Skip to main content
Top
Published in: Wireless Personal Communications 3/2020

25-05-2020

Implementation of an Efficient Artificial Bee Colony Algorithm for Node Localization in Unmanned Aerial Vehicle Assisted Wireless Sensor Networks

Authors: Visalakshi Annepu, A. Rajesh

Published in: Wireless Personal Communications | Issue 3/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Node localization is a fundamental task in wireless sensor networks as it is useful for several localization based protocols and applications. Node localization using Global Poisoning System (GPS) employed fixed terrestrial anchor nodes suffers from high deployment cost and poor localization accuracy in GPS denied locations. These issues can be easily handled by deploying movable Unmanned Aerial Vehicles (UAVs). A movable UAV equipped with a single GPS module virtually increases number of anchor nodes and localizes a node at different locations. Hence, UAVs are cost effective and also provides high localization accuracy. As the flying altitude of UAV greatly influence localization accuracy, the present work firstly optimizes the flying height and then the node localization is defined as least square optimization problem using this optimal height. Since the classical received signal strength indicator based multilateration results high localization error, the least square localization using optimization techniques is found to be better alternative. The recently proposed Artificial Bee Colony (ABC) algorithm is a powerful optimization technique that can be applied for this optimization problem to achieve high accuracy. Thus, this paper aims at designing an ABC localization technique using UAV anchors to achieve minimum localization error. Further, we provide detailed simulation analysis to support the proposed ABC localization scheme.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Harl, H., & Willig, A. (2005). Protocols and architectures for wireless sensor networks. West Sussex: Wiley. Harl, H., & Willig, A. (2005). Protocols and architectures for wireless sensor networks. West Sussex: Wiley.
2.
go back to reference Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). A survey on sensor networks. IEEE Communications Magazine, 40(8), 102–114. Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). A survey on sensor networks. IEEE Communications Magazine, 40(8), 102–114.
3.
go back to reference Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: A survey. Computer Networks, 38(4), 393–422. Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: A survey. Computer Networks, 38(4), 393–422.
4.
go back to reference Chizari, H., Poston, T., Abd Razak, S., Abdullah, A. H., & Salleh, S. (2014). Local coverage measurement algorithm in GPS-free wireless sensor networks. Ad Hoc Networks, 23, 1–17. Chizari, H., Poston, T., Abd Razak, S., Abdullah, A. H., & Salleh, S. (2014). Local coverage measurement algorithm in GPS-free wireless sensor networks. Ad Hoc Networks, 23, 1–17.
5.
go back to reference Aspnes, J., Eren, T., Goldenberg, D. K., et al. (2006). A theory of network localization. IEEE Transactions on Mobile Computing, 5(12), 1663–1678. Aspnes, J., Eren, T., Goldenberg, D. K., et al. (2006). A theory of network localization. IEEE Transactions on Mobile Computing, 5(12), 1663–1678.
6.
go back to reference Wen, F., & Liang, C. (2015). Fine-grained indoor localization using single access point with multiple antennas. IEEE Sensors Journal, 15(3), 1538–1544. Wen, F., & Liang, C. (2015). Fine-grained indoor localization using single access point with multiple antennas. IEEE Sensors Journal, 15(3), 1538–1544.
7.
go back to reference Tarrío, P., Bernardos, A. M., & Casar, J. R. (2012). An energy-efficient strategy for accurate distance estimation in wireless sensor networks. Sensors, 12(11), 15438–15466. Tarrío, P., Bernardos, A. M., & Casar, J. R. (2012). An energy-efficient strategy for accurate distance estimation in wireless sensor networks. Sensors, 12(11), 15438–15466.
8.
go back to reference Xiong, H., Chen, Z., Yang, B., & Ni, R. (2015). TDoA localization algorithm with compensation of clock offset for wireless sensor networks. China Communications, 12(10), 193–201. Xiong, H., Chen, Z., Yang, B., & Ni, R. (2015). TDoA localization algorithm with compensation of clock offset for wireless sensor networks. China Communications, 12(10), 193–201.
9.
go back to reference Liu, Y., Hu, Y. H., & Pan, Q. (2012). Distributed, robust acoustic source localization in a wireless sensor network. IEEE Transactions on Signal Processing, 60(8), 4350–4359.MathSciNetMATH Liu, Y., Hu, Y. H., & Pan, Q. (2012). Distributed, robust acoustic source localization in a wireless sensor network. IEEE Transactions on Signal Processing, 60(8), 4350–4359.MathSciNetMATH
10.
go back to reference Maddumabandara, A., Leung, H., & Liu, M. (2015). Experimental evaluation of indoor localization using wireless sensor networks. IEEE Sensors Journal, 15(9), 5228–5237. Maddumabandara, A., Leung, H., & Liu, M. (2015). Experimental evaluation of indoor localization using wireless sensor networks. IEEE Sensors Journal, 15(9), 5228–5237.
11.
go back to reference Xu, Y., Zhou, J., & Zhang, P. (2014). RSS-based source localization when path-loss model parameters are unknown. IEEE Communications Letters, 18(6), 1055–1058. Xu, Y., Zhou, J., & Zhang, P. (2014). RSS-based source localization when path-loss model parameters are unknown. IEEE Communications Letters, 18(6), 1055–1058.
12.
go back to reference Bulusu, N., Heidemann, J., & Estrin, D. (2000). GPS-less low-cost outdoor localization for very small devices. IEEE Personal Communications, 7(5), 28–34. Bulusu, N., Heidemann, J., & Estrin, D. (2000). GPS-less low-cost outdoor localization for very small devices. IEEE Personal Communications, 7(5), 28–34.
13.
go back to reference Niculescu, D., & Nath, B. (2003). DV based positioning in Ad Hoc networks. Telecommunication Systems, 22(1–4), 267–280. Niculescu, D., & Nath, B. (2003). DV based positioning in Ad Hoc networks. Telecommunication Systems, 22(1–4), 267–280.
14.
go back to reference Liu, Y. (2011). An adaptive multi-hop distance localization algorithm in WSN. Manufacturing Automation, 33, 161–163. Liu, Y. (2011). An adaptive multi-hop distance localization algorithm in WSN. Manufacturing Automation, 33, 161–163.
15.
go back to reference Das, A. D. R., & Mallick, D. K. (2017). A congestion aware, energy efficient, on demand fuzzy logic based clustering protocol for multi-hop wireless sensor networks. Wireless Personal Communications, 97(1), 1445–1474. Das, A. D. R., & Mallick, D. K. (2017). A congestion aware, energy efficient, on demand fuzzy logic based clustering protocol for multi-hop wireless sensor networks. Wireless Personal Communications, 97(1), 1445–1474.
16.
go back to reference López, D. A., Rojas, C. A., Zapata, D. F., et al. (2018). Designing a MAC algorithm for equitable spectrum allocation in cognitive radio wireless networks. Wireless Personal Communications, 98(1), 363–394. López, D. A., Rojas, C. A., Zapata, D. F., et al. (2018). Designing a MAC algorithm for equitable spectrum allocation in cognitive radio wireless networks. Wireless Personal Communications, 98(1), 363–394.
17.
go back to reference Cheng, B. H., Vandenberghe, L., & Yao, K. (2009). Distributed algorithm for node localization in wireless ad-hoc networks. ACM Transactions on Sensor Networks, 6(1), 8–20. Cheng, B. H., Vandenberghe, L., & Yao, K. (2009). Distributed algorithm for node localization in wireless ad-hoc networks. ACM Transactions on Sensor Networks, 6(1), 8–20.
18.
go back to reference Storn, R., & Price, K. V. (1997). Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11(4), 341–359.MathSciNetMATH Storn, R., & Price, K. V. (1997). Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11(4), 341–359.MathSciNetMATH
19.
go back to reference Harikrishnan, R., Kumar, V. J. S., & Sridevi Ponmalar, P. (2016). A comparative analysis of intelligent algorithms for localization in wireless sensor networks. Wireless Personal Communications, 87(3), 1057–1069. Harikrishnan, R., Kumar, V. J. S., & Sridevi Ponmalar, P. (2016). A comparative analysis of intelligent algorithms for localization in wireless sensor networks. Wireless Personal Communications, 87(3), 1057–1069.
21.
go back to reference Bagadi, K., & Das, D. (2014). Minimum symbol error rate multiuser detection using an effective invasive weed optimization for MIMO/SDMA–OFDM system. International Journal of Communication Systems, 27(12), 3837–3854. Bagadi, K., & Das, D. (2014). Minimum symbol error rate multiuser detection using an effective invasive weed optimization for MIMO/SDMA–OFDM system. International Journal of Communication Systems, 27(12), 3837–3854.
22.
go back to reference Bagadi, K., Annepu, V., & Das, D. (2016). Recent trends in multiuser detection techniques for SDMA–OFDM communication system. Physical Communication, 20, 93–108. Bagadi, K., Annepu, V., & Das, D. (2016). Recent trends in multiuser detection techniques for SDMA–OFDM communication system. Physical Communication, 20, 93–108.
23.
go back to reference Weatherington, D. (2002). Unmanned aerial vehicles roadmap: 2002–2027. Technical Report ADA414908. Office of Secretary of Defence, Washington, DC, USA. Weatherington, D. (2002). Unmanned aerial vehicles roadmap: 2002–2027. Technical Report ADA414908. Office of Secretary of Defence, Washington, DC, USA.
24.
go back to reference Xu, Y., Zhenguo, G., & Qiang, N. (2017). Unmanned aerial vehicle–Assisted node localization for wireless sensor Networks. International Journal of Distributed Sensor Networks, 13(12), 1–13. Xu, Y., Zhenguo, G., & Qiang, N. (2017). Unmanned aerial vehicle–Assisted node localization for wireless sensor Networks. International Journal of Distributed Sensor Networks, 13(12), 1–13.
25.
go back to reference Hazem, S., Mohammad, M. A., Alessandro, C., & Sofie, P. (2017). Aerial Anchors positioning for reliable RSS-based outdoor localization in urban environments. IEEE Wireless Communications Letters., 7(3), 376–379. Hazem, S., Mohammad, M. A., Alessandro, C., & Sofie, P. (2017). Aerial Anchors positioning for reliable RSS-based outdoor localization in urban environments. IEEE Wireless Communications Letters., 7(3), 376–379.
26.
go back to reference Morbidi, F., & Mariottini, G. L. (2013). Active target tracking and cooperative localization for teams of aerial vehicles. IEEE Transactions on Control Systems Technology, 21(5), 1694–1707. Morbidi, F., & Mariottini, G. L. (2013). Active target tracking and cooperative localization for teams of aerial vehicles. IEEE Transactions on Control Systems Technology, 21(5), 1694–1707.
27.
go back to reference Minaeian, S., Liu, J., & Son, Y. J. (2016). Vision-based target detection and localization via a team of cooperative UAV and UGVs. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 46(7), 1005–1016. Minaeian, S., Liu, J., & Son, Y. J. (2016). Vision-based target detection and localization via a team of cooperative UAV and UGVs. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 46(7), 1005–1016.
28.
go back to reference Subong, S., Bhoram, L., & Jihoon, K. (2008). Vision-based real-time target localization for single-antenna GPS-guided UAV. IEEE Transactions on Aerospace and Electronic Systems, 44(4), 1391–1401. Subong, S., Bhoram, L., & Jihoon, K. (2008). Vision-based real-time target localization for single-antenna GPS-guided UAV. IEEE Transactions on Aerospace and Electronic Systems, 44(4), 1391–1401.
29.
go back to reference Yan, M., Du, P., Wang, H. L., et al. (2012). Ground multi-target positioning algorithm for airborne optoelectronic system. Journal of Applied Optics, 33, 717–720. Yan, M., Du, P., Wang, H. L., et al. (2012). Ground multi-target positioning algorithm for airborne optoelectronic system. Journal of Applied Optics, 33, 717–720.
30.
go back to reference Karaboga, D. (2005). An idea based on honey bee swarm for numerical optimization. Technical Report-TR06, Erciyes University, Engineering Faculty, Computer Engineering Department. Karaboga, D. (2005). An idea based on honey bee swarm for numerical optimization. Technical Report-TR06, Erciyes University, Engineering Faculty, Computer Engineering Department.
31.
go back to reference Guangjie, H., Jinfang, J., Chenyu, Z., Trung, Q., Duong, M. G., & George, K. K. (2016). A survey on mobile anchor node assisted localization in wireless sensor networks. IEEE Communications Surveys and Tutorials, 18(3), 2220–2242. Guangjie, H., Jinfang, J., Chenyu, Z., Trung, Q., Duong, M. G., & George, K. K. (2016). A survey on mobile anchor node assisted localization in wireless sensor networks. IEEE Communications Surveys and Tutorials, 18(3), 2220–2242.
Metadata
Title
Implementation of an Efficient Artificial Bee Colony Algorithm for Node Localization in Unmanned Aerial Vehicle Assisted Wireless Sensor Networks
Authors
Visalakshi Annepu
A. Rajesh
Publication date
25-05-2020
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 3/2020
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-07496-8

Other articles of this Issue 3/2020

Wireless Personal Communications 3/2020 Go to the issue