Skip to main content
Top
Published in: Biomass Conversion and Biorefinery 4/2022

26-03-2020 | Original Article

Improved lignin pyrolysis over attapulgite-supported solid acid catalysts

Authors: Zhen Wu, Fei Wang, Jiming Xu, Jun Zhang, Xinxu Zhao, Lei Hu, Yetao Jiang

Published in: Biomass Conversion and Biorefinery | Issue 4/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

An efficient process for the pyrolysis of Kraft lignin using attapulgite (ATP) as catalyst was developed in the present work. Compared with the common catalyst carriers of γ-Al2O3, ZSM-5, and diatomite, ATP with rich Lewis acid and Bronsted acid sites gave the lowest residue yield of 33.9% and the highest monomers yield of 7.96% at 500 °C for 1 h. ATP-supported catalyst SZA was optimally selected from the fabricated ATP-supported catalysts (SZA, S2O82−/ATP, Nb2O5/ATP, MgO/ATP, and CaO/ATP), resulting in a residue yield of 16.4% and a monomer yield of 11.5% at the optimized temperature of 600 °C. Moreover, good feedstock adaptability of the selected catalyst was also confirmed. The plausible reaction pathways of lignin degradation by catalytic pyrolysis over ATP-supported catalysts involving demethoxylated phenols and alkylated phenols formation were proposed. In addition, it was also found that the ATP-supported catalyst was effective for the upgrading of bio-oil obtained from lignin liquefaction in a mixture solvent of ethanol/1,4-dioxane/formic acid, which laid a good foundation for the further value-added utilization of bio-oil.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Liu WJ, Tian K, Jiang H, Yu HQ (2013) Facile synthesis of highly efficient and recyclable magnetic solid acid from biomass waste. Sci Rep 3:2419–2425CrossRef Liu WJ, Tian K, Jiang H, Yu HQ (2013) Facile synthesis of highly efficient and recyclable magnetic solid acid from biomass waste. Sci Rep 3:2419–2425CrossRef
2.
go back to reference Liu C, Wang H, Karim AM, Sun J, Wang Y (2014) Catalytic fast pyrolysis of lignocellulosic biomass. Chem Soc Rev 43:7594–7623CrossRef Liu C, Wang H, Karim AM, Sun J, Wang Y (2014) Catalytic fast pyrolysis of lignocellulosic biomass. Chem Soc Rev 43:7594–7623CrossRef
3.
go back to reference Huang C, He J, Du L, Min D, Yong Q (2016) Structural characterization of the lignins from the green and yellow bamboo of bamboo culm (Phyllostachys pubescens). J Wood Chem Technol 36:157–172CrossRef Huang C, He J, Du L, Min D, Yong Q (2016) Structural characterization of the lignins from the green and yellow bamboo of bamboo culm (Phyllostachys pubescens). J Wood Chem Technol 36:157–172CrossRef
4.
go back to reference Yang M, Shao J, Yang Z, Yang H, Wang X, Wu Z, Chen H (2019) Conversion of lignin into light olefins and aromatics over Fe/ZSM-5 catalytic fast pyrolysis: significance of Fe contents and temperature. J Anal Appl Pyrolysis 137:259–265CrossRef Yang M, Shao J, Yang Z, Yang H, Wang X, Wu Z, Chen H (2019) Conversion of lignin into light olefins and aromatics over Fe/ZSM-5 catalytic fast pyrolysis: significance of Fe contents and temperature. J Anal Appl Pyrolysis 137:259–265CrossRef
5.
go back to reference Liu WJ, Jiang H, Yu HQ (2015) Thermochemical conversion of lignin to functional materials: a review and future directions. Green Chem 17:4888–4907CrossRef Liu WJ, Jiang H, Yu HQ (2015) Thermochemical conversion of lignin to functional materials: a review and future directions. Green Chem 17:4888–4907CrossRef
6.
