Skip to main content
Top
Published in: International Journal of Machine Learning and Cybernetics 3/2017

29-04-2015 | Original Article

Improved discrete mapping differential evolution for multi-unmanned aerial vehicles cooperative multi-targets assignment under unified model

Authors: Zhao Ming, Zhao Lingling, Su Xiaohong, Ma Peijun, Zhang Yanhang

Published in: International Journal of Machine Learning and Cybernetics | Issue 3/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The cooperative multi-targets assignment for multiple unmanned aerial vehicles (UAV) is a complex combinatorial optimization problem. Multi-UAVs cooperation increases the scale of problems which cause a noticeable increase in task planning time. Moreover, it is difficult to build a unified assignment model because different tasks often require different numbers of UAVs and targets. Besides, the cooperative constraints of multi-UAVs in a three-dimensional environments are more complex than that in a two-dimensional environments, which makes it difficult to obtain an optimal solution. To solve these problems, we present a unified gene coding strategy to handle various models in a consistent framework. Then, a cooperative target assignment algorithm in a three-dimensional environments based on discrete mapping differential evolution is given. First, we use flight path cost to indicate the assignment relationship between the UAV and the target, which turns the optimization problem from discrete space to continuous space, and so the solving process can be simplified. Secondly, in order to obtain reasonable offspring for differential evolution, we map the solution back to the assignment relationship space according to inverse mapping rules. Finally, to avoid falling into a local optimal, a balance between exploration and exploitation is achieved by combining the dynamic crossover rate with the hybrid evolution strategy. The simulation results show that the proposed discrete mapping differential evolution algorithm with the unified gene coding strategy not only effectively solves the cooperative multi-targets assignment problem, but also improves the accuracy of the multi-targets assignment. It is also suitable for solving the large scale problem of assignment.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Show more products
Literature
1.
go back to reference Barlow GJ, Oh CK, Smith SF (2008) Evolving cooperative control on sparsely distributed tasks for UAV teams without global communication [C]. In: Proceedings of the 10th annual conference on genetic and evolutionary computation. ACM, pp 177–184 Barlow GJ, Oh CK, Smith SF (2008) Evolving cooperative control on sparsely distributed tasks for UAV teams without global communication [C]. In: Proceedings of the 10th annual conference on genetic and evolutionary computation. ACM, pp 177–184
2.
go back to reference Vandermeersch BRR, Chu QP, Mulder JA et al (2005) Design and Implementation of a mission planner for multiple UCAVs in a SEAD mission [C]. In: AIAA Guidance, Navigation, and Control Conference and Exhibit, vol 6480. AIAA, San Francisco Vandermeersch BRR, Chu QP, Mulder JA et al (2005) Design and Implementation of a mission planner for multiple UCAVs in a SEAD mission [C]. In: AIAA Guidance, Navigation, and Control Conference and Exhibit, vol 6480. AIAA, San Francisco
3.
go back to reference Eun Y, Bang H (2009) Cooperative task assignment/path planning of multiple unmanned aerial vehicles using genetic algorithms [J]. J Aircr 46(1):338–343CrossRef Eun Y, Bang H (2009) Cooperative task assignment/path planning of multiple unmanned aerial vehicles using genetic algorithms [J]. J Aircr 46(1):338–343CrossRef
4.
go back to reference Bethke B, Valenti M, How JP (2008) UAV task assignment [J]. IEEE Robot Autom Mag 15(1):39–44CrossRef Bethke B, Valenti M, How JP (2008) UAV task assignment [J]. IEEE Robot Autom Mag 15(1):39–44CrossRef
5.
go back to reference Yi Liu, Weimin Li, Qinghua Xing et al (2010) Cooperative mission assignment optimization of unmanned combat aerial vehicles based on bi-level programming [J]. Syst Eng Electron 32(3):579–583 Yi Liu, Weimin Li, Qinghua Xing et al (2010) Cooperative mission assignment optimization of unmanned combat aerial vehicles based on bi-level programming [J]. Syst Eng Electron 32(3):579–583
6.
