Adv 4:48109–48127. https://doi.org/10.1039/C4RA07568DCrossRef Barakat A, Mayer C, Solhy A, Arancon RAD, De Vries H, Luque R, Barakat A, Mayer C, Solhy Arancon RAD, De Vries H (2014) Mechanical pretreatments of lignocellulosic biomass: towards facile and environmentally sound technologies for biofuels production. RSC Adv 4:48109–48127. https://​doi.​org/​10.​1039/​C4RA07568DCrossRef
go back to reference Benazzi T, Calgaroto S, Dalla Rosa C, Vladimir Oliveira J, Mazutti MA (2013) Hydrolysis of sugarcane bagasse using supercritical carbon dioxide to obtain fermentable sugars. J Chem Technol Biotechnol 88:1766–1768CrossRef Benazzi T, Calgaroto S, Dalla Rosa C, Vladimir Oliveira J, Mazutti MA (2013) Hydrolysis of sugarcane bagasse using supercritical carbon dioxide to obtain fermentable sugars. J Chem Technol Biotechnol 88:1766–1768CrossRef
go back to reference Ben-Ghedalia D, Miron J (1981) The effect of combined chemical and enzyme treatment on the saccharification and in vitro digestion rate of wheat straw. Biotechnol Bioeng 23:823–831CrossRef Ben-Ghedalia D, Miron J (1981) The effect of combined chemical and enzyme treatment on the saccharification and in vitro digestion rate of wheat straw. Biotechnol Bioeng 23:823–831CrossRef
go back to reference Ben-Ghedalia D, Shefet G (1983) Chemical treatments for increasing the digestibility of cotton straw. J Agric Sci 100:393–400CrossRef Ben-Ghedalia D, Shefet G (1983) Chemical treatments for increasing the digestibility of cotton straw. J Agric Sci 100:393–400CrossRef
go back to reference Bobleter O (1994) Hydrothermal degradation of polymers derived from plants. Prog Polym Sci 19(5):797–841CrossRef Bobleter O (1994) Hydrothermal degradation of polymers derived from plants. Prog Polym Sci 19(5):797–841CrossRef
go back to reference Borand MN, Karaosmanoglu F (2018) Effects of organosolv pretreatment conditions for lignocellulosic biomass in biorefinery applications: a review. J Renew Sust Energy 10:033104CrossRef Borand MN, Karaosmanoglu F (2018) Effects of organosolv pretreatment conditions for lignocellulosic biomass in biorefinery applications: a review. J Renew Sust Energy 10:033104CrossRef
go back to reference Brandt-Talbot A, Gschwend FJ, Fennell PS, Lammens TM, Tan B, Weale J et al (2017) An economically viable ionic liquid for the fractionation of lignocellulosic biomass. Green Chem 19:3078–3102CrossRef Brandt-Talbot A, Gschwend FJ, Fennell PS, Lammens TM, Tan B, Weale J et al (2017) An economically viable ionic liquid for the fractionation of lignocellulosic biomass. Green Chem 19:3078–3102CrossRef
go back to reference Brennan TCR, Datta S, Blanch HW, Simmons BA, Holmes BM (2010) Recovery of sugars from ionic liquid biomass liquor by solvent extraction. Bioenerg Res 3:123–133 Brennan TCR, Datta S, Blanch HW, Simmons BA, Holmes BM (2010) Recovery of sugars from ionic liquid biomass liquor by solvent extraction. Bioenerg Res 3:123–133
go back to reference Brown ME, Chang MC (2014) Exploring bacterial lignin degradation. Curr Opin Chem Biol 19:1–7CrossRef Brown ME, Chang MC (2014) Exploring bacterial lignin degradation. Curr Opin Chem Biol 19:1–7CrossRef
go back to reference Cai H, Li C, Wang A, Xu G, Zhang T (2012) Zeolite-promoted hydrolysis of cellulose in ionic liquid, insight into the mutual behavior of zeolite, cellulose and ionic liquid. Appl Catal B 123:333–338CrossRef Cai H, Li C, Wang A, Xu G, Zhang T (2012) Zeolite-promoted hydrolysis of cellulose in ionic liquid, insight into the mutual behavior of zeolite, cellulose and ionic liquid. Appl Catal B 123:333–338CrossRef
go back to reference Candido RG, Godoy GG, Gonçalves AR (2012) Study of Sugarcane bagasse pretreatment with sulfuric acid as a step of cellulose obtaining. World Acad Sci Eng Technol 61:101–105 Candido RG, Godoy GG, Gonçalves AR (2012) Study of Sugarcane bagasse pretreatment with sulfuric acid as a step of cellulose obtaining. World Acad Sci Eng Technol 61:101–105
go back to reference Carvalho DM, Olena Sevastyanova O, Queiroz JH, Colodette JL (2016) Cold alkaline extraction as a pretreatment for bioethanol production from eucalyptus, sugarcane bagasse and sugarcane straw. Energy Convers Manag 124:315–324CrossRef Carvalho DM, Olena Sevastyanova O, Queiroz JH, Colodette JL (2016) Cold alkaline extraction as a pretreatment for bioethanol production from eucalyptus, sugarcane bagasse and sugarcane straw. Energy Convers Manag 124:315–324CrossRef
go back to reference Chang VS, Burr B, Holtzapple MT (1997) Lime pretreatment of switchgrass. Appl Biochem Biotechnol 63–65:3–19CrossRef Chang VS, Burr B, Holtzapple MT (1997) Lime pretreatment of switchgrass. Appl Biochem Biotechnol 63–65:3–19CrossRef
go back to reference Chang VS, Nagwani M, Holtzapple MT (1998) Lime pretreatment of crop residues bagasse and wheat straw. Appl Biochem Biotechnol 74:135–159CrossRef Chang VS, Nagwani M, Holtzapple MT (1998) Lime pretreatment of crop residues bagasse and wheat straw. Appl Biochem Biotechnol 74:135–159CrossRef
go back to reference Chang VS, Nagwani M, Kim CH, Holtzapple MT (2001) Oxidative lime pretreatment of high-lignin biomass. Appl Biomass Biotechnol 94:1–28CrossRef Chang VS, Nagwani M, Kim CH, Holtzapple MT (2001) Oxidative lime pretreatment of high-lignin biomass. Appl Biomass Biotechnol 94:1–28CrossRef
go back to reference Chen SX, Yong Q, Xu Y, Zhu JJ, Yu SY (2009) Study on dilute-acid pretreatment of corn stalk. Chem Ind For Prod 29:27–32 Chen SX, Yong Q, Xu Y, Zhu JJ, Yu SY (2009) Study on dilute-acid pretreatment of corn stalk. Chem Ind For Prod 29:27–32
go back to reference Chen Y, Stevens MA, Zhu Y, Holmes J, Xu H (2013) Understanding of alkaline pretreatment parameters for corn stover enzymatic saccharification. Biotechnol Biofuels 6:8CrossRef Chen Y, Stevens MA, Zhu Y, Holmes J, Xu H (2013) Understanding of alkaline pretreatment parameters for corn stover enzymatic saccharification. Biotechnol Biofuels 6:8CrossRef
go back to reference Chen H, Liu J, Chang X, Chen D, Xue Y, Liu P et al (2017) A review on the pretreatment of lignocellulose for high-value chemicals. Fuel Process Technol 160:196–206CrossRef Chen H, Liu J, Chang X, Chen D, Xue Y, Liu P et al (2017) A review on the pretreatment of lignocellulose for high-value chemicals. Fuel Process Technol 160:196–206CrossRef
go back to reference Cheng F, Wang H, Chatel G, Gurau G, Rogers RD (2014) Facile pulping of lignocellulosic biomass using choline acetate. Bioresour Technol 164:394–401CrossRef Cheng F, Wang H, Chatel G, Gurau G, Rogers RD (2014) Facile pulping of lignocellulosic biomass using choline acetate. Bioresour Technol 164:394–401CrossRef
go back to reference Chidambaram M, Bell AT (2010) A two-step approach for the catalytic conversion of glucose to 2,5-dimethylfuran in ionic liquids. Green Chem 12(7):1253–1262CrossRef Chidambaram M, Bell AT (2010) A two-step approach for the catalytic conversion of glucose to 2,5-dimethylfuran in ionic liquids. Green Chem 12(7):1253–1262CrossRef
go back to reference Chou WT, Lai MY, Huang KS (2010) Method of recovering aqueous N-Methylmopholine-NOxide solution used in production of Lyocell fiber. US Patent no. 201102264271A Chou WT, Lai MY, Huang KS (2010) Method of recovering aqueous N-Methylmopholine-NOxide solution used in production of Lyocell fiber. US Patent no. 201102264271A
go back to reference Chum HL, Johnson DK, Black SK, Overend RP (1990) Pretreatment-catalyst effects and the combined severity parameter. Appl Biochem Biotechnol 24(25):1–14CrossRef Chum HL, Johnson DK, Black SK, Overend RP (1990) Pretreatment-catalyst effects and the combined severity parameter. Appl Biochem Biotechnol 24(25):1–14CrossRef
go back to reference Cruz AG, Scullin C, Mu C, Cheng G, Stavila V, Varanasi P, Xu D, Mentel J, Chuang YD, Simmons AB, Singh S (2013) Impact of high biomass loading on ionic liquid pretreatment. Biotechnol Biofuels 6:52CrossRef Cruz AG, Scullin C, Mu C, Cheng G, Stavila V, Varanasi P, Xu D, Mentel J, Chuang YD, Simmons AB, Singh S (2013) Impact of high biomass loading on ionic liquid pretreatment. Biotechnol Biofuels 6:52CrossRef
go back to reference da Silva LV, JBL S, Correa-guimarães A, Martín-Ramos P, Hernándeznavarro S, Sánchez-Bascones M, Navas-Gracia LM, Pérez-Lebeña E, Martín-Gil J (2016) Efficient microwave-assisted acid hydrolysis of lignocellulosic materials into total reducing sugars in ionic liquids. Cellul Chem Technol 50(7–8):761–770 da Silva LV, JBL S, Correa-guimarães A, Martín-Ramos P, Hernándeznavarro S, Sánchez-Bascones M, Navas-Gracia LM, Pérez-Lebeña E, Martín-Gil J (2016) Efficient microwave-assisted acid hydrolysis of lignocellulosic materials into total reducing sugars in ionic liquids. Cellul Chem Technol 50(7–8):761–770