go back to reference Agarwal A, Rana M, Park JH (2018) Advancement in technologies for the depolymerization of lignin. Fuel Process Technol 181:115–132CrossRef Agarwal A, Rana M, Park JH (2018) Advancement in technologies for the depolymerization of lignin. Fuel Process Technol 181:115–132CrossRef
7.
go back to reference Ma R, Guo M, Zhang X (2018) Recent advances in oxidative valorization of lignin. Catal Today 302:50–60CrossRef Ma R, Guo M, Zhang X (2018) Recent advances in oxidative valorization of lignin. Catal Today 302:50–60CrossRef
8.
go back to reference Breunig M, Gebhart P, Hornung U, Kruse A, Dinjus E (2018) Direct liquefaction of lignin and lignin rich biomasses by heterogenic catalytic hydrogenolysis. Biomass Bioenergy 111:352–360CrossRef Breunig M, Gebhart P, Hornung U, Kruse A, Dinjus E (2018) Direct liquefaction of lignin and lignin rich biomasses by heterogenic catalytic hydrogenolysis. Biomass Bioenergy 111:352–360CrossRef
9.
go back to reference Asawaworarit P, Daorattanachai P, Laosiripojana W, Sakdaronnarong C, Shotipruk A, Laosiripojana N (2019) Catalytic depolymerization of organosolv lignin from bagasse by carbonaceous solid acids derived from hydrothermal of lignocellulosic compounds. Chem Eng J 356:461–471CrossRef Asawaworarit P, Daorattanachai P, Laosiripojana W, Sakdaronnarong C, Shotipruk A, Laosiripojana N (2019) Catalytic depolymerization of organosolv lignin from bagasse by carbonaceous solid acids derived from hydrothermal of lignocellulosic compounds. Chem Eng J 356:461–471CrossRef
10.
go back to reference Shen XJ, Huang PL, Wen JL, Sun RC (2017) A facile method for char elimination during base-catalyzed depolymerization and hydrogenolysis of lignin. Fuel Process Technol 167:491–501CrossRef Shen XJ, Huang PL, Wen JL, Sun RC (2017) A facile method for char elimination during base-catalyzed depolymerization and hydrogenolysis of lignin. Fuel Process Technol 167:491–501CrossRef
11.
go back to reference Naron DR, Collard FX, Tyhoda L, Görgens JF (2019) Influence of impregnated catalyst on the phenols production from pyrolysis of hardwood, softwood, and herbaceous lignins. Ind Crop Prod 131:348–356CrossRef Naron DR, Collard FX, Tyhoda L, Görgens JF (2019) Influence of impregnated catalyst on the phenols production from pyrolysis of hardwood, softwood, and herbaceous lignins. Ind Crop Prod 131:348–356CrossRef
12.
go back to reference Özsin G, Pütün AE, Pütün E (2019) Investigating the interactions between lignocellulosic biomass and synthetic polymers during co-pyrolysis by simultaneous thermal and spectroscopic methods. Biomass Convers Biorefin 9:593–608CrossRef Özsin G, Pütün AE, Pütün E (2019) Investigating the interactions between lignocellulosic biomass and synthetic polymers during co-pyrolysis by simultaneous thermal and spectroscopic methods. Biomass Convers Biorefin 9:593–608CrossRef
13.
go back to reference Patil V, Adhikari S, Cross P (2018) Co-pyrolysis of lignin and plastics using red clay as catalyst in a micropyrolyzer. Bioresour Technol 270:311–319CrossRef Patil V, Adhikari S, Cross P (2018) Co-pyrolysis of lignin and plastics using red clay as catalyst in a micropyrolyzer. Bioresour Technol 270:311–319CrossRef
14.
go back to reference Wang S, Li Z, Bai X, Yi W, Fu P (2019) Catalytic pyrolysis of lignin in a cascade dual-catalyst system of modified red mud and HZSM-5 for aromatic hydrocarbon production. Bioresour Technol 278:66–72CrossRef Wang S, Li Z, Bai X, Yi W, Fu P (2019) Catalytic pyrolysis of lignin in a cascade dual-catalyst system of modified red mud and HZSM-5 for aromatic hydrocarbon production. Bioresour Technol 278:66–72CrossRef
15.