go back to reference Humphrey L, Cohen K (2010) Application of proper orthogonal decomposition and artificial neural networks to multiple UAV task assignment. In: Invited Paper, AIAA Guidance, Navigation, and Control Conference, AIAA, vol 8439. Toronto, Ontario Canada, 2–5 Aug 2010 Humphrey L, Cohen K (2010) Application of proper orthogonal decomposition and artificial neural networks to multiple UAV task assignment. In: Invited Paper, AIAA Guidance, Navigation, and Control Conference, AIAA, vol 8439. Toronto, Ontario Canada, 2–5 Aug 2010
7.
go back to reference Hoai ALT, Duc MN, Tao PD (2012) Globally solving a non-linear UAV task assignment problem by stochastic and deterministic optimization approaches [J]. Optim Lett 6(2):315–329MathSciNetCrossRefMATH Hoai ALT, Duc MN, Tao PD (2012) Globally solving a non-linear UAV task assignment problem by stochastic and deterministic optimization approaches [J]. Optim Lett 6(2):315–329MathSciNetCrossRefMATH
8.
9.
go back to reference Yi L, MingAn Tong (2002) An application of Hungarian algorithm to the multi-target assignment [J]. Fire Control and Command Control 27(4):34–37 Yi L, MingAn Tong (2002) An application of Hungarian algorithm to the multi-target assignment [J]. Fire Control and Command Control 27(4):34–37
10.
go back to reference Kuncheva LI (2010) Full-class set classification using the Hungarian algorithm[J]. Int J Mach Learn Cybern 1(1–4):53–61CrossRef Kuncheva LI (2010) Full-class set classification using the Hungarian algorithm[J]. Int J Mach Learn Cybern 1(1–4):53–61CrossRef
11.
go back to reference Bellingham J, Tillerson M, Richards A et al (2003) Multi-task allocation and path planning for cooperating UAVs [M]. Cooperative Control: Models, Applications and Algorithms. Springer, US, pp 23–41 Bellingham J, Tillerson M, Richards A et al (2003) Multi-task allocation and path planning for cooperating UAVs [M]. Cooperative Control: Models, Applications and Algorithms. Springer, US, pp 23–41
12.
go back to reference Maddula T, Minai AA, Polycarpou MM (2004) Multi-Target assignment and path planning for groups of UAVs [J]. Recent Dev Coop Control Optim 3:261–272 Maddula T, Minai AA, Polycarpou MM (2004) Multi-Target assignment and path planning for groups of UAVs [J]. Recent Dev Coop Control Optim 3:261–272
13.
go back to reference Lemaire T, Alami R, Lacroix S (2004) A distributed tasks allocation scheme in multi-UAV context [C] Robotics and Automation, 2004. In: Proceedings of ICRA’04. IEEE International Conference on IEEE 2004, vol 4, pp 3622–3627 Lemaire T, Alami R, Lacroix S (2004) A distributed tasks allocation scheme in multi-UAV context [C] Robotics and Automation, 2004. In: Proceedings of ICRA’04. IEEE International Conference on IEEE 2004, vol 4, pp 3622–3627
14.
go back to reference Sujit PB, Sinha A, Ghose D (2006) Multiple UAV task allocation using negotiation [C]. In: Proceedings of the fifth International Joint Conference on Autonomous agents and multiagent systems. ACM, pp 471–478 Sujit PB, Sinha A, Ghose D (2006) Multiple UAV task allocation using negotiation [C]. In: Proceedings of the fifth International Joint Conference on Autonomous agents and multiagent systems. ACM, pp 471–478
15.
go back to reference Tao L, Lincheng S, Huayong Z, Yifeng Niu (2007) Distributed task allocation & coordination technique of multiple UCAVs for cooperative tasks [J]. Acta Autom Sin 33(7):731–737 Tao L, Lincheng S, Huayong Z, Yifeng Niu (2007) Distributed task allocation & coordination technique of multiple UCAVs for cooperative tasks [J]. Acta Autom Sin 33(7):731–737
16.
go back to reference Yuan L (2011) Research on resources allocation and formation trajectories optimization for multiple UAVs cooperation mission [D]. National University of Defense Technology, Changsha Yuan L (2011) Research on resources allocation and formation trajectories optimization for multiple UAVs cooperation mission [D]. National University of Defense Technology, Changsha
17.
go back to reference Chen J, Sun D (2012) Coalition-based approach to task allocation of multiple robots with resource constraints [J]. IEEE Trans Autom Sci Eng 9(3):516–528CrossRef Chen J, Sun D (2012) Coalition-based approach to task allocation of multiple robots with resource constraints [J]. IEEE Trans Autom Sci Eng 9(3):516–528CrossRef
18.
go back to reference Zhao PS, Jiang JG, Liang CY (2011) A distributed algorithm for parallel multi-task allocation based on profit sharing learning [J]. Acta Autom Sin 37(7):865–872MathSciNetCrossRefMATH Zhao PS, Jiang JG, Liang CY (2011) A distributed algorithm for parallel multi-task allocation based on profit sharing learning [J]. Acta Autom Sin 37(7):865–872MathSciNetCrossRefMATH
19.
go back to reference Alidaee B, Wang H, Landram F (2011) On the flexible demand assignment problems: case of unmanned aerial vehicles [J]. IEEE Trans Autom Sci Eng 8(4):865–868CrossRef Alidaee B, Wang H, Landram F (2011) On the flexible demand assignment problems: case of unmanned aerial vehicles [J]. IEEE Trans Autom Sci Eng 8(4):865–868CrossRef
20.
go back to reference Tian J, Zheng Y, Zhu H et al (2005) A MPC and genetic algorithm based approach for multiple UAVs cooperative search[M] Computational Intelligence and Security. Springer, Berlin Tian J, Zheng Y, Zhu H et al (2005) A MPC and genetic algorithm based approach for multiple UAVs cooperative search[M] Computational Intelligence and Security. Springer, Berlin
21.
go back to reference Gupta P, Mehlawat MK, Mittal G (2013) A fuzzy approach to multicriteria assignment problem using exponential membership functions[J]. Int J Mach Learn Cybern 4(6):647–657CrossRef Gupta P, Mehlawat MK, Mittal G (2013) A fuzzy approach to multicriteria assignment problem using exponential membership functions[J]. Int J Mach Learn Cybern 4(6):647–657CrossRef
22.
go back to reference Shima T, Schumacher C (2009) Assignment of cooperating UAVs to simultaneous tasks using genetic algorithm [J]. J Oper Res Soc 2008(60):973–982CrossRefMATH Shima T, Schumacher C (2009) Assignment of cooperating UAVs to simultaneous tasks using genetic algorithm [J]. J Oper Res Soc 2008(60):973–982CrossRefMATH
23.
go back to reference Mingyue D, Changwen Z, Chengping Z (2009) Unmanned aerial vehicle trajectory planning. Publishing House of Electronics Industry, Beijing Mingyue D, Changwen Z, Chengping Z (2009) Unmanned aerial vehicle trajectory planning. Publishing House of Electronics Industry, Beijing
24.
go back to reference Salman A, Ahmad I, AI-Madani S (2002) Particle swarm optimization for task assignment problem [J]. Microprocess Microsyst 26(8):363–371CrossRef Salman A, Ahmad I, AI-Madani S (2002) Particle swarm optimization for task assignment problem [J]. Microprocess Microsyst 26(8):363–371CrossRef
25.
go back to reference Sujit PB, George JM, Beard R (2008) Multiple UAV Task Allocation Using Particle Swarm Optimization [C]. In: AIAA Guidance, Navigation and Control Conference and Exhibit, AIAA, pp 18–21 Sujit PB, George JM, Beard R (2008) Multiple UAV Task Allocation Using Particle Swarm Optimization [C]. In: AIAA Guidance, Navigation and Control Conference and Exhibit, AIAA, pp 18–21
26.
go back to reference Ho SY, Lin HS, Liauh WH et al (2008) OPSO: Orthogonal particle swarm optimization and its application to task assignment problems [J]. IEEE Trans Syst Man Cybern Part A Syst Hum 38(2):288–298 Ho SY, Lin HS, Liauh WH et al (2008) OPSO: Orthogonal particle swarm optimization and its application to task assignment problems [J]. IEEE Trans Syst Man Cybern Part A Syst Hum 38(2):288–298
27.
go back to reference Bo G, Shewei W, Jun T (2009) Cooperative task allocation for unmanned combat aerial vehicles using improved particle colony algorithm [J]. Comput Simul 26(7):62–64 Bo G, Shewei W, Jun T (2009) Cooperative task allocation for unmanned combat aerial vehicles using improved particle colony algorithm [J]. Comput Simul 26(7):62–64
28.
29.
go back to reference Dasgupta P (2008) A multiagent swarming system for distributed automatic target recognition using unmanned aerial vehicles [J]. IEEE Trans Syst Man Cybern Part A Syst Hum 38(3):549–563CrossRef Dasgupta P (2008) A multiagent swarming system for distributed automatic target recognition using unmanned aerial vehicles [J]. IEEE Trans Syst Man Cybern Part A Syst Hum 38(3):549–563CrossRef
30.
go back to reference Fei S, Yan C, Lincheng S (2008) UAV cooperative multi-task assignment based on ant colony algorithm [J]. Acta Aeronaut Astronaut Sin 29(S1):184–191 Fei S, Yan C, Lincheng S (2008) UAV cooperative multi-task assignment based on ant colony algorithm [J]. Acta Aeronaut Astronaut Sin 29(S1):184–191
31.
go back to reference Chang WL, Zeng D, Chen RC et al (2013) An artificial bee colony algorithm for data collection path planning in sparse wireless sensor networks. Int J Mach Learn Cybern, pp 1–9. doi:10.1007/s13042-013-0195-z Chang WL, Zeng D, Chen RC et al (2013) An artificial bee colony algorithm for data collection path planning in sparse wireless sensor networks. Int J Mach Learn Cybern, pp 1–9. doi:10.​1007/​s13042-013-0195-z
32.
go back to reference Jevtic A, Andina D, Jaimes A et al (2010) Unmanned aerial vehicle route optimization using ant system algorithm [C]. In: IEEE 2010 5th International Conference on System of Systems Engineering (SoSE), pp 1–6 Jevtic A, Andina D, Jaimes A et al (2010) Unmanned aerial vehicle route optimization using ant system algorithm [C]. In: IEEE 2010 5th International Conference on System of Systems Engineering (SoSE), pp 1–6
33.
go back to reference Zhong L, Luo Q, Wen D et al (2013) A task assignment algorithm for multiple aerial Vehicles to attack targets with dynamic values [J]. IEEE Trans Intell Transp Syst 14(1):236–248CrossRef Zhong L, Luo Q, Wen D et al (2013) A task assignment algorithm for multiple aerial Vehicles to attack targets with dynamic values [J]. IEEE Trans Intell Transp Syst 14(1):236–248CrossRef
34.
go back to reference Zhu D, Huang H, Yang DX (2013) Dynamic task assignment and path planning of Multi-AUV system based on an improved self-organizing map and velocity synthesis method in three-dimensional underwater workspace [J]. IEEE Trans Cybern 43(2):504–514CrossRef Zhu D, Huang H, Yang DX (2013) Dynamic task assignment and path planning of Multi-AUV system based on an improved self-organizing map and velocity synthesis method in three-dimensional underwater workspace [J]. IEEE Trans Cybern 43(2):504–514CrossRef
35.
go back to reference Gao Q, Zou H, Zhang X et al (2013) New relaxation algorithm for three-dimensional assignment problem [c]. In: IEEE Conference Anthology. IEEE, China, pp 1–4 Gao Q, Zou H, Zhang X et al (2013) New relaxation algorithm for three-dimensional assignment problem [c]. In: IEEE Conference Anthology. IEEE, China, pp 1–4
36.
go back to reference Engelbrecht AP (2010) Computational intelligence: an introduction[M]. Tsinghua University Press, Beijing Tan Ying translation Engelbrecht AP (2010) Computational intelligence: an introduction[M]. Tsinghua University Press, Beijing Tan Ying translation
37.
go back to reference Onwubolu G, Davendra D (2009) Differential Evolution for Permutation-Based Combinatorial Problems [M]. Springer, BerlinCrossRefMATH Onwubolu G, Davendra D (2009) Differential Evolution for Permutation-Based Combinatorial Problems [M]. Springer, BerlinCrossRefMATH
38.
go back to reference Mezura ME, Velzquez RJ, Coello CA (2006) A comparative study of differential evolution variants for global optimization[C]. In: Proceedings of the 8th annual conference on Genetic and evolutionary computation. ACM, pp 485–492 Mezura ME, Velzquez RJ, Coello CA (2006) A comparative study of differential evolution variants for global optimization[C]. In: Proceedings of the 8th annual conference on Genetic and evolutionary computation. ACM, pp 485–492
39.
go back to reference Min S, Ruixuan W, Zhiming F (2010) Cooperative task assignment for heterogeneous multi-uavs based on differential evolution algorithm [J]. J Syst Simul 22(7):1706–1710 Min S, Ruixuan W, Zhiming F (2010) Cooperative task assignment for heterogeneous multi-uavs based on differential evolution algorithm [J]. J Syst Simul 22(7):1706–1710
40.
go back to reference Zhao MS, Xiaohong MP, Lingling Z (2012) A unified modeling method of UAVs cooperative target assignment by complex multi-constraint conditions [J]. Acta Autom Sin 38(12):2038–2048CrossRef Zhao MS, Xiaohong MP, Lingling Z (2012) A unified modeling method of UAVs cooperative target assignment by complex multi-constraint conditions [J]. Acta Autom Sin 38(12):2038–2048CrossRef
41.
go back to reference Storn R, Price K (1997) Differential evolution A simple and efficient heuristic for global optimization over continuous spaces [J]. J Glob Optim 11(4):341–359MathSciNetCrossRefMATH Storn R, Price K (1997) Differential evolution A simple and efficient heuristic for global optimization over continuous spaces [J]. J Glob Optim 11(4):341–359MathSciNetCrossRefMATH
42.
go back to reference Otani T, Suzuki R, Arita T (2013) DE/isolated/1: a new mutation operator for multimodal optimization with differential evolution[J]. Int J Mach Learn Cybern 4(2):99–105CrossRef Otani T, Suzuki R, Arita T (2013) DE/isolated/1: a new mutation operator for multimodal optimization with differential evolution[J]. Int J Mach Learn Cybern 4(2):99–105CrossRef
43.
go back to reference Epitropakis MG, Tasoulis DK, Pavlidis NG et al (2011) Enhancing differential evolution utilizing proximity-based mutation operators [J]. IEEE Trans Evol Comput 15(1):99–119CrossRef Epitropakis MG, Tasoulis DK, Pavlidis NG et al (2011) Enhancing differential evolution utilizing proximity-based mutation operators [J]. IEEE Trans Evol Comput 15(1):99–119CrossRef
44.
go back to reference Zamuda A, Brest J, Boskovic B et al (2008) Large scale global optimization using differential evolution with self-adaptation and cooperative co-evolution [C]. In: IEEE Congress on Evolutionary Computation CEC 2008. (IEEE World Congress on Computational Intelligence), IEEE pp 3718–3725 Zamuda A, Brest J, Boskovic B et al (2008) Large scale global optimization using differential evolution with self-adaptation and cooperative co-evolution [C]. In: IEEE Congress on Evolutionary Computation CEC 2008. (IEEE World Congress on Computational Intelligence), IEEE pp 3718–3725
Metadata
Title
Improved discrete mapping differential evolution for multi-unmanned aerial vehicles cooperative multi-targets assignment under unified model
Authors
Zhao Ming
Zhao Lingling
Su Xiaohong
Ma Peijun
Zhang Yanhang
Publication date
29-04-2015
Publisher
Springer Berlin Heidelberg
Published in
International Journal of Machine Learning and Cybernetics / Issue 3/2017
Print ISSN: 1868-8071
Electronic ISSN: 1868-808X
DOI
https://doi.org/10.1007/s13042-015-0364-3

Other articles of this Issue 3/2017

International Journal of Machine Learning and Cybernetics 3/2017 Go to the issue