go back to reference Dai Y, van Spronsen J, Witkamp G-J, Verpoorte R, Choi YH (2013) Natural deep eutectic solvents as new potential media for green technology. Anal Chim Acta 766:61–68CrossRef Dai Y, van Spronsen J, Witkamp G-J, Verpoorte R, Choi YH (2013) Natural deep eutectic solvents as new potential media for green technology. Anal Chim Acta 766:61–68CrossRef
go back to reference Demirbas A (2008) Products from lignocellulosic materials via degradation processes. Energ Sources A 30(1):27–37CrossRef Demirbas A (2008) Products from lignocellulosic materials via degradation processes. Energ Sources A 30(1):27–37CrossRef
go back to reference Doner LW, Hicks KB (1997) Isolation of hemicellulose from corn fiber by alkaline hydrogen peroxide extraction. Cereal Chem 74:176–181CrossRef Doner LW, Hicks KB (1997) Isolation of hemicellulose from corn fiber by alkaline hydrogen peroxide extraction. Cereal Chem 74:176–181CrossRef
go back to reference Du W, Yu H, Song L, Zhang J, Weng C, Ma F et al (2011) The promising effects of by-products from Irpex lacteus on subsequent enzymatic hydrolysis of bio-pretreated corn stalks. Biotechnol Biofuels 4:37CrossRef Du W, Yu H, Song L, Zhang J, Weng C, Ma F et al (2011) The promising effects of by-products from Irpex lacteus on subsequent enzymatic hydrolysis of bio-pretreated corn stalks. Biotechnol Biofuels 4:37CrossRef
go back to reference Duff SJB, Murrayh WD (1996) Bioconversion of forest products industry waste cellulosic to fuel ethanol: a review. Bioresour Technol 55:1–33CrossRef Duff SJB, Murrayh WD (1996) Bioconversion of forest products industry waste cellulosic to fuel ethanol: a review. Bioresour Technol 55:1–33CrossRef
go back to reference Ebringerová A, Hromadkova Z, Heinze TH (2005) Hemicellulose. Adv Polym Sci 128:1–68 Ebringerová A, Hromadkova Z, Heinze TH (2005) Hemicellulose. Adv Polym Sci 128:1–68
go back to reference Eda S, Ohnishi A, Kato K (1976) Xvlan isolated from the stalk of NicOliana labacul1l. Agric Biol Chem 40:359–364 Eda S, Ohnishi A, Kato K (1976) Xvlan isolated from the stalk of NicOliana labacul1l. Agric Biol Chem 40:359–364
go back to reference Eta V, Mikkola JP (2016) Deconstruction of nordic hardwood in switchable ionic liquids and acylation of the dissolved cellulose. Carbohydr Polym 136:459–465CrossRef Eta V, Mikkola JP (2016) Deconstruction of nordic hardwood in switchable ionic liquids and acylation of the dissolved cellulose. Carbohydr Polym 136:459–465CrossRef
go back to reference Fan LL, Zhang YN, Liu SY, Zhou N, Chen P, Cheng YL, Addy M, Lu Q, Omar MM, Liu YH et al (2017) Bio-oil from fast pyrolysis of lignin: effects of process and upgrading parameters. Bioresour Technol 241:1118–1126CrossRef Fan LL, Zhang YN, Liu SY, Zhou N, Chen P, Cheng YL, Addy M, Lu Q, Omar MM, Liu YH et al (2017) Bio-oil from fast pyrolysis of lignin: effects of process and upgrading parameters. Bioresour Technol 241:1118–1126CrossRef
go back to reference Farhat W, Venditti RA, Hubbe M, Taha M, Becquart F, Ayoub A (2017) A review of water-resistant hemicellulose-based materials: processing and applications. ChemSusChem 10:305–323CrossRef Farhat W, Venditti RA, Hubbe M, Taha M, Becquart F, Ayoub A (2017) A review of water-resistant hemicellulose-based materials: processing and applications. ChemSusChem 10:305–323CrossRef
go back to reference Faulon J, Carlson GA et al (1994) A three-dimensional model for lignocellulose from gymnospermous wood. Org Geochem 21:1169–1179CrossRef Faulon J, Carlson GA et al (1994) A three-dimensional model for lignocellulose from gymnospermous wood. Org Geochem 21:1169–1179CrossRef
go back to reference Foston M, Ragauskas AJ (2010) Changes in lignocellulosic supramolecular and ultrastructure during dilute acid pretreatment of populus and switchgrass. Biomass Bioenergy 34(12):1885–1895CrossRef Foston M, Ragauskas AJ (2010) Changes in lignocellulosic supramolecular and ultrastructure during dilute acid pretreatment of populus and switchgrass. Biomass Bioenergy 34(12):1885–1895CrossRef
go back to reference Froschauer C, Hummel M, Iakovlev M, Roselli A, Schottenberger H, Sixta H (2013) Separation of hemicellulose and cellulose from wood pulp by means of ionic liquid/cosolvent systems. Biomacromolecules 14:1741–1750CrossRef Froschauer C, Hummel M, Iakovlev M, Roselli A, Schottenberger H, Sixta H (2013) Separation of hemicellulose and cellulose from wood pulp by means of ionic liquid/cosolvent systems. Biomacromolecules 14:1741–1750CrossRef
go back to reference Gabhane J, Prince William SPM, Vaidya AN, Mahapatra K, Chakrabarti T (2011) Influence of heating source on the efficacy of lignocellulosic pretreatment—a cellulosic ethanol perspective. Biomass Bioenergy 35:96–102CrossRef Gabhane J, Prince William SPM, Vaidya AN, Mahapatra K, Chakrabarti T (2011) Influence of heating source on the efficacy of lignocellulosic pretreatment—a cellulosic ethanol perspective. Biomass Bioenergy 35:96–102CrossRef
go back to reference Galia A, Schiavo B, Antonetti C, Galletti AMR, Interrante L, Lessi M, Scialdone O, Valenti MG (2015) Autohydrolysis pretreatment of Arundo donax: a comparison between microwave-assisted batch and fast heating rate flow-through reaction systems. Biotechnol Biofuels 8:218. https://doi.org/10.1186/s13068-015-0398-5CrossRef Galia A, Schiavo B, Antonetti C, Galletti AMR, Interrante L, Lessi M, Scialdone O, Valenti MG (2015) Autohydrolysis pretreatment of Arundo donax: a comparison between microwave-assisted batch and fast heating rate flow-through reaction systems. Biotechnol Biofuels 8:218. https://​doi.​org/​10.​1186/​s13068-015-0398-5CrossRef
go back to reference George A, Brandt A, Tran K, Zahari SMSNS, Klein-Marcuschamer D, Sun N, Sathitsuksanoh N, Shi J, Stavila V, Parthasarathi R et al (2015) Design of low-cost ionic liquids for lignocellulosic biomass pretreatment. Green Chem 17:1728–1734CrossRef George A, Brandt A, Tran K, Zahari SMSNS, Klein-Marcuschamer D, Sun N, Sathitsuksanoh N, Shi J, Stavila V, Parthasarathi R et al (2015) Design of low-cost ionic liquids for lignocellulosic biomass pretreatment. Green Chem 17:1728–1734CrossRef
go back to reference Gruppen H, Hamer RJ, Voragen AGJ (1992) Water-unextractable cell wall material from wheat flour. 2. Fractionation of alkali-extracted polymers and comparison with water extractable arabinoxylans. J Cereal Sci 16:53–67CrossRef Gruppen H, Hamer RJ, Voragen AGJ (1992) Water-unextractable cell wall material from wheat flour. 2. Fractionation of alkali-extracted polymers and comparison with water extractable arabinoxylans. J Cereal Sci 16:53–67CrossRef
go back to reference Gupta R, Lee YY (2010) Investigation of biomass degradation mechanism in pretreatment of switchgrass by aqueous ammonia and sodium hydroxide. Bioresour Technol 101:8185–8191CrossRef Gupta R, Lee YY (2010) Investigation of biomass degradation mechanism in pretreatment of switchgrass by aqueous ammonia and sodium hydroxide. Bioresour Technol 101:8185–8191CrossRef
go back to reference Hallett JP, Welton T (2011) Room-temperature ionic liquids: solvents for synthesis and catalysis. Chem Rev 111(5):3508–3576CrossRef Hallett JP, Welton T (2011) Room-temperature ionic liquids: solvents for synthesis and catalysis. Chem Rev 111(5):3508–3576CrossRef
go back to reference Hammel KE, Cullen D (2008) Role of fungal peroxidases in biological ligninolysis. Curr Opin Plant Biol 11:349–355CrossRef Hammel KE, Cullen D (2008) Role of fungal peroxidases in biological ligninolysis. Curr Opin Plant Biol 11:349–355CrossRef
go back to reference Hammond OS, Bowron DT, Edler KJ (2016) Liquid structure of the choline chloride-urea deep eutectic solvent (reline) from neutron diffraction and atomistic modelling. Green Chem 18(9):2736–2744CrossRef Hammond OS, Bowron DT, Edler KJ (2016) Liquid structure of the choline chloride-urea deep eutectic solvent (reline) from neutron diffraction and atomistic modelling. Green Chem 18(9):2736–2744CrossRef
go back to reference Harmsen PFH, Huijgen WJJ, Lopez Bermudez LM, Bakkar RRC (2010) Literature review of physical and chemical pretreatment processes for Lignocellulosic Biomass. ECN BioSynergy, Food and bio-based research Wageningien. Harmsen PFH, Huijgen WJJ, Lopez Bermudez LM, Bakkar RRC (2010) Literature review of physical and chemical pretreatment processes for Lignocellulosic Biomass. ECN BioSynergy, Food and bio-based research Wageningien.