go back to reference Wu Z, Zhu X, Guo H, Jiang Y, Gu X (2019) A kinetic study of lignin pyrolysis over base catalyst during steam exploded depolymerization. Catal Today 327:226–234CrossRef Wu Z, Zhu X, Guo H, Jiang Y, Gu X (2019) A kinetic study of lignin pyrolysis over base catalyst during steam exploded depolymerization. Catal Today 327:226–234CrossRef
16.
go back to reference Gall DL, Ralph J, Donohue TJ, Noguera DR (2017) Biochemical transformation of lignin for deriving valued commodities from lignocellulose. Curr Opin Biotechnol 45:120–126CrossRef Gall DL, Ralph J, Donohue TJ, Noguera DR (2017) Biochemical transformation of lignin for deriving valued commodities from lignocellulose. Curr Opin Biotechnol 45:120–126CrossRef
17.
go back to reference Guo D, Liu B, Tang Y, Zhang J, Xia X (2017) Autocatalytic depolymerization of alkali lignin by organic bound sodium in supercritical ethanol. Energy Fuel 31:10842–10849CrossRef Guo D, Liu B, Tang Y, Zhang J, Xia X (2017) Autocatalytic depolymerization of alkali lignin by organic bound sodium in supercritical ethanol. Energy Fuel 31:10842–10849CrossRef
18.
go back to reference Huang Y, Gao Y, Zhou H, Sun H, Zhou J, Zhang S (2019) Pyrolysis of palm kernel shell with internal recycling of heavy oil. Bioresour Technol 272:77–82CrossRef Huang Y, Gao Y, Zhou H, Sun H, Zhou J, Zhang S (2019) Pyrolysis of palm kernel shell with internal recycling of heavy oil. Bioresour Technol 272:77–82CrossRef
19.
go back to reference Mu W, Ben H, Ragauskas A, Deng Y (2013) Lignin pyrolysis components and upgrading–technology review. Bioenerg Res 6:1183–1204CrossRef Mu W, Ben H, Ragauskas A, Deng Y (2013) Lignin pyrolysis components and upgrading–technology review. Bioenerg Res 6:1183–1204CrossRef
20.
go back to reference Ma Z, Custodis V, van Bokhoven JA (2014) Selective deoxygenation of lignin during catalytic fast pyrolysis. Catal Sci Technol 4:766–772CrossRef Ma Z, Custodis V, van Bokhoven JA (2014) Selective deoxygenation of lignin during catalytic fast pyrolysis. Catal Sci Technol 4:766–772CrossRef
21.
go back to reference de Wild P, Van der Laan R, Kloekhorst A, Heeres E (2009) Lignin valorisation for chemicals and (transportation) fuels via (catalytic) pyrolysis and hydrodeoxygenation. Environ Prog Sustain Energy 28:461–469CrossRef de Wild P, Van der Laan R, Kloekhorst A, Heeres E (2009) Lignin valorisation for chemicals and (transportation) fuels via (catalytic) pyrolysis and hydrodeoxygenation. Environ Prog Sustain Energy 28:461–469CrossRef
22.
go back to reference Sudarsanam P, Peeters E, Makshina EV, Parvulescu VI, Sels BF (2019) Advances in porous and nanoscale catalysts for viable biomass conversion. Chem Soc Rev 48:2366–2421CrossRef Sudarsanam P, Peeters E, Makshina EV, Parvulescu VI, Sels BF (2019) Advances in porous and nanoscale catalysts for viable biomass conversion. Chem Soc Rev 48:2366–2421CrossRef
23.
go back to reference Kim YM, Lee HW, Jeon JK, Park SH, Jung SC, Lee IG, Kim S, Park YK (2017) In-situ catalytic pyrolysis of xylan and dealkaline lignin over SAPO-11. Top Catal 60:644–650CrossRef Kim YM, Lee HW, Jeon JK, Park SH, Jung SC, Lee IG, Kim S, Park YK (2017) In-situ catalytic pyrolysis of xylan and dealkaline lignin over SAPO-11. Top Catal 60:644–650CrossRef
24.
