Skip to main content
Top
Published in: Photonic Network Communications 1/2020

14-11-2019 | Original Paper

Implementation of quantum repeater scheme based on non-identical quantum memories

Authors: Adnan N. Kadhim, Jawad A. Hasan, Wijdan M. Alkhalidy

Published in: Photonic Network Communications | Issue 1/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Quantum key distribution aims to distribute a secret key among distant parties linked by an optical fiber or free space. Unfortunately, the main problem which limits the long distance direct transmission of qubits is the exponential decay of the signal. This limit can be overcome by introducing quantum repeaters (QRs) between the two distant points. Quantum repeaters suggest a technique for establishing long distance quantum communication by the construction of entangled qubits among the end point of the channel, by dividing the channel into elementary links edged with quantum memory (QM) called nodes. Many schemes use identical QMs (Mastromattei in Assessing the practicality of a simple multi-node quantum repeater. M.Sc. thesis, University of Waterloo, ON, Canada, 2017). These schemes need QMs of long life times and high efficiencies which is not the practical case for QMs. To optimize these requirements, a multi-node sequential quantum repeater of a non-identical QMs is proposed here to interplay between the total channel efficiency and decoherence time T2 and the quantum memories life times and their efficiencies to enhance the execution of the quantum repeater (QR). The outcomes show that the interplay between the decoherence time and efficiency in non-identical QR improves the key rate as compared to that of the identical QR, the distance of the channel can be extended by using non-identical QMs repeater scheme since quantum bit error rate is decreased, and the cost of fabricating non-identical QMs repeater is reduced since we use most QMs with low life time.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299(5886), 802–803 (1982)CrossRef Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299(5886), 802–803 (1982)CrossRef
2.
go back to reference Lvovsky, A.I., Sanders, B.C., Tittel, W.: Optical quantum memory. Nat. Photonics 3(12), 706–714 (2009)CrossRef Lvovsky, A.I., Sanders, B.C., Tittel, W.: Optical quantum memory. Nat. Photonics 3(12), 706–714 (2009)CrossRef
3.
go back to reference Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dušek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81(3), 1301 (2009)CrossRef Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dušek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81(3), 1301 (2009)CrossRef
4.
go back to reference Munro, W., Stephens, A., Devitt, S., Harrison, K., Nemoto, K.: Quantum communication without the necessity of quantum memories. Nat. Photonics 6(11), 777–781 (2012)CrossRef Munro, W., Stephens, A., Devitt, S., Harrison, K., Nemoto, K.: Quantum communication without the necessity of quantum memories. Nat. Photonics 6(11), 777–781 (2012)CrossRef
5.
go back to reference Weedbrook, C., Pirandola, S., Garcia-Patron, R., Cerf, N.J., Ralph, T.C., Shapiro, J.H., Lloyd, S.: Gaussian quantum information. Rev. Mod. Phys. 84(2), 621 (2012)CrossRef Weedbrook, C., Pirandola, S., Garcia-Patron, R., Cerf, N.J., Ralph, T.C., Shapiro, J.H., Lloyd, S.: Gaussian quantum information. Rev. Mod. Phys. 84(2), 621 (2012)CrossRef
6.
go back to reference Duan, L.M., Lukin, M., Cirac, J.I., Zoller, P.: Long-distance quantum communication with atomic ensembles and linear optics. Nature 414(6862), 413–418 (2001)CrossRef Duan, L.M., Lukin, M., Cirac, J.I., Zoller, P.: Long-distance quantum communication with atomic ensembles and linear optics. Nature 414(6862), 413–418 (2001)CrossRef
8.
go back to reference Jiang, L., Taylor, J.M., Nemoto, K., Munro, W.J., Van Meter, R., Lukin, M.D.: Quantum repeater with encoding. Phys. Rev. A 79, 032325 (2009)CrossRef Jiang, L., Taylor, J.M., Nemoto, K., Munro, W.J., Van Meter, R., Lukin, M.D.: Quantum repeater with encoding. Phys. Rev. A 79, 032325 (2009)CrossRef
10.
go back to reference Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046 (1996)CrossRef Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046 (1996)CrossRef
11.
go back to reference Munro, W.J., Stephens, A.M., Devitt, S.J., Harrison, K.A., Nemoto, K.: Quantum communication without the necessity of quantum memories. Nat. Photon. 6, 777 (2012)CrossRef Munro, W.J., Stephens, A.M., Devitt, S.J., Harrison, K.A., Nemoto, K.: Quantum communication without the necessity of quantum memories. Nat. Photon. 6, 777 (2012)CrossRef
12.
go back to reference Muralidharan, S., Kim, J., Lütkenhaus, N., Lukin, M.D., Jiang, L.: Ultrafast and fault-tolerant quantum communication across long distances. Phys. Rev. Lett. 112, 250501 (2014)CrossRef Muralidharan, S., Kim, J., Lütkenhaus, N., Lukin, M.D., Jiang, L.: Ultrafast and fault-tolerant quantum communication across long distances. Phys. Rev. Lett. 112, 250501 (2014)CrossRef
13.
go back to reference Briegel, H.J., Dur, W., Cirac, J.I., Zoller, P.: Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932 (1998)CrossRef Briegel, H.J., Dur, W., Cirac, J.I., Zoller, P.: Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932 (1998)CrossRef
14.
go back to reference Luong, D., Jiang, L., Kim, J., Lutkenhaus, N.: Overcoming lossy channel bounds using a single quantum repeater node. Appl. Phys. B 122(4), 1–10 (2016)CrossRef Luong, D., Jiang, L., Kim, J., Lutkenhaus, N.: Overcoming lossy channel bounds using a single quantum repeater node. Appl. Phys. B 122(4), 1–10 (2016)CrossRef
15.
go back to reference Krovi, H., Guha, S., Dutton, Z., Slater, J.A., Simon, C., Tittel, W.: Practical quantum repeaters with parametric down-conversion sources. Appl. Phys. B 122(3), 1–8 (2016)CrossRef Krovi, H., Guha, S., Dutton, Z., Slater, J.A., Simon, C., Tittel, W.: Practical quantum repeaters with parametric down-conversion sources. Appl. Phys. B 122(3), 1–8 (2016)CrossRef
16.
go back to reference Song, G.Z., Zhou Wu, F., Zhang, M., Yang, G.J.: Heralded quantum repeater based on the scattering of photons off single emitters using parametric down-conversion source. Scientific Reports 6, 28744 (2016)CrossRef Song, G.Z., Zhou Wu, F., Zhang, M., Yang, G.J.: Heralded quantum repeater based on the scattering of photons off single emitters using parametric down-conversion source. Scientific Reports 6, 28744 (2016)CrossRef
17.
go back to reference Rozpdek, F., et al.: Parameter regimes for a single sequential quantum repeater. Quantum Sci. Technol. 3, 034002 (2018)CrossRef Rozpdek, F., et al.: Parameter regimes for a single sequential quantum repeater. Quantum Sci. Technol. 3, 034002 (2018)CrossRef
18.
go back to reference Goodenough, K., Elkouss, D., Wehner, S.: Assessing the performance of quantum repeaters for all phase-insensitive gaussian bosonic channels. New J. Phys. 18(6), 063005 (2016)CrossRef Goodenough, K., Elkouss, D., Wehner, S.: Assessing the performance of quantum repeaters for all phase-insensitive gaussian bosonic channels. New J. Phys. 18(6), 063005 (2016)CrossRef
19.
go back to reference Mastromattei, C.: Assessing the practicality of a simple multi-node quantum repeater. M.Sc. thesis, University of Waterloo, ON, Canada (2017) Mastromattei, C.: Assessing the practicality of a simple multi-node quantum repeater. M.Sc. thesis, University of Waterloo, ON, Canada (2017)
21.
go back to reference Specht, H.P., Nolleke, C., Reiserer, A., Upho, M., Figueroa, E., Ritter, S., Rempe, G.: A single-atom quantum memory. Nature 473(7346), 190–193 (2011)CrossRef Specht, H.P., Nolleke, C., Reiserer, A., Upho, M., Figueroa, E., Ritter, S., Rempe, G.: A single-atom quantum memory. Nature 473(7346), 190–193 (2011)CrossRef
22.
go back to reference Blinov, B.B., Moehring, D.L., Duan, L.-M., Monroe, C.: Observation of entanglement between a single trapped atom and a single photon. Nature 428(6979), 153–157 (2004)CrossRef Blinov, B.B., Moehring, D.L., Duan, L.-M., Monroe, C.: Observation of entanglement between a single trapped atom and a single photon. Nature 428(6979), 153–157 (2004)CrossRef
23.
go back to reference Volz, J., Weber, M., Schlenk, D., Rosenfeld, W., Vrana, J., Saucke, K., Kurtsiefer, C., Weinfurter, H.: Observation of entanglement of a single photon with a trapped atom. Phys. Rev. Lett. 96, 030404 (2006)CrossRef Volz, J., Weber, M., Schlenk, D., Rosenfeld, W., Vrana, J., Saucke, K., Kurtsiefer, C., Weinfurter, H.: Observation of entanglement of a single photon with a trapped atom. Phys. Rev. Lett. 96, 030404 (2006)CrossRef
24.
go back to reference Childress, L., Taylor, J.M., Srensen, A.S., Lukin, M.D.: Fault-tolerant quantum communication based on solid-state photon emitters. Phys. Rev. Lett. 96, 070504 (2006)CrossRef Childress, L., Taylor, J.M., Srensen, A.S., Lukin, M.D.: Fault-tolerant quantum communication based on solid-state photon emitters. Phys. Rev. Lett. 96, 070504 (2006)CrossRef
25.
go back to reference Vinay, S.E., Kok, P.: Practical repeaters for ultralong-distance quantum communication. Phys. Rev. A 95, 052336 (2017)CrossRef Vinay, S.E., Kok, P.: Practical repeaters for ultralong-distance quantum communication. Phys. Rev. A 95, 052336 (2017)CrossRef
26.
go back to reference Olmschenk, S., Younge, K.C., Moehring, D.L., Matsukevich, D.N., Maunz, P., Monroe, C.: Manipulation and detection of a trapped Yb + ion hyperfine qubit. Phys. Rev. A 76, 052314 (2007)CrossRef Olmschenk, S., Younge, K.C., Moehring, D.L., Matsukevich, D.N., Maunz, P., Monroe, C.: Manipulation and detection of a trapped Yb + ion hyperfine qubit. Phys. Rev. A 76, 052314 (2007)CrossRef
27.
go back to reference Graham, R.D., Chen, S.-P., Sakrejda, T., Wright, J., Zhou, Z., Blinov, B.B.: A system for trapping barium ions in a microfabricated surface trap. AIP Adv. 4(5), 057124 (2014)CrossRef Graham, R.D., Chen, S.-P., Sakrejda, T., Wright, J., Zhou, Z., Blinov, B.B.: A system for trapping barium ions in a microfabricated surface trap. AIP Adv. 4(5), 057124 (2014)CrossRef
28.
go back to reference Harty, T.P., Allcock, D.T.C., Ballance, C.J., Guidoni, L., Janacek, H.A., Linke, N.M., Stacey, D.N., Lucas, D.M.: High-fidelity preparation, gates, memory, and readout of a trapped-ion quantum bit. Phys. Rev. Lett. 113, 220501 (2014)CrossRef Harty, T.P., Allcock, D.T.C., Ballance, C.J., Guidoni, L., Janacek, H.A., Linke, N.M., Stacey, D.N., Lucas, D.M.: High-fidelity preparation, gates, memory, and readout of a trapped-ion quantum bit. Phys. Rev. Lett. 113, 220501 (2014)CrossRef
29.
go back to reference Olmschenk, S., Matsukevich, D.N., Maunz, P., Hayes, D., Duan, L.-M., Monroe, C.: Quantum teleportation between distant matter qubits. Science 323(5913), 486–489 (2009)CrossRef Olmschenk, S., Matsukevich, D.N., Maunz, P., Hayes, D., Duan, L.-M., Monroe, C.: Quantum teleportation between distant matter qubits. Science 323(5913), 486–489 (2009)CrossRef
30.
go back to reference Matsukevich, D.N., Maunz, P., Moehring, D.L., Olmschenk, S., Monroe, C.: Bell inequality violation with two remote atomic qubits. Phys. Rev. Lett. 100, 150404 (2008)CrossRef Matsukevich, D.N., Maunz, P., Moehring, D.L., Olmschenk, S., Monroe, C.: Bell inequality violation with two remote atomic qubits. Phys. Rev. Lett. 100, 150404 (2008)CrossRef
31.
go back to reference Kim, T., Maunz, P., Kim, J.: Efficient collection of single photons emitted from a trapped ion into a single-mode fiber for scalable quantum-information processing. Phys. Rev. A 84, 063423 (2011)CrossRef Kim, T., Maunz, P., Kim, J.: Efficient collection of single photons emitted from a trapped ion into a single-mode fiber for scalable quantum-information processing. Phys. Rev. A 84, 063423 (2011)CrossRef
32.
go back to reference Ballance, C.J., Schafer, V.M., Home, J.P., Szwer, D.J., Webster, S.C., Allcock, D.T.C., Linke, N.M., Harty, T.P., Audecraik, D.P.L., Stacey, D.N., Steane, A.M., Lucas, D.M.: Hybrid quantum logic and a test of Bell’s inequality using two different atomic isotopes. Nature 528, 384–386 (2015)CrossRef Ballance, C.J., Schafer, V.M., Home, J.P., Szwer, D.J., Webster, S.C., Allcock, D.T.C., Linke, N.M., Harty, T.P., Audecraik, D.P.L., Stacey, D.N., Steane, A.M., Lucas, D.M.: Hybrid quantum logic and a test of Bell’s inequality using two different atomic isotopes. Nature 528, 384–386 (2015)CrossRef
33.
go back to reference Tan, T.R., Gaebler, J.P., Lin, Y., Wan, Y., Bowler, R., Leibfried, D., Wineland, D.J.: Multi-element logic gates for trapped-ion qubits. Nature 528, 380–383 (2015)CrossRef Tan, T.R., Gaebler, J.P., Lin, Y., Wan, Y., Bowler, R., Leibfried, D., Wineland, D.J.: Multi-element logic gates for trapped-ion qubits. Nature 528, 380–383 (2015)CrossRef
34.
go back to reference Lo, H.K., Chau, H.F., Ardehali, M.: Efficient quantum key distribution scheme and a proof of its unconditional security. J. Cryptology 18(2), 133–165 (2005)MathSciNetCrossRef Lo, H.K., Chau, H.F., Ardehali, M.: Efficient quantum key distribution scheme and a proof of its unconditional security. J. Cryptology 18(2), 133–165 (2005)MathSciNetCrossRef
35.
go back to reference Jobez, P., Usmani, I., Timoney, N., Laplane, C., Gisin, N., Afzelius, M.: Cavity-enhanced storage in an optical spin-wave memory. New J. Phys. 16, 083005 (2014)CrossRef Jobez, P., Usmani, I., Timoney, N., Laplane, C., Gisin, N., Afzelius, M.: Cavity-enhanced storage in an optical spin-wave memory. New J. Phys. 16, 083005 (2014)CrossRef
36.
go back to reference Cho, Y.W., Campbell, G.T., Everett, J.L., Bernu, J., Higginbottom, D.B., Cao, M.T., Geng, J., Robins, N.P., Lam, P.K., Buchler, B.C.: Highly efficient optical quantum memory with long coherence time in cold atoms. Optica 3(1), 100–107 (2016)CrossRef Cho, Y.W., Campbell, G.T., Everett, J.L., Bernu, J., Higginbottom, D.B., Cao, M.T., Geng, J., Robins, N.P., Lam, P.K., Buchler, B.C.: Highly efficient optical quantum memory with long coherence time in cold atoms. Optica 3(1), 100–107 (2016)CrossRef
37.
go back to reference Khodjasteh, K., Sastrawan, J., Hayes, D., Green, T.J., Biercuk, M.J., Viola, L.: Designing a practical high-fidelity long-time quantum memory. Nature Communications 4, 2045 (2013)CrossRef Khodjasteh, K., Sastrawan, J., Hayes, D., Green, T.J., Biercuk, M.J., Viola, L.: Designing a practical high-fidelity long-time quantum memory. Nature Communications 4, 2045 (2013)CrossRef
38.
go back to reference Dudin, Y.O., Li, L., Kuzmich, A.: Light storage on the time scale of a minute. Phys. Rev. A 87, 031801(R) (2013)CrossRef Dudin, Y.O., Li, L., Kuzmich, A.: Light storage on the time scale of a minute. Phys. Rev. A 87, 031801(R) (2013)CrossRef
Metadata
Title
Implementation of quantum repeater scheme based on non-identical quantum memories
Authors
Adnan N. Kadhim
Jawad A. Hasan
Wijdan M. Alkhalidy
Publication date
14-11-2019
Publisher
Springer US
Published in
Photonic Network Communications / Issue 1/2020
Print ISSN: 1387-974X
Electronic ISSN: 1572-8188
DOI
https://doi.org/10.1007/s11107-019-00870-y

Other articles of this Issue 1/2020

Photonic Network Communications 1/2020 Go to the issue