go back to reference He L, Huang H, Zhang Z, Lei Z (2016) A review of hydrothermal pretreatment of lignocellulosic biomass for enhanced biogas production. Curr Org Chem 19:437–446CrossRef He L, Huang H, Zhang Z, Lei Z (2016) A review of hydrothermal pretreatment of lignocellulosic biomass for enhanced biogas production. Curr Org Chem 19:437–446CrossRef
go back to reference Heredia-Olea H, P’erez-Carrillo E, Serna-Saldívar SO (2012) Effects of different acid hydrolyses on the conversion of sweet sorghum bagasse into C5 and C6 sugars and yeast inhibitors using response surface methodology. Bioresour Technol 119:216–223CrossRef Heredia-Olea H, P’erez-Carrillo E, Serna-Saldívar SO (2012) Effects of different acid hydrolyses on the conversion of sweet sorghum bagasse into C5 and C6 sugars and yeast inhibitors using response surface methodology. Bioresour Technol 119:216–223CrossRef
go back to reference Heredia-Olea E, Pérez-Carrillo E, Montoya-Chiw M, Serna-Saldívar SO (2015) Effects of extrusion pretreatment parameters on sweet sorghum bagasse enzymatic hydrolysis and its subsequent conversion into bioethanol. Biomed Res Int: 325905. https://doi.org/10.1155/2015/325905 Heredia-Olea E, Pérez-Carrillo E, Montoya-Chiw M, Serna-Saldívar SO (2015) Effects of extrusion pretreatment parameters on sweet sorghum bagasse enzymatic hydrolysis and its subsequent conversion into bioethanol. Biomed Res Int: 325905. https://​doi.​org/​10.​1155/​2015/​325905
go back to reference Hideno A, Kawashima A, Endo T, Honda K, Morita M (2013) Ethanol-based organosolv treatment with trace hydrochloric acid improves the enzymatic digestibility of Japanese cypress (Chamaecyparis obtusa) by exposing nanofibers onthe surface. Bioresour Technol 132:64–70CrossRef Hideno A, Kawashima A, Endo T, Honda K, Morita M (2013) Ethanol-based organosolv treatment with trace hydrochloric acid improves the enzymatic digestibility of Japanese cypress (Chamaecyparis obtusa) by exposing nanofibers onthe surface. Bioresour Technol 132:64–70CrossRef
go back to reference Hong H, Xue G, Weng L, Guo X (2012) Pretreatment of moso bamboo with dilute phosphoric acid. Bioresources 7(4):4902–4913CrossRef Hong H, Xue G, Weng L, Guo X (2012) Pretreatment of moso bamboo with dilute phosphoric acid. Bioresources 7(4):4902–4913CrossRef
go back to reference Hongdan Z, Shaohua X, Shubin W (2013) Enhancement of enzymatic saccharification of sugarcane bagasse by liquid hot water pretreatment. Bioresour Technol 143:391–396CrossRef Hongdan Z, Shaohua X, Shubin W (2013) Enhancement of enzymatic saccharification of sugarcane bagasse by liquid hot water pretreatment. Bioresour Technol 143:391–396CrossRef
go back to reference Hou XD, Smith TJ, Li N, Zong M-H (2012) Novel renewable ionic liquids as highly effective solvents for pretreatment of rice straw biomass by selective removal of lignin. Biotechnol Bioeng 109(10):2484–2493CrossRef Hou XD, Smith TJ, Li N, Zong M-H (2012) Novel renewable ionic liquids as highly effective solvents for pretreatment of rice straw biomass by selective removal of lignin. Biotechnol Bioeng 109(10):2484–2493CrossRef
go back to reference Hou XD, Li N, Zong MH (2013) Facile and simple pretreatment of sugar cane bagasse without size reduction using renewable ionic liquids-water mixtures. ACS Sustain Chem Eng 1(5):519–526CrossRef Hou XD, Li N, Zong MH (2013) Facile and simple pretreatment of sugar cane bagasse without size reduction using renewable ionic liquids-water mixtures. ACS Sustain Chem Eng 1(5):519–526CrossRef
go back to reference Hsu T-A (1996) Pretreatment of biomass. In: Wyman CE (ed) Handbook on bioethanol, production and utilization. Taylor & Francis, Washington, DC, pp 179–212 Hsu T-A (1996) Pretreatment of biomass. In: Wyman CE (ed) Handbook on bioethanol, production and utilization. Taylor & Francis, Washington, DC, pp 179–212
go back to reference Imman S, Laosiripojana N, Champreda V (2018) Effects of liquid hot water pretreatment on enzymatic hydrolysis and physicochemical changes of corncobs. Appl Biochem Biotechnol 184:432–443CrossRef Imman S, Laosiripojana N, Champreda V (2018) Effects of liquid hot water pretreatment on enzymatic hydrolysis and physicochemical changes of corncobs. Appl Biochem Biotechnol 184:432–443CrossRef
go back to reference Ingle AP, Chandel AK, Antunes FAF, Rai M, da Silva SS (2019) New trends in application of nanotechnology for the pretreatment of lignocellulosic biomass. Biofuels Bioprod Biorefin 13:776–788CrossRef Ingle AP, Chandel AK, Antunes FAF, Rai M, da Silva SS (2019) New trends in application of nanotechnology for the pretreatment of lignocellulosic biomass. Biofuels Bioprod Biorefin 13:776–788CrossRef
go back to reference Irmak S, Meryemoglu B, Sandip A, Subbiah J, Mitchell RB, Sarath G (2018) Microwave pretreatment effects on switchgrass and miscanthus solubilization in subcritical water and hydrolysate utilization for hydrogen production. Biomass Bioenergy 108:48–54CrossRef Irmak S, Meryemoglu B, Sandip A, Subbiah J, Mitchell RB, Sarath G (2018) Microwave pretreatment effects on switchgrass and miscanthus solubilization in subcritical water and hydrolysate utilization for hydrogen production. Biomass Bioenergy 108:48–54CrossRef
go back to reference Isikgor FH, Becer CR (2015) Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym Chem 2015(6):4497–4559CrossRef Isikgor FH, Becer CR (2015) Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym Chem 2015(6):4497–4559CrossRef
go back to reference Iyer V, Wu ZW, Kim SB, Lee YY (1996) Ammonia recycled percolation process for pretreatment of herbaceous biomass. Appl Biochem Biotechnol 57/58:121–132CrossRef Iyer V, Wu ZW, Kim SB, Lee YY (1996) Ammonia recycled percolation process for pretreatment of herbaceous biomass. Appl Biochem Biotechnol 57/58:121–132CrossRef
go back to reference Jain P, Rana RS, Sahay S (2013) Evaluation of a minimal energy-dependent technique for preparation of Ailanthus excelsa hemicellulose acid hydrolysate fermentable by Schefferomyces stipitis. J Biofuels 3:103–111CrossRef Jain P, Rana RS, Sahay S (2013) Evaluation of a minimal energy-dependent technique for preparation of Ailanthus excelsa hemicellulose acid hydrolysate fermentable by Schefferomyces stipitis. J Biofuels 3:103–111CrossRef
go back to reference Ji S, Lee I (2013) Impact of cationic polyelectrolyte on the nanoshear hybrid alkaline pretreatment of corn stover: morphology and saccharification study. Bioresour Technol 133:45–50CrossRef Ji S, Lee I (2013) Impact of cationic polyelectrolyte on the nanoshear hybrid alkaline pretreatment of corn stover: morphology and saccharification study. Bioresour Technol 133:45–50CrossRef
go back to reference Kaar WE, Holtzapple MT (2000) Using lime pretreatment to facilitate the enzymic hydrolysis of corn stover. Biomass Bioenergy 18(3):189–199CrossRef Kaar WE, Holtzapple MT (2000) Using lime pretreatment to facilitate the enzymic hydrolysis of corn stover. Biomass Bioenergy 18(3):189–199CrossRef
go back to reference Kazi FK, Fortman J, Anex R et al (2010) Techno-economic analysis of biochemical scenarios for production of cellulosic ethanol. Tech. Rep. NREL/TP-6A2–46588, NREL Kazi FK, Fortman J, Anex R et al (2010) Techno-economic analysis of biochemical scenarios for production of cellulosic ethanol. Tech. Rep. NREL/TP-6A2–46588, NREL
go back to reference Khodaverdi M, Jeihanipour A, Karimi K, Taherzadeh MJ (2012) Kinetic modeling of rapid enzymatic hydrolysis of crystalline cellulose after pretreatment by NMMO. J Ind Microbiol Biotechnol 39:429–438CrossRef Khodaverdi M, Jeihanipour A, Karimi K, Taherzadeh MJ (2012) Kinetic modeling of rapid enzymatic hydrolysis of crystalline cellulose after pretreatment by NMMO. J Ind Microbiol Biotechnol 39:429–438CrossRef
go back to reference Kim S, Holtzapple MT (2006) Effect of structural features on enzyme digestibility of corn stover. Bioresour Technol 97:583–591CrossRef Kim S, Holtzapple MT (2006) Effect of structural features on enzyme digestibility of corn stover. Bioresour Technol 97:583–591CrossRef
go back to reference Kim HJ, Lee S, Kim J, Mitchell RJ, Lee JH (2013) Environmentally friendly pretreatment of plant biomass by planetary and attrition milling. Bioresour Technol 144:50–56CrossRef Kim HJ, Lee S, Kim J, Mitchell RJ, Lee JH (2013) Environmentally friendly pretreatment of plant biomass by planetary and attrition milling. Bioresour Technol 144:50–56CrossRef
go back to reference Kirk-Othmer (2001) In: Kirk-Othmer (ed) Encyclopedia of chemical technology, 4th edn. Wiley Publishing, New York Kirk-Othmer (2001) In: Kirk-Othmer (ed) Encyclopedia of chemical technology, 4th edn. Wiley Publishing, New York
go back to reference Kormelink FJM, Voragen AG (1993) Degradation of different [(glucurono)arabin’;]xylans by a combination of purified xylan-degrading enzymes. Appl Microbiol Biotechnol 38:688695CrossRef Kormelink FJM, Voragen AG (1993) Degradation of different [(glucurono)arabin’;]xylans by a combination of purified xylan-degrading enzymes. Appl Microbiol Biotechnol 38:688695CrossRef
go back to reference Koutsianitis D, Mitani C, Giagli K, Tsalagkas D, Halász K, Kolonics O et al (2015) Properties of ultrasound extracted bicomponent lignocelluloses thin films. Ultrason Sonochem 23:148–155CrossRef Koutsianitis D, Mitani C, Giagli K, Tsalagkas D, Halász K, Kolonics O et al (2015) Properties of ultrasound extracted bicomponent lignocelluloses thin films. Ultrason Sonochem 23:148–155CrossRef