go back to reference Elfadly AM, Zeid IF, Yehia FZ, Abouelela MM, Rabie AM (2017) Production of aromatic hydrocarbons from catalytic pyrolysis of lignin over acid-activated bentonite clay. Fuel Process Technol 163:1–7CrossRef Elfadly AM, Zeid IF, Yehia FZ, Abouelela MM, Rabie AM (2017) Production of aromatic hydrocarbons from catalytic pyrolysis of lignin over acid-activated bentonite clay. Fuel Process Technol 163:1–7CrossRef
25.
go back to reference Xu K, Li C, Wang C, Jiang Y, Liu Y, Xie H (2019) Natural and acid-treated attapulgite reinforced soybean oil-based polyurethane/epoxy resin interpenetrating polymer networks. J Therm Anal Calorim 137:1189–1198CrossRef Xu K, Li C, Wang C, Jiang Y, Liu Y, Xie H (2019) Natural and acid-treated attapulgite reinforced soybean oil-based polyurethane/epoxy resin interpenetrating polymer networks. J Therm Anal Calorim 137:1189–1198CrossRef
26.
go back to reference Fu M, Zhang Z (2018) Highly tunable liquid crystalline assemblies of superparamagnetic rod-like attapulgite@Fe3O4 nanocomposite. Mater Lett 226:43–46CrossRef Fu M, Zhang Z (2018) Highly tunable liquid crystalline assemblies of superparamagnetic rod-like attapulgite@Fe3O4 nanocomposite. Mater Lett 226:43–46CrossRef
27.
go back to reference Deuss PJ, Scott M, Tran F, Westwood NJ, de Vries JG, Barta K (2015) Aromatic monomers by in situ conversion of reactive intermediates in the acid-catalyzed depolymerization of lignin. J Am Chem Soc 137:7456–7467CrossRef Deuss PJ, Scott M, Tran F, Westwood NJ, de Vries JG, Barta K (2015) Aromatic monomers by in situ conversion of reactive intermediates in the acid-catalyzed depolymerization of lignin. J Am Chem Soc 137:7456–7467CrossRef
28.
go back to reference Liu H, Chen T, Chang D, Chen D, Kong D, Zou X, Frost RL (2012) Effect of preparation method of palygorskite-supported Fe and Ni catalysts on catalytic cracking of biomass tar. Chem Eng J 188:108–112CrossRef Liu H, Chen T, Chang D, Chen D, Kong D, Zou X, Frost RL (2012) Effect of preparation method of palygorskite-supported Fe and Ni catalysts on catalytic cracking of biomass tar. Chem Eng J 188:108–112CrossRef
29.
go back to reference Zou X, Chen T, Liu H, Zhang P, Ma Z, Xie J, Chen D (2017) An insight into the effect of calcination conditions on catalytic cracking of toluene over 3Fe8Ni/palygorskite: catalysts characterization and performance. Fuel 190:47–57CrossRef Zou X, Chen T, Liu H, Zhang P, Ma Z, Xie J, Chen D (2017) An insight into the effect of calcination conditions on catalytic cracking of toluene over 3Fe8Ni/palygorskite: catalysts characterization and performance. Fuel 190:47–57CrossRef
30.
go back to reference Pushpaletha P, Lalithambika M (2011) Modified attapulgite: an efficient solid acid catalyst for acetylation of alcohols using acetic acid. Appl Clay Sci 51:424–430CrossRef Pushpaletha P, Lalithambika M (2011) Modified attapulgite: an efficient solid acid catalyst for acetylation of alcohols using acetic acid. Appl Clay Sci 51:424–430CrossRef
31.
go back to reference Wu Z, Zhang J, Zhao X, Li X, Zhang Y, Wang F (2019) Attapulgite-supported magnetic dual acid-base catalyst for the catalytic conversion of lignin to phenolic monomers. J Chem Technol Biotechnol 94:1269–1281CrossRef Wu Z, Zhang J, Zhao X, Li X, Zhang Y, Wang F (2019) Attapulgite-supported magnetic dual acid-base catalyst for the catalytic conversion of lignin to phenolic monomers. J Chem Technol Biotechnol 94:1269–1281CrossRef
32.
go back to reference Jin S, Xiao Z, Chen X, Wang L, Guo J, Zhang M, Liang C (2015) Cleavage of lignin-derived 4-O-5 aryl ethers over nickel nanoparticles supported on niobic acid-activated carbon composites. Ind Eng Chem Res 54:2302–2310CrossRef Jin S, Xiao Z, Chen X, Wang L, Guo J, Zhang M, Liang C (2015) Cleavage of lignin-derived 4-O-5 aryl ethers over nickel nanoparticles supported on niobic acid-activated carbon composites. Ind Eng Chem Res 54:2302–2310CrossRef
33.
go back to reference Adhikari S, Srinivasan V, Fasina O (2014) Catalytic pyrolysis of raw and thermally treated lignin using different acidic zeolites. Energy Fuel 28:4532–4538CrossRef Adhikari S, Srinivasan V, Fasina O (2014) Catalytic pyrolysis of raw and thermally treated lignin using different acidic zeolites. Energy Fuel 28:4532–4538CrossRef
34.
go back to reference Shao H, Chen J, Zhong J, Leng Y, Wang J (2015) Development of MeSAPO-5 molecular sieves from attapulgite for dehydration of carbohydrates. Ind Eng Chem Res 54:1470–1477CrossRef Shao H, Chen J, Zhong J, Leng Y, Wang J (2015) Development of MeSAPO-5 molecular sieves from attapulgite for dehydration of carbohydrates. Ind Eng Chem Res 54:1470–1477CrossRef
35.
go back to reference Olcese RN, Bettahar M, Petitjean D, Malaman B, Giovanella F, Dufour A (2012) Gas-phase hydrodeoxygenation of guaiacol over Fe/SiO2 catalyst. Appl Catal, B 115-116:63–73CrossRef Olcese RN, Bettahar M, Petitjean D, Malaman B, Giovanella F, Dufour A (2012) Gas-phase hydrodeoxygenation of guaiacol over Fe/SiO2 catalyst. Appl Catal, B 115-116:63–73CrossRef
36.
go back to reference Wang W, Wang M, Huang J, Zhao X, Su Y, Wang Y, Li X (2019) Formate-assisted analytical pyrolysis of Kraft lignin to phenols. Bioresour Technol 278:464–467CrossRef Wang W, Wang M, Huang J, Zhao X, Su Y, Wang Y, Li X (2019) Formate-assisted analytical pyrolysis of Kraft lignin to phenols. Bioresour Technol 278:464–467CrossRef
37.
go back to reference Kim JY, Heo S, Choi JW (2018) Effects of phenolic hydroxyl functionality on lignin pyrolysis over zeolite catalyst. Fuel 232:81–89CrossRef Kim JY, Heo S, Choi JW (2018) Effects of phenolic hydroxyl functionality on lignin pyrolysis over zeolite catalyst. Fuel 232:81–89CrossRef
38.
go back to reference Muhammad N, Omar WN, Man Z, Bustam MA, Rafiq S, Uemura Y (2012) Effect of ionic liquid treatment on pyrolysis products from bamboo. Ind Eng Chem Res 51:2280–2289CrossRef Muhammad N, Omar WN, Man Z, Bustam MA, Rafiq S, Uemura Y (2012) Effect of ionic liquid treatment on pyrolysis products from bamboo. Ind Eng Chem Res 51:2280–2289CrossRef
39.
go back to reference Wu Z, Zhao X, Zhang J, Li X, Zhang Y, Wang F (2019) Ethanol/1,4-dioxane/formic acid as synergetