Skip to main content
Top
Published in: Wireless Networks 8/2021

30-09-2021 | Original Paper

Impact of user mobility on wireless powered network for AF and DF relaying over FTR fading channel

Authors: Shweta Singh, Debjani Mitra, R. K. Baghel

Published in: Wireless Networks | Issue 8/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

User mobility causes a significant impact on wireless system performance specifically when cell radius is small like in mm-wave band communication. This research studies, the ergodic outage probability (EOP) performance of wireless power transfer based simultaneous wireless information and power transfer system considering the random way point distributed user mobility. The fluctuating two ray fading model has been used to characterize source to relay and relay to mobile user channel, as it gives the best fit for small-scale fading measurement at the 28 GHz band and can be used to model various conventional and non-conventional fading environments. Closed form expressions for EOP have been derived for all four cases considering amplify-and-forward time switching relaying and decode-and-forward TSR protocols for no diversity and with multiple antenna reception case. Further the asymptotic expressions are also presented to get a better insight on the derived analytical expressions. The system EOP performance have been studied considering user mobility in 1D, 2D, and 3D deployment and results shows that a minute variation in node positioning can impact the system outage performance significantly. Hence the derived performances metric are useful to accurately characterize the system performance with random user mobility. Finally the accuracy of derived expressions has been validated through Monte Carlo simulations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
2.
go back to reference Mishra, D., Singh, S., Agrawal, K. K. (2020). Intelligent Solar Energy Harvesting Based Irrigation System and Its Method Thereof. Australian Patent ID 2020103942, December 8, 2020. Mishra, D., Singh, S., Agrawal, K. K. (2020). Intelligent Solar Energy Harvesting Based Irrigation System and Its Method Thereof. Australian Patent ID 2020103942, December 8, 2020.
3.
go back to reference Hyungsik, Ju., & Zhang, R. (2014). Throughput maximization in wireless powered communication networks. IEEE Transactions on Wireless Communications, 13(1), 418–428.CrossRef Hyungsik, Ju., & Zhang, R. (2014). Throughput maximization in wireless powered communication networks. IEEE Transactions on Wireless Communications, 13(1), 418–428.CrossRef
4.
go back to reference Varshney, L. R. (2008). Transporting information and energy simultaneously. In IEEE International Symposium on Information Theory, 2008. ISIT 2008 (pp. 1612–1616). Varshney, L. R. (2008). Transporting information and energy simultaneously. In IEEE International Symposium on Information Theory, 2008. ISIT 2008 (pp. 1612–1616).
5.
go back to reference Liu, L., Zhang, R., & Chua, K.-C. (2013). Wireless information transfer with opportunistic energy harvesting. IEEE Transactions on Wireless Communications, 12(1), 288–300.CrossRef Liu, L., Zhang, R., & Chua, K.-C. (2013). Wireless information transfer with opportunistic energy harvesting. IEEE Transactions on Wireless Communications, 12(1), 288–300.CrossRef
6.
go back to reference Grover, P., & Sahai, A. (2010) Shannon meets tesla: Wireless information and power transfer. In Proceedings of IEEE International Symposium on Infomation Theory (pp. 2363–2367). Austin, TX, USA. Grover, P., & Sahai, A. (2010) Shannon meets tesla: Wireless information and power transfer. In Proceedings of IEEE International Symposium on Infomation Theory (pp. 2363–2367). Austin, TX, USA.