go back to reference Krassig H, Schurz J (2002) Ullmann’s Encyclopedia of industrial chemistry, Sixth edn. Wiley-VCH, Weinheim Krassig H, Schurz J (2002) Ullmann’s Encyclopedia of industrial chemistry, Sixth edn. Wiley-VCH, Weinheim
go back to reference Kumar AK, Sharma S (2017) Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresour Bioprocess 4:7CrossRef Kumar AK, Sharma S (2017) Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresour Bioprocess 4:7CrossRef
go back to reference Kumar R, Mago G, Balan V, Wyman CE (2009) Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies. Bioresour Technol 100(17):3948–3962CrossRef Kumar R, Mago G, Balan V, Wyman CE (2009) Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies. Bioresour Technol 100(17):3948–3962CrossRef
go back to reference Kuo CH, Lee CK (2009) Enhanced enzymatic hydrolysis of sugarcane bagasse by Nmethylmorpholine-N-oxide pretreatment. Bioresour Technol 100(2):866–871CrossRef Kuo CH, Lee CK (2009) Enhanced enzymatic hydrolysis of sugarcane bagasse by Nmethylmorpholine-N-oxide pretreatment. Bioresour Technol 100(2):866–871CrossRef
go back to reference Lai YZ (1991) In wood and cellulose chemistry. In: DNS H, Shiraishi N (eds) Chemical degradation, 2nd edn. Marcel Dekker Inc, New York, pp 455–473 Lai YZ (1991) In wood and cellulose chemistry. In: DNS H, Shiraishi N (eds) Chemical degradation, 2nd edn. Marcel Dekker Inc, New York, pp 455–473
go back to reference Lee JW, Jeffries TW (2011) Efficiencies of acid catalysts in the hydrolysis of lignocellulosic biomass over a range of combined severity factors. Bioresour Technol 102(10):5884–5890CrossRef Lee JW, Jeffries TW (2011) Efficiencies of acid catalysts in the hydrolysis of lignocellulosic biomass over a range of combined severity factors. Bioresour Technol 102(10):5884–5890CrossRef
go back to reference Lee YY, Iyer P, Torget RW (1999) Dilute-acid hydrolysis of lignocellulosic biomass. Adv Biochem Eng Biotechnol 65:94–115 Lee YY, Iyer P, Torget RW (1999) Dilute-acid hydrolysis of lignocellulosic biomass. Adv Biochem Eng Biotechnol 65:94–115
go back to reference Lenihan L, Orozco A, O’Neill E, Ahmad MNM, Rooney DW, Walker GM (2010) Dilute acid hydrolysis of lignocellulosic biomass. Chem Eng J 156(2):395–403CrossRef Lenihan L, Orozco A, O’Neill E, Ahmad MNM, Rooney DW, Walker GM (2010) Dilute acid hydrolysis of lignocellulosic biomass. Chem Eng J 156(2):395–403CrossRef
go back to reference Li HQ, Jiang W, Jia JX, Xu J (2014) pH pre-corrected liquid hot water pretreatment on corn stover with high hemicelluloses recovery and low inhibitors formation. Bioresour Technol 153:292–299CrossRef Li HQ, Jiang W, Jia JX, Xu J (2014) pH pre-corrected liquid hot water pretreatment on corn stover with high hemicelluloses recovery and low inhibitors formation. Bioresour Technol 153:292–299CrossRef
go back to reference Liebert T (2008) CELL 139-Cellulose solvents: remarkable history and bright future. Abstracts of papers of the American Chemical Society, 235 Liebert T (2008) CELL 139-Cellulose solvents: remarkable history and bright future. Abstracts of papers of the American Chemical Society, 235
go back to reference Liu ZS, Wu XL, Kida K, Tang YQ (2012) Corn stover saccharification with concentrated sulfuric acid: effects of saccharification conditions on sugar recovery and by-product generation. Bioresour Technol 119:224–233CrossRef Liu ZS, Wu XL, Kida K, Tang YQ (2012) Corn stover saccharification with concentrated sulfuric acid: effects of saccharification conditions on sugar recovery and by-product generation. Bioresour Technol 119:224–233CrossRef
go back to reference Liu Y, Sun B, Zheng X, Yu L, Li J (2018) Integrated microwave and alkaline treatment for the separation between hemicelluloses and cellulose from cellulosic fibers. Bioresour Technol 247:859–863CrossRef Liu Y, Sun B, Zheng X, Yu L, Li J (2018) Integrated microwave and alkaline treatment for the separation between hemicelluloses and cellulose from cellulosic fibers. Bioresour Technol 247:859–863CrossRef
go back to reference Liyakathali NAM, Muley PD, Aita G, Boldor D (2016) Effect of frequency and reaction time in focused ultrasonic pretreatment of energy cane bagasse for bioethanol production. Bioresour Technol 200:262–271CrossRef Liyakathali NAM, Muley PD, Aita G, Boldor D (2016) Effect of frequency and reaction time in focused ultrasonic pretreatment of energy cane bagasse for bioethanol production. Bioresour Technol 200:262–271CrossRef
go back to reference Mancini G, Papirio S, Lens PNL, Esposito G (2016) Solvent pretreatments of lignocellulosic materials to enhance biogas production: a review. Energy Fuel 30:1892–1903CrossRef Mancini G, Papirio S, Lens PNL, Esposito G (2016) Solvent pretreatments of lignocellulosic materials to enhance biogas production: a review. Energy Fuel 30:1892–1903CrossRef
go back to reference Maurya DP, Singla A, Negi S (2015) An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol. 3 Biotech 5:597–609CrossRef Maurya DP, Singla A, Negi S (2015) An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol. 3 Biotech 5:597–609CrossRef
go back to reference McDonough TJ (1993) The chemistry of organosolv delignification. TAPPI J 76:186–193 McDonough TJ (1993) The chemistry of organosolv delignification. TAPPI J 76:186–193
go back to reference McMillan JD (1993) Pretreatment of lignocellulosic biomass. In: Himmel ME, Baker JO, Overend RP (eds) Enzymatic conversion of biomass for fuel production. American Chemical Society, Washington, DC, pp 292–323 McMillan JD (1993) Pretreatment of lignocellulosic biomass. In: Himmel ME, Baker JO, Overend RP (eds) Enzymatic conversion of biomass for fuel production. American Chemical Society, Washington, DC, pp 292–323
go back to reference McMillan JD (1994) Pretreatment of lignocellulosic biomass. In: Himmel ME, Baker JO, Overend RP (eds) Enzymatic Conversion of Biomass for Fuels Production. ACS, Washington, DC, pp 292–324CrossRef McMillan JD (1994) Pretreatment of lignocellulosic biomass. In: Himmel ME, Baker JO, Overend RP (eds) Enzymatic Conversion of Biomass for Fuels Production. ACS, Washington, DC, pp 292–324CrossRef
go back to reference Millet MA, Baker AJ, Scatter LD (1976) Physical and chemical pretreatment for enhancing cellulose saccharification. Biotech Bioeng Symp 6:125–153 Millet MA, Baker AJ, Scatter LD (1976) Physical and chemical pretreatment for enhancing cellulose saccharification. Biotech Bioeng Symp 6:125–153
go back to reference Mirahmadi K, Mohseni Kabir M, Jeihanipour A, Karimi K, Taherzadeh M (2010) Alkaline pretreatment of spruce and birch to improve bioethanol and biogas production. Bioresources 5:928–938 Mirahmadi K, Mohseni Kabir M, Jeihanipour A, Karimi K, Taherzadeh M (2010) Alkaline pretreatment of spruce and birch to improve bioethanol and biogas production. Bioresources 5:928–938
go back to reference Modenbach AA, Nokes SE (2012) The use of high-solids loadings in biomass pretreatment-a review. Biotechnol Bioeng 109(6):1430–1442CrossRef Modenbach AA, Nokes SE (2012) The use of high-solids loadings in biomass pretreatment-a review. Biotechnol Bioeng 109(6):1430–1442CrossRef
go back to reference Mosier NS, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch MR (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686CrossRef Mosier NS, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch MR (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686CrossRef
go back to reference Mtui GYS (2012) Oxalic acid pretreatment, fungal enzymatic saccharification and fermentation of maize residues to ethanol. Afr J Biotechnol 11(4):843–851 Mtui GYS (2012) Oxalic acid pretreatment, fungal enzymatic saccharification and fermentation of maize residues to ethanol. Afr J Biotechnol 11(4):843–851
go back to reference Mueller-Hartlev I, Hartlev RD, Harris PJ, Curzon EH (1986) Linkage of p-coumaroyi and feruloyl groups to cell-wall polysaccharides of barley straw. Carbohydr Res 148:71–85CrossRef Mueller-Hartlev I, Hartlev RD, Harris PJ, Curzon EH (1986) Linkage of p-coumaroyi and feruloyl groups to cell-wall polysaccharides of barley straw. Carbohydr Res 148:71–85CrossRef
go back to reference Muhammad N, Man Z, Bustam MA, Mutalib MIA, Rafiq S (2013) Investigations of novel nitrile-based ionic liquids as pre-treatment solvent for extraction of lignin from bamboo biomass. J Ind Eng Chem 19:207–214CrossRef Muhammad N, Man Z, Bustam MA, Mutalib MIA, Rafiq S (2013) Investigations of novel nitrile-based ionic liquids as pre-treatment solvent for extraction of lignin from bamboo biomass. J Ind Eng Chem 19:207–214CrossRef
go back to reference Narayanaswamy N, Faik A, Goetz DJ, Gu T (2011) Supercritical carbon dioxide pretreatment of corn stover and switchgrass for lignocellulosic ethanol production. Bioresour Technol 102:6995–7000CrossRef Narayanaswamy N, Faik A, Goetz DJ, Gu T (2011) Supercritical carbon dioxide pretreatment of corn stover and switchgrass for lignocellulosic ethanol production. Bioresour Technol 102:6995–7000CrossRef
go back to reference Neely WC (1984) Factors affecting the pretreatment of biomass with gaseous ozone. Biotechnol Bioeng 26:59–65CrossRef Neely WC (1984) Factors affecting the pretreatment of biomass with gaseous ozone. Biotechnol Bioeng 26:59–65CrossRef
go back to reference Nguyen TA, Kim KR, Han SJ, Cho HY, Kim JW, Park SM et al (2010) Pretreatment of rice straw with ammonia and ionic liquid for lignocellulose conversion to fermentable sugars. Bioresour Technol 101:7432–7438CrossRef Nguyen TA, Kim KR, Han SJ, Cho HY, Kim JW, Park SM et al (2010) Pretreatment of rice straw with ammonia and ionic liquid for lignocellulose conversion to fermentable sugars. Bioresour Technol 101:7432–7438CrossRef
go back to reference O’Connor RP, Woodley R, Kolstad JJ, Kean R, Glassner DA, Mastel B, Ritzenthaler JM, John H, Warwick J, Hettenhaus JR, Brooks RK (2007) Process for fractionating ligno cellulosic biomass into liquid and solid products. assignee U. S. A. Nature-works LLC, patent number WO 2007120210 O’Connor RP, Woodley R, Kolstad JJ, Kean R, Glassner DA, Mastel B, Ritzenthaler JM, John H, Warwick J, Hettenhaus JR, Brooks RK (2007) Process for fractionating ligno cellulosic biomass into liquid and solid products. assignee U. S. A. Nature-works LLC, patent number WO 2007120210
go back to reference O’Donovan A, Gupta VK, Tuohy MG (2013) Recent updates in acid pretreatments and SEM analysis of acid pretreated grass biomass. In: Gupta VK, Tuohi MG (eds) Biofuel technologies: recent development. Springer Science Publishers, Berlin, pp 97–118CrossRef O’Donovan A, Gupta VK, Tuohy MG (2013) Recent updates in acid pretreatments and SEM analysis of acid pretreated grass biomass. In: Gupta VK, Tuohi MG (eds) Biofuel technologies: recent development. Springer Science Publishers, Berlin, pp 97–118CrossRef
go back to reference Ouyang X, Zhu G, Huang X, Qiu X (2015) Microwave assisted liquefaction of wheat straw alkali lignin for the production of monophenolic compounds. J Energy Chem 24:72–76CrossRef Ouyang X, Zhu G, Huang X, Qiu X (2015) Microwave assisted liquefaction of wheat straw alkali lignin for the production of monophenolic compounds. J Energy Chem 24:72–76CrossRef
go back to reference Overend RP, Chornet E (1987) Fractionation of lignocellulosics by steam-aqueous pretreatments. Phil Trans R Soc A 321(1561):523–536 Overend RP, Chornet E (1987) Fractionation of lignocellulosics by steam-aqueous pretreatments. Phil Trans R Soc A 321(1561):523–536
go back to reference Pan X, Arato C, Gilkes N et al (2005) Biorefining of softwoods using ethanol organosolv pulping: preliminary evaluation of process streams for manufacture of fuel-grade ethanol and coproducts. Biotechnol Bioeng 90(4):473–481CrossRef Pan X, Arato C, Gilkes N et al (2005) Biorefining of softwoods using ethanol organosolv pulping: preliminary evaluation of process streams for manufacture of fuel-grade ethanol and coproducts. Biotechnol Bioeng 90(4):473–481CrossRef
go back to reference Pan X, Gilkes N, Kadla J et al (2006) Bioconversion of hybrid poplar to ethanol and co-products using an organosolv fractionation process: optimization of process yields. Biotechnol Bioeng 94(5):851–861CrossRef Pan X, Gilkes N, Kadla J et al (2006) Bioconversion of hybrid poplar to ethanol and co-products using an organosolv fractionation process: optimization of process yields. Biotechnol Bioeng 94(5):851–861CrossRef
go back to reference Park YC, Kim JS (2012) Comparison of various alkaline pretreatment methods of lignocellulosic biomass. Energy 47:31–35CrossRef Park YC, Kim JS (2012) Comparison of various alkaline pretreatment methods of lignocellulosic biomass. Energy 47:31–35CrossRef
go back to reference Park N, Kim H-Y, Koo B-W, Yeo H, Choi I-G (2010) Organosolv pretreatment with various catalysts for enhancing enzymatic hydrolysis of pitch pine (Pinus rigida). Bioresour Technol 101(18):7046–7053CrossRef Park N, Kim H-Y, Koo B-W, Yeo H, Choi I-G (2010) Organosolv pretreatment with various catalysts for enhancing enzymatic hydrolysis of pitch pine (Pinus rigida). Bioresour Technol 101(18):7046–7053CrossRef
go back to reference Patil JH, AntonyRaj M, Gavimath CC (2011) Study on effect of pretreatment methods on biomethanation of water hyacinth. Int J Adv Biotechnol Res 2:143–147 Patil JH, AntonyRaj M, Gavimath CC (2011) Study on effect of pretreatment methods on biomethanation of water hyacinth. Int J Adv Biotechnol Res 2:143–147
go back to reference Paul S, Dutta A (2018) Challenges and opportunities of lignocellulosic biomass for anaerobic digestion. Resour Conserv Recycl 130:164–174CrossRef Paul S, Dutta A (2018) Challenges and opportunities of lignocellulosic biomass for anaerobic digestion. Resour Conserv Recycl 130:164–174CrossRef
go back to reference Pena L, Ikenberry M, Hohn KL, Wang D (2012) Acid-functionalized nanoparticles for pretreatment of wheat straw. J Biomater Nanobiotechnol 3:342–352CrossRef Pena L, Ikenberry M, Hohn KL, Wang D (2012) Acid-functionalized nanoparticles for pretreatment of wheat straw. J Biomater Nanobiotechnol 3:342–352CrossRef
go back to reference Pena L, Xu F, Hohn KL, Li J, Wang D (2014) Propyl-sulfonic acid functionalized nanoparticles as catalyst for pretreatment of corn stover. J Biomater Nanobiotechnol 5:8–16CrossRef Pena L, Xu F, Hohn KL, Li J, Wang D (2014) Propyl-sulfonic acid functionalized nanoparticles as catalyst for pretreatment of corn stover. J Biomater Nanobiotechnol 5:8–16CrossRef
go back to reference Petkovic M, Hartmann DO, Adamova G, Seddon KR, Rebelo LPN, Pereira CS (2012) Unravelling the mechanism of toxicity of alkyltributylphosphonium chlorides in Aspergillus nidulans conidia. New J Chem 36(1):56–63CrossRef Petkovic M, Hartmann DO, Adamova G, Seddon KR, Rebelo LPN, Pereira CS (2012) Unravelling the mechanism of toxicity of alkyltributylphosphonium chlorides in Aspergillus nidulans conidia. New J Chem 36(1):56–63CrossRef
go back to reference Pielhop T, Amgarten J, Rohr PR, Studer MH (2016) Steam explosion pretreatment of softwood: the effect of the explosive decompression on enzymatic digestibility. Biotechnol Biofuels 9:152CrossRef Pielhop T, Amgarten J, Rohr PR, Studer MH (2016) Steam explosion pretreatment of softwood: the effect of the explosive decompression on enzymatic digestibility. Biotechnol Biofuels 9:152CrossRef
go back to reference Pinkert A, Goeke DF, Marsh KN, Pang S (2011) Extracting wood lignin without dissolving or degrading cellulose: investigations on the use of food additive-derived ionic liquids. Green Chem 13:3124–3136CrossRef Pinkert A, Goeke DF, Marsh KN, Pang S (2011) Extracting wood lignin without dissolving or degrading cellulose: investigations on the use of food additive-derived ionic liquids. Green Chem 13:3124–3136CrossRef
go back to reference Procentese A, Johnson E, Orr V, Campanile AG, Wood JA, Marzocchella A, Rehmann L (2015) Deep eutectic solvent pretreatment and subsequent saccharification of corncob. Bioresour Technol 192:31–36CrossRef Procentese A, Johnson E, Orr V, Campanile AG, Wood JA, Marzocchella A, Rehmann L (2015) Deep eutectic solvent pretreatment and subsequent saccharification of corncob. Bioresour Technol 192:31–36CrossRef
go back to reference Qing Q, Huang M, He Y, Wang L, Zhang Y (2015) Dilute oxalic acid pretreatment for high total sugar recovery in pretreatment and subsequent enzymatic hydrolysis. Appl Biochem Biotechnol 177:1493–1507CrossRef Qing Q, Huang M, He Y, Wang L, Zhang Y (2015) Dilute oxalic acid pretreatment for high total sugar recovery in pretreatment and subsequent enzymatic hydrolysis. Appl Biochem Biotechnol 177:1493–1507CrossRef
go back to reference Rabemanolontsoa H, Saka S (2016) Various pretreatments of lignocellulosics. Bioresour Technol 199:83–91CrossRef Rabemanolontsoa H, Saka S (2016) Various pretreatments of lignocellulosics. Bioresour Technol 199:83–91CrossRef
go back to reference Rai M, dos Santos JC, Soler MF, Marcelino PRF, Brumano LP, Ingle AP, Gaikwad S, Gade A, da Silva SS (2016) Strategic role of nanotechnology for production of bioethanol and biodiesel. Nanotechnol Rev 5(2):231–250CrossRef Rai M, dos Santos JC, Soler MF, Marcelino PRF, Brumano LP, Ingle AP, Gaikwad S, Gade A, da Silva SS (2016) Strategic role of nanotechnology for production of bioethanol and biodiesel. Nanotechnol Rev 5(2):231–250CrossRef
go back to reference Rajendran K, Drielak E, Varma VS, Muthusamy S, Kumar G (2017) Updates on the pretreatment of lignocellulosic feedstocks for bioenergy production–a review. Biomass Conver Biorefin 8:471–483CrossRef Rajendran K, Drielak E, Varma VS, Muthusamy S, Kumar G (2017) Updates on the pretreatment of lignocellulosic feedstocks for bioenergy production–a review. Biomass Conver Biorefin 8:471–483CrossRef
go back to reference Ravindran R, Jaiswal AK (2016) A comprehensive review on pre-treatment strategy for lignocellulosic food industry waste: challenges and opportunities. Bioresour Technol 199:92–102CrossRef Ravindran R, Jaiswal AK (2016) A comprehensive review on pre-treatment strategy for lignocellulosic food industry waste: challenges and opportunities. Bioresour Technol 199:92–102CrossRef
go back to reference Redding AP, Wang Z, Keshwani RD, Cheng J (2011) High temperature dilute acid pretreatment of coastal Bermuda grass for enzymatic hydrolysis. Bioresour Technol 102:1415–1424CrossRef Redding AP, Wang Z, Keshwani RD, Cheng J (2011) High temperature dilute acid pretreatment of coastal Bermuda grass for enzymatic hydrolysis. Bioresour Technol 102:1415–1424CrossRef
go back to reference Ren HW, Chen CM, Wang QH, Zhao DS, Guo SH (2016) The properties of choline chloride-based deep eutectic solvents and their performance in the dissolution of cellulose. Bioresources 11(2):5435–5451 Ren HW, Chen CM, Wang QH, Zhao DS, Guo SH (2016) The properties of choline chloride-based deep eutectic solvents and their performance in the dissolution of cellulose. Bioresources 11(2):5435–5451
go back to reference Rico A, Rencoret J, Río JCD, Martínez A, Gutiérrez A (2014) Pretreatment with laccase and a phenolic mediator degrades lignin and enhances saccharification of Eucalyptus feedstock. Biotechnol Biofuels 7(1):6CrossRef Rico A, Rencoret J, Río JCD, Martínez A, Gutiérrez A (2014) Pretreatment with laccase and a phenolic mediator degrades lignin and enhances saccharification of Eucalyptus feedstock. Biotechnol Biofuels 7(1):6CrossRef
go back to reference Rosenau T, Potthast A, Adorjan I, Hofinger A, Sixta H, Firgo H, Kosma P (2002) Cellulose solutions in N-methylmorpholine-Noxide (NMMO)–degradation processes and stabilizers. Cellulose 9:283–291CrossRef Rosenau T, Potthast A, Adorjan I, Hofinger A, Sixta H, Firgo H, Kosma P (2002) Cellulose solutions in N-methylmorpholine-Noxide (NMMO)–degradation processes and stabilizers. Cellulose 9:283–291CrossRef
go back to reference Sahay S, Rana RS (2017) Hemicellulose hydrolysate from Ailanthes excelsa wood potentially fermentable to ethanol. J Trop For Res 29(2):172–178 Sahay S, Rana RS (2017) Hemicellulose hydrolysate from Ailanthes excelsa wood potentially fermentable to ethanol. J Trop For Res 29(2):172–178
go back to reference Sahoo D, Ummalyma SB, Okram AK, Pandey A, Sankar M, Sukumaran RK (2018) Effect of dilute acid pretreatment of wild rice grass (Zizania latifolia) from Loktak Lake for enzymatic hydrolysis. Bioresour Technol 253:252–255CrossRef Sahoo D, Ummalyma SB, Okram AK, Pandey A, Sankar M, Sukumaran RK (2018) Effect of dilute acid pretreatment of wild rice grass (Zizania latifolia) from Loktak Lake for enzymatic hydrolysis. Bioresour Technol 253:252–255CrossRef
go back to reference Samuel R, Pu Y, Foston M, Ragauskas AJ (2010) Solid-state NMR characterization of switchgrass cellulose after dilute acid pretreatment. Biofuels 1(1):85–90CrossRef Samuel R, Pu Y, Foston M, Ragauskas AJ (2010) Solid-state NMR characterization of switchgrass cellulose after dilute acid pretreatment. Biofuels 1(1):85–90CrossRef
go back to reference Sánchez OJ, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 99:5270–5295CrossRef Sánchez OJ, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 99:5270–5295CrossRef
go back to reference Saritha M, Arora A, Nain L (2012) Pretreatment of paddy straw with Trametes hirsuta for improved enzymatic saccharification. Bioresour Technol 104:459–465CrossRef Saritha M, Arora A, Nain L (2012) Pretreatment of paddy straw with Trametes hirsuta for improved enzymatic saccharification. Bioresour Technol 104:459–465CrossRef
go back to reference Sathitsuksanoh N, Zhu Z, Zhang YHP (2012) Cellulose solvent-based pretreatment for corn stover and avicel: concentrated phosphoric acid versus ionic liquid [BMIM]Cl. Cellulose 19(4):1161–1172CrossRef Sathitsuksanoh N, Zhu Z, Zhang YHP (2012) Cellulose solvent-based pretreatment for corn stover and avicel: concentrated phosphoric acid versus ionic liquid [BMIM]Cl. Cellulose 19(4):1161–1172CrossRef
go back to reference Satimanont S, Luengnaruemitchai A, Wongkasemjit S (2012) Effect of temperature and time on dilute acid pretreatment of corn cobs. Int J Chem Biol Eng 6:333–337 Satimanont S, Luengnaruemitchai A, Wongkasemjit S (2012) Effect of temperature and time on dilute acid pretreatment of corn cobs. Int J Chem Biol Eng 6:333–337
go back to reference Schell D, Harwood C (1994) Milling of lignocellulosic biomass. Appl Biochem Biotechnol 45–46(1):159–168CrossRef Schell D, Harwood C (1994) Milling of lignocellulosic biomass. Appl Biochem Biotechnol 45–46(1):159–168CrossRef
go back to reference Serna LD, Alzate CO, Alzate CC (2016) Supercritical fluids as a green technology for the pretreatment of lignocellulosic biomass. Bioresour Technol 199:113–120CrossRef Serna LD, Alzate CO, Alzate CC (2016) Supercritical fluids as a green technology for the pretreatment of lignocellulosic biomass. Bioresour Technol 199:113–120CrossRef
go back to reference Shafiei M, Karimi K, Taherzadeh MJ (2010) Pretreatment of spruce and oak ny N-methylmorpholine-N-oxide (NMMO) for efficient conversion of their cellulose to ethanol. Bioresour Technol 101:4914–4918CrossRef Shafiei M, Karimi K, Taherzadeh MJ (2010) Pretreatment of spruce and oak ny N-methylmorpholine-N-oxide (NMMO) for efficient conversion of their cellulose to ethanol. Bioresour Technol 101:4914–4918CrossRef
go back to reference Shahbazi A, Zhang B (2010) Dilute and concentrate acid hydrolysis of lignocellulosic biomass. In: Waldron K (ed) Bioalcohol production, Woodhead publishing series in energy. Woodhead Publishing, Boca Raton, pp 143–158CrossRef Shahbazi A, Zhang B (2010) Dilute and concentrate acid hydrolysis of lignocellulosic biomass. In: Waldron K (ed) Bioalcohol production, Woodhead publishing series in energy. Woodhead Publishing, Boca Raton, pp 143–158CrossRef
go back to reference Shibuya N, Iwasaki T (1985) Structural features of rice bran hemicellulose. Phytochemistry 24:285–289CrossRef Shibuya N, Iwasaki T (1985) Structural features of rice bran hemicellulose. Phytochemistry 24:285–289CrossRef
go back to reference Shill K, Padmanabhan S, Xin Q, Prausnitz JM, Clark DS, Blanch HW (2011) Ionic liquid pretreatment of cellulosic biomass: enzymatic hydrolysis and ionic liquid recycle. Biotechnol Bioeng 108(3):511–520CrossRef Shill K, Padmanabhan S, Xin Q, Prausnitz JM, Clark DS, Blanch HW (2011) Ionic liquid pretreatment of cellulosic biomass: enzymatic hydrolysis and ionic liquid recycle. Biotechnol Bioeng 108(3):511–520CrossRef
go back to reference Shirkavand E, Baroutian S, Gapes DJ, Young BR (2016) Combination of fungal and physicochemical processes for lignocellulosic biomass pretreatment–a review. Renew Sust Energ Rev 54:217–234CrossRef Shirkavand E, Baroutian S, Gapes DJ, Young BR (2016) Combination of fungal and physicochemical processes for lignocellulosic biomass pretreatment–a review. Renew Sust Energ Rev 54:217–234CrossRef
go back to reference Sindhu R, Binod P, Pandey A (2016) Biological pretreatment of lignocellulosic biomass – an overview. Bioresour Technol 199:76–82CrossRef Sindhu R, Binod P, Pandey A (2016) Biological pretreatment of lignocellulosic biomass – an overview. Bioresour Technol 199:76–82CrossRef
go back to reference Sjöström E (1993) Wood Chemistry – fundamentals and applications, 2nd edn. Academic Press, New York Sjöström E (1993) Wood Chemistry – fundamentals and applications, 2nd edn. Academic Press, New York
go back to reference Smith EL, Abbott AP, Ryder KS (2014) Deep eutectic solvents (DESs) and their applications. Chem Rev 114(21):11060–11082CrossRef Smith EL, Abbott AP, Ryder KS (2014) Deep eutectic solvents (DESs) and their applications. Chem Rev 114(21):11060–11082CrossRef
go back to reference Stepan AM, Monshizadeh A, Hummel M, Roselli A, Sixta H (2016) Cellulose fractionation with IONCELL-P. Carbohydr Polym 150:99–106CrossRef Stepan AM, Monshizadeh A, Hummel M, Roselli A, Sixta H (2016) Cellulose fractionation with IONCELL-P. Carbohydr Polym 150:99–106CrossRef
go back to reference Strong PJ, Calus H (2011) Laccase: a review of its past and its future in bioremediation. Crit Rev Environ Sci Technol 41:373–434CrossRef Strong PJ, Calus H (2011) Laccase: a review of its past and its future in bioremediation. Crit Rev Environ Sci Technol 41:373–434CrossRef
go back to reference Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11CrossRef Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11CrossRef
go back to reference Tan SSY, MacFarlane DR, Upfal J, Edye LA, Doherty WOS, Patti AF, Pringle JM, Scott JL (2009) Extraction of lignin from lignocellulose at atmospheric pressure using alkylbenzenesulfonate ionic liquid. Green Chem 11:339–345CrossRef Tan SSY, MacFarlane DR, Upfal J, Edye LA, Doherty WOS, Patti AF, Pringle JM, Scott JL (2009) Extraction of lignin from lignocellulose at atmospheric pressure using alkylbenzenesulfonate ionic liquid. Green Chem 11:339–345CrossRef
go back to reference Tang J, Chen K, Xu J, Li J, Zhao C (2011) Effects of dilute acid hydrolysis on composition and structure of cellulose in eulaliopsis binata. Bioresources 6(2):1069–1078 Tang J, Chen K, Xu J, Li J, Zhao C (2011) Effects of dilute acid hydrolysis on composition and structure of cellulose in eulaliopsis binata. Bioresources 6(2):1069–1078
go back to reference Tanjore D, Richard TL (2015) A systems view of lignocellulose hydrolysis. In: Ravindra P (ed) Advances in bioprocess technology. Springer International Publishing AG, Cham, pp 36–50 Tanjore D, Richard TL (2015) A systems view of lignocellulose hydrolysis. In: Ravindra P (ed) Advances in bioprocess technology. Springer International Publishing AG, Cham, pp 36–50
go back to reference Tao L, Aden A, Elander RT et al (2011) Process and technoeconomic analysis of leading pretreatment technologies for lignocellulosic ethanol production using switchgrass. Bioresour Technol 102(24):11105–11114CrossRef Tao L, Aden A, Elander RT et al (2011) Process and technoeconomic analysis of leading pretreatment technologies for lignocellulosic ethanol production using switchgrass. Bioresour Technol 102(24):11105–11114CrossRef
go back to reference Tayyab M, Noman A, Islam W, Waheed S, Arafat Y, Ali F et al (2018) Bioethanol production from lignocellulosic biomass by environment friendly pretreatment methods: a review. Appl Ecol Environ Res 16:225–249CrossRef Tayyab M, Noman A, Islam W, Waheed S, Arafat Y, Ali F et al (2018) Bioethanol production from lignocellulosic biomass by environment friendly pretreatment methods: a review. Appl Ecol Environ Res 16:225–249CrossRef
go back to reference Thermowoodhandbook (2003) Helsinki, Finnish Thermowood Association. Thermowoodhandbook (2003) Helsinki, Finnish Thermowood Association.
go back to reference Tian L, Branford-White C, Wang W, Nie H, Zhu L (2012) Laccase-mediated system pretreatment to enhance the effect of hydrogen peroxide bleaching of cotton fabric. Int J Biol Macromol 50:782–787CrossRef Tian L, Branford-White C, Wang W, Nie H, Zhu L (2012) Laccase-mediated system pretreatment to enhance the effect of hydrogen peroxide bleaching of cotton fabric. Int J Biol Macromol 50:782–787CrossRef
go back to reference Timell TE (1967) Recent progress in the chemistry of wood hemicelluloses. Wood Sci Technol 1:45–70CrossRef Timell TE (1967) Recent progress in the chemistry of wood hemicelluloses. Wood Sci Technol 1:45–70CrossRef
go back to reference Tutt M, Kikas T, Olt J (2012) Influence of different pretreatment methods on bioethanol production from wheat straw. Agron Res Biosyst Eng 1:269–276 Tutt M, Kikas T, Olt J (2012) Influence of different pretreatment methods on bioethanol production from wheat straw. Agron Res Biosyst Eng 1:269–276
go back to reference Tutt M, Kikas T, Olt J (2012a) Comparison of different pretreatment methods on degradation of Rye straw, Engineering for Rural Development, Jelgava, Latvia Tutt M, Kikas T, Olt J (2012a) Comparison of different pretreatment methods on degradation of Rye straw, Engineering for Rural Development, Jelgava, Latvia
go back to reference Tutt M, Kikas T, Olt J (2012b) Influence of different pretreatment methods on bioethanol production from wheat straw. Agron Res Biosys Eng 1:269–276 Tutt M, Kikas T, Olt J (2012b) Influence of different pretreatment methods on bioethanol production from wheat straw. Agron Res Biosys Eng 1:269–276
go back to reference van Groenestijn JW, Hazewinkel JHO, Bakker RR (2007) Pre-treatment of ligno-cellulose with biological acid recycling (The biosulfurol process). Netherlands Organisation for Applied Scientific Research (TNO), Zeist van Groenestijn JW, Hazewinkel JHO, Bakker RR (2007) Pre-treatment of ligno-cellulose with biological acid recycling (The biosulfurol process). Netherlands Organisation for Applied Scientific Research (TNO), Zeist
go back to reference Vidal PF, Molinier J (1988) Ozonolysis of lignin-improvement of in vitro digestibility of poplar saw dust. Biomass 16:1–17CrossRef Vidal PF, Molinier J (1988) Ozonolysis of lignin-improvement of in vitro digestibility of poplar saw dust. Biomass 16:1–17CrossRef
go back to reference Villaverde JJ, Ligero P, de Vega A (2010) Miscanthus x giganteus as a source of biobased products through organosolv fractionation: a mini review. Open Agric J 4:102–110CrossRef Villaverde JJ, Ligero P, de Vega A (2010) Miscanthus x giganteus as a source of biobased products through organosolv fractionation: a mini review. Open Agric J 4:102–110CrossRef
go back to reference Wang W, Ji S, Lee I (2013) Fast and efficient nanoshear hybrid alkaline pretreatment of corn stover for biofuel and materials production. Biomass Bioenergy 51:35–42CrossRef Wang W, Ji S, Lee I (2013) Fast and efficient nanoshear hybrid alkaline pretreatment of corn stover for biofuel and materials production. Biomass Bioenergy 51:35–42CrossRef
go back to reference Wang H, Covarrubias J, Prock H, Wu X, Wang D, Bossmann SH (2015) Acid-functionalized magnetic nanoparticle as heterogeneous catalysts for biodiesel synthesis. J Phys Chem C 119:26020–26028CrossRef Wang H, Covarrubias J, Prock H, Wu X, Wang D, Bossmann SH (2015) Acid-functionalized magnetic nanoparticle as heterogeneous catalysts for biodiesel synthesis. J Phys Chem C 119:26020–26028CrossRef
go back to reference Wang Y, Fan L, Shan S, Liu Y, Ruan R (2016) Review of microwave assisted lignin conversion for renewable fuels and chemicals. J Anal Appl Pyrolysis 119:104–113CrossRef Wang Y, Fan L, Shan S, Liu Y, Ruan R (2016) Review of microwave assisted lignin conversion for renewable fuels and chemicals. J Anal Appl Pyrolysis 119:104–113CrossRef
go back to reference Wang Q, Tian D, Hu J, Shen F, Yang G, Zhang Y, Deng S, Zhang J, Zeng Y, Hu Y (2018) Fates of hemicellulose, lignin and cellulose in concentrated phosphoric acid with hydrogen peroxide (PHP) pretreatment. RSC Adv 2018(8):12714–12723CrossRef Wang Q, Tian D, Hu J, Shen F, Yang G, Zhang Y, Deng S, Zhang J, Zeng Y, Hu Y (2018) Fates of hemicellulose, lignin and cellulose in concentrated phosphoric acid with hydrogen peroxide (PHP) pretreatment. RSC Adv 2018(8):12714–12723CrossRef
go back to reference Wen JL, Xue BL, Xu F, Sun RC, Pinkert A (2013) Unmasking the structural features and property of lignin from bamboo. Ind Crop Prod 42:332–343CrossRef Wen JL, Xue BL, Xu F, Sun RC, Pinkert A (2013) Unmasking the structural features and property of lignin from bamboo. Ind Crop Prod 42:332–343CrossRef
go back to reference Xu J (2015) Microwave pretreatment. In: Pandey A, Negi S, Binod P, Larroch C (eds) Pretreatment of biomass processes and technologies, 1st edn. Elsevier, Waltham, pp 157–172CrossRef Xu J (2015) Microwave pretreatment. In: Pandey A, Negi S, Binod P, Larroch C (eds) Pretreatment of biomass processes and technologies, 1st edn. Elsevier, Waltham, pp 157–172CrossRef
go back to reference Xu J, Zhang X, Cheng JJ (2012) Pretreatment of corn stover for sugar production with switchgrass-derived black liquor. Bioresour Technol 111:255–260CrossRef Xu J, Zhang X, Cheng JJ (2012) Pretreatment of corn stover for sugar production with switchgrass-derived black liquor. Bioresour Technol 111:255–260CrossRef
go back to reference Xu P, Zheng GW, Du PX, Zong MH, Lou WY (2016) Whole-cell biocatalytic processes with ionic liquids. ACS Sustain Chem Eng 4(2):371–386CrossRef Xu P, Zheng GW, Du PX, Zong MH, Lou WY (2016) Whole-cell biocatalytic processes with ionic liquids. ACS Sustain Chem Eng 4(2):371–386CrossRef
go back to reference Xu P, Zheng GW, Zong MH, Li N, Lou WY (2017) Recent progress on deep eutectic solvents in biocatalysis. Bioresour Bioprocess 4:34CrossRef Xu P, Zheng GW, Zong MH, Li N, Lou WY (2017) Recent progress on deep eutectic solvents in biocatalysis. Bioresour Bioprocess 4:34CrossRef
go back to reference Yadav P, Mundada G, Biswas B, Srivastava V, Singh R, Krishna BB, Kumar J, Bhaskar T (2016) Microwave assisted pyrolysis of biomass for liquid biofuels production: In Biofuels: production and future prospectives (Ram Sarup Singh, Ashok Pandey, Edgard Gnansounou) Boca Raton: CRC Press pp 164-182 Yadav P, Mundada G, Biswas B, Srivastava V, Singh R, Krishna BB, Kumar J, Bhaskar T (2016) Microwave assisted pyrolysis of biomass for liquid biofuels production: In Biofuels: production and future prospectives (Ram Sarup Singh, Ashok Pandey, Edgard Gnansounou) Boca Raton: CRC Press pp 164-182
go back to reference Yan P, Xu Z, Zhang C, Liu X, Xu W, Zhang ZC (2015) Fractionation of lignin from eucalyptus bark using amine-sulfonate functionalized ionic liquids. Green Chem 17:4913–4920CrossRef Yan P, Xu Z, Zhang C, Liu X, Xu W, Zhang ZC (2015) Fractionation of lignin from eucalyptus bark using amine-sulfonate functionalized ionic liquids. Green Chem 17:4913–4920CrossRef
go back to reference Yang B, Tao L, Wyman CE (2018) Strengths, challenges, and opportunities for hydrothermal pretreatment in lignocellulosic biorefineries. Biofpr Biofuels Bioprod Biorefin 12(1):125–138CrossRef Yang B, Tao L, Wyman CE (2018) Strengths, challenges, and opportunities for hydrothermal pretreatment in lignocellulosic biorefineries. Biofpr Biofuels Bioprod Biorefin 12(1):125–138CrossRef
go back to reference Zamocky M, Gasselhuber B, Furtmüller PG, Obinger C (2014) Turning points in the evolution of peroxidase-catalase superfamily: molecular phylogeny of hybrid heme peroxidises. Cell Mol Life Sci 71:4681–4696CrossRef Zamocky M, Gasselhuber B, Furtmüller PG, Obinger C (2014) Turning points in the evolution of peroxidase-catalase superfamily: molecular phylogeny of hybrid heme peroxidises. Cell Mol Life Sci 71:4681–4696CrossRef
go back to reference Zavarzina AG, Lisov AV, Leontievsky AA (2018) The role of ligninolytic enzymes laccase and a versatile peroxidase of the white-rot fungus Lentinus tigrinus in biotransformation of soil humic matter: comparative in vivo study. J Geophys Res Biogeosci 123:2727–2742CrossRef Zavarzina AG, Lisov AV, Leontievsky AA (2018) The role of ligninolytic enzymes laccase and a versatile peroxidase of the white-rot fungus Lentinus tigrinus in biotransformation of soil humic matter: comparative in vivo study. J Geophys Res Biogeosci 123:2727–2742CrossRef
go back to reference Zdanowick M, Wilpiszewska K, Spychaj T (2018) Deep eutectic solvents for polysaccharides processing. A review. Carbohydr Polym 200:361–380CrossRef Zdanowick M, Wilpiszewska K, Spychaj T (2018) Deep eutectic solvents for polysaccharides processing. A review. Carbohydr Polym 200:361–380CrossRef
go back to reference Zhang S, Sun N, He X, Lu X, Zhang X (2006) Physical properties of ionic liquids: database and evaluation. J Phys Chem Ref Data 35(4):1475–1517CrossRef Zhang S, Sun N, He X, Lu X, Zhang X (2006) Physical properties of ionic liquids: database and evaluation. J Phys Chem Ref Data 35(4):1475–1517CrossRef
go back to reference Zhang YHP, Ding S-Y, Mielenz JR et al (2007) Fractionating recalcitrant lignocellulose at modest reaction conditions. Biotechnol Bioeng 97(2):214–223CrossRef Zhang YHP, Ding S-Y, Mielenz JR et al (2007) Fractionating recalcitrant lignocellulose at modest reaction conditions. Biotechnol Bioeng 97(2):214–223CrossRef
go back to reference Zhang YHP, Zhu Z, Rollin R, Sathitsuksanoh N (2010) Advances in cellulose solvent- and organic solvent-based lignocelluloses fractionation (COSLIF) in cellulose solvents. In: Liebert T, Heinze T, Edgar K (eds) Cellulose solvents: for analysis, shaping and chemical modification, American Chemical Society symposium series, vol 1033. American Chemical Society, Washington, DC, pp 365–379CrossRef Zhang YHP, Zhu Z, Rollin R, Sathitsuksanoh N (2010) Advances in cellulose solvent- and organic solvent-based lignocelluloses fractionation (COSLIF) in cellulose solvents. In: Liebert T, Heinze T, Edgar K (eds) Cellulose solvents: for analysis, shaping and chemical modification, American Chemical Society symposium series, vol 1033. American Chemical Society, Washington, DC, pp 365–379CrossRef
go back to reference Zhang D, Ong YL, Li Z, Wu JC (2012) Optimization of dilute acid-catalyzed hydrolysis of oil palm empty fruit bunch for high yield production of xylose. Chem Eng J 181–182:636–642CrossRef Zhang D, Ong YL, Li Z, Wu JC (2012) Optimization of dilute acid-catalyzed hydrolysis of oil palm empty fruit bunch for high yield production of xylose. Chem Eng J 181–182:636–642CrossRef
go back to reference Zhang J, Wang Y, Zhang L, Zhang R, Liu G, Cheng G (2014a) Understanding changes in cellulose crystalline structure of lignocellulosic biomass during ionic liquid pretreatment by XRD. Bioresour Technol 151:402–405CrossRef Zhang J, Wang Y, Zhang L, Zhang R, Liu G, Cheng G (2014a) Understanding changes in cellulose crystalline structure of lignocellulosic biomass during ionic liquid pretreatment by XRD. Bioresour Technol 151:402–405CrossRef
go back to reference Zhang CW, Xia SQ, Ma PS (2016) Facile pretreatment of lignocellulosic biomass using deep eutectic solvents. Bioresour Technol 219:1–5CrossRef Zhang CW, Xia SQ, Ma PS (2016) Facile pretreatment of lignocellulosic biomass using deep eutectic solvents. Bioresour Technol 219:1–5CrossRef
go back to reference Zhang L, Lu H, Yu J, Wang Z (2017) Dissolution of Lignocelluloses with a high lignin content in a N-Methylmorpholine-N-oxide Monohydrate solvent system via simple glycerol-swelling and mechanical pretreatments. J Agric Food Chem 65(44):9587–9594CrossRef Zhang L, Lu H, Yu J, Wang Z (2017) Dissolution of Lignocelluloses with a high lignin content in a N-Methylmorpholine-N-oxide Monohydrate solvent system via simple glycerol-swelling and mechanical pretreatments. J Agric Food Chem 65(44):9587–9594CrossRef
go back to reference Zhao Z, Liu D (2012) Fractionating pretreatment of sugarcane bagasse by aqueous formic acid with direct recycle of spent liquor to increase cellulose digestibility-the Formiline process. Bioresour Technol 117:25–32CrossRef Zhao Z, Liu D (2012) Fractionating pretreatment of sugarcane bagasse by aqueous formic acid with direct recycle of spent liquor to increase cellulose digestibility-the Formiline process. Bioresour Technol 117:25–32CrossRef
go back to reference Zhao DB, Liao YC, Zhang ZD (2007) Toxicity of ionic liquids. Clean Soil Air Water 35(1):42–48CrossRef Zhao DB, Liao YC, Zhang ZD (2007) Toxicity of ionic liquids. Clean Soil Air Water 35(1):42–48CrossRef
go back to reference Zhao C, Ding W, Chen F, Cheng C, Shao Q (2014) Effects of compositional changes of AFEX-treated and H-AFEX-treated corn stover on enzymatic digestibility. Bioresour Technol 155:34–40CrossRef Zhao C, Ding W, Chen F, Cheng C, Shao Q (2014) Effects of compositional changes of AFEX-treated and H-AFEX-treated corn stover on enzymatic digestibility. Bioresour Technol 155:34–40CrossRef
go back to reference Zhao BY, Xu P, Yang FX, Wu H, Zong MH, Lou WY (2015) Biocompatible deep eutectic solvents based on choline chloride: characterization and application to the extraction of rutin from Sophora japonica. ACS Sustain Chem Eng 3(11):2746–2755CrossRef Zhao BY, Xu P, Yang FX, Wu H, Zong MH, Lou WY (2015) Biocompatible deep eutectic solvents based on choline chloride: characterization and application to the extraction of rutin from Sophora japonica. ACS Sustain Chem Eng 3(11):2746–2755CrossRef
go back to reference Zheng M, Li X, Li L, Yang X, He Y (2009) Enhancing anaerobic biogasification of corn stover through wet state NaOH. Bioresour Technol 100: 5140-5145CrossRef Zheng M, Li X, Li L, Yang X, He Y (2009) Enhancing anaerobic biogasification of corn stover through wet state NaOH.​ Bioresour Technol 100: 5140-5145CrossRef
go back to reference Zhou M, Xu J, Jiang J, Sharma BK (2018) A review of microwave assisted liquefaction of lignin in hydrogen donor solvents: effect of solvents and catalysts. Energies 11(11):2877CrossRef Zhou M, Xu J, Jiang J, Sharma BK (2018) A review of microwave assisted liquefaction of lignin in hydrogen donor solvents: effect of solvents and catalysts. Energies 11(11):2877CrossRef
go back to reference Zhuang X, Wang W, Yu Q, Qi W, Wang Q, Tan X et al (2016) Liquid hot water pretreatment of lignocellulosic biomass for bioethanol production accompanying with high valuable products. Bioresour Technol 199:68–75CrossRef Zhuang X, Wang W, Yu Q, Qi W, Wang Q, Tan X et al (2016) Liquid hot water pretreatment of lignocellulosic biomass for bioethanol production accompanying with high valuable products. Bioresour Technol 199:68–75CrossRef
Metadata
Title
Impact of Pretreatment Technologies for Biomass to Biofuel Production
Author
Sanjay Sahay
Copyright Year
2020
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-32-9607-7_7