7.
go back to reference Rabie, K. M., Adebisi, B., & Rozman, M. (2016) Outage probability analysis of WPT systems with multiple-antenna access point. In Proc. Int. Symp. Commun. Syst. Netw. Digit. Signal Process. (CSNDSP) (pp. 1–5). Prague, Czechia. Rabie, K. M., Adebisi, B., & Rozman, M. (2016) Outage probability analysis of WPT systems with multiple-antenna access point. In Proc. Int. Symp. Commun. Syst. Netw. Digit. Signal Process. (CSNDSP) (pp. 1–5). Prague, Czechia.
8.
go back to reference Ju, H., & Zhang, R. (2014). User cooperation in wireless powered communication networks. In 2014 IEEE Global Communications Conference (GLOBECOM) (pp. 1430–1435). Ju, H., & Zhang, R. (2014). User cooperation in wireless powered communication networks. In 2014 IEEE Global Communications Conference (GLOBECOM) (pp. 1430–1435).
9.
go back to reference Krikidis, I., Timotheou, S., & Sasaki, S. (2012). RF energy transfer for cooperative networks: Data relaying or energy harvesting? IEEE Communications Letters, 16(11), 1772–1775.CrossRef Krikidis, I., Timotheou, S., & Sasaki, S. (2012). RF energy transfer for cooperative networks: Data relaying or energy harvesting? IEEE Communications Letters, 16(11), 1772–1775.CrossRef
10.
go back to reference Nasir, A. A., Zhou, X., Durrani, S., & Kennedy, R. A. (2013). Relaying protocols for wireless energy harvesting and information processing. IEEE Transactions on Wireless Communications, 12(7), 3622–3636.CrossRef Nasir, A. A., Zhou, X., Durrani, S., & Kennedy, R. A. (2013). Relaying protocols for wireless energy harvesting and information processing. IEEE Transactions on Wireless Communications, 12(7), 3622–3636.CrossRef
11.
go back to reference Ding, Z., Krikidis, I., Sharif, B., & Poor, H. V. (2014). Wireless information and power transfer in cooperative networks with spatially random relays. IEEE Transactions on Wireless Communications, 13(8), 4440–4453.CrossRef Ding, Z., Krikidis, I., Sharif, B., & Poor, H. V. (2014). Wireless information and power transfer in cooperative networks with spatially random relays. IEEE Transactions on Wireless Communications, 13(8), 4440–4453.CrossRef
13.
go back to reference Gaofeng, P., & Tang, C. (2017). Outage performance on threshold AF and DF relaying schemes in simultaneous wireless information and power transfer systems. AEU-Int J Electron Commun, 71, 175–180.CrossRef Gaofeng, P., & Tang, C. (2017). Outage performance on threshold AF and DF relaying schemes in simultaneous wireless information and power transfer systems. AEU-Int J Electron Commun, 71, 175–180.CrossRef
15.
go back to reference Salem, A., & Hamdi, K. A. (2016). Wireless power transfer in multi-pair two-way AF relaying networks. IEEE Transactions on Communications, 64, 4578–4591.CrossRef Salem, A., & Hamdi, K. A. (2016). Wireless power transfer in multi-pair two-way AF relaying networks. IEEE Transactions on Communications, 64, 4578–4591.CrossRef
17.
go back to reference Wang, H., Wang, J., Ding, G., Wang, L., Tsiftsis, T. A., & Sharma, P. K. (2018). Resource allocation for energy harvesting-powered D2D communication underlaying UAV-assisted networks. IEEE Transactions on Cognitive Network, 2(1), 14–24. Wang, H., Wang, J., Ding, G., Wang, L., Tsiftsis, T. A., & Sharma, P. K. (2018). Resource allocation for energy harvesting-powered D2D communication underlaying UAV-assisted networks. IEEE Transactions on Cognitive Network, 2(1), 14–24.
21.
go back to reference Romero-Jerez, J. M., Lopez-Martinez, F. J., Paris, J. F., & Goldsmith, A. J. (2017). The fluctuating two-ray fading model: Statistical characterization and performance analysis. IEEE Transactions on Wireless Communications, 16(7), 4420–4432.CrossRef Romero-Jerez, J. M., Lopez-Martinez, F. J., Paris, J. F., & Goldsmith, A. J. (2017). The fluctuating two-ray fading model: Statistical characterization and performance analysis. IEEE Transactions on Wireless Communications, 16(7), 4420–4432.CrossRef
22.
go back to reference Rao, M., Lopez-Martinez, F. J., Alouini, M.-S., & Goldsmith, A. (2015). MGF Approach to the Analysis of Generalized Two-Ray Fading Models. IEEE Transactions on Wireless Communications, 14(5), 2548–2561. Rao, M., Lopez-Martinez, F. J., Alouini, M.-S., & Goldsmith, A. (2015). MGF Approach to the Analysis of Generalized Two-Ray Fading Models. IEEE Transactions on Wireless Communications, 14(5), 2548–2561.
23.
go back to reference Kumar, R., & Soni, S. (2020) Performance evaluation of ED based spectrum sensing over fluctuating two ray fading channel. AEU-International Journal of Electronics and Communications, 118, 153143. Kumar, R., & Soni, S. (2020) Performance evaluation of ED based spectrum sensing over fluctuating two ray fading channel. AEU-International Journal of Electronics and Communications, 118, 153143.
24.
go back to reference Du, H., Zhang, J., Cheng, J., & Ai, B. (2021). Millimeter wave communications with reconfigurable intelligent surfaces: Performance analysis and optimization. IEEE Transactions on Communications. Du, H., Zhang, J., Cheng, J., & Ai, B. (2021). Millimeter wave communications with reconfigurable intelligent surfaces: Performance analysis and optimization. IEEE Transactions on Communications.
26.
go back to reference Zheng, J., Zhang, J., Chen, S., et al. (2019). Wireless powered UAV relay communications over fluctuating two-ray fading channels. Physical Communication, 35, 1.CrossRef Zheng, J., Zhang, J., Chen, S., et al. (2019). Wireless powered UAV relay communications over fluctuating two-ray fading channels. Physical Communication, 35, 1.CrossRef
30.
go back to reference Gradshteyn, I., & Ryzhik, I. (2000). Table of integrals, series, and products, edited by a (p. 658). Jeffrey Academic.MATH Gradshteyn, I., & Ryzhik, I. (2000). Table of integrals, series, and products, edited by a (p. 658). Jeffrey Academic.MATH
31.
go back to reference Chen, S., Zhang, J., Zeng, W., Peppas, K. P., Ai, B. (2018). Performance analysis of wireless powered UAV relaying systems over κ-µ fading channels. In Proceedings of IEEE Global Communications on Conferences (GLOBECOM) (pp. 1–6) Chen, S., Zhang, J., Zeng, W., Peppas, K. P., Ai, B. (2018). Performance analysis of wireless powered UAV relaying systems over κ-µ fading channels. In Proceedings of IEEE Global Communications on Conferences (GLOBECOM) (pp. 1–6)
32.
go back to reference Shah, M. (1973). On generalizations of some results and their applications. Collectanea Mathematica, 217(1), 126C133.MathSciNet Shah, M. (1973). On generalizations of some results and their applications. Collectanea Mathematica, 217(1), 126C133.MathSciNet
34.
go back to reference Abramowitz, M., Stegun, I. A., & Romer, R. H. (1988). Handbook of mathematical functions with formulas, graphs, and mathematical tables. American Journal of Physics, 56, 958.CrossRef Abramowitz, M., Stegun, I. A., & Romer, R. H. (1988). Handbook of mathematical functions with formulas, graphs, and mathematical tables. American Journal of Physics, 56, 958.CrossRef
Metadata
Title
Impact of user mobility on wireless powered network for AF and DF relaying over FTR fading channel
Authors
Shweta Singh
Debjani Mitra
R. K. Baghel
Publication date
30-09-2021
Publisher
Springer US
Published in
Wireless Networks / Issue 8/2021
Print ISSN: 1022-0038
Electronic ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-021-02795-9

Other articles of this Issue 8/2021

Wireless Networks 8/2021 Go to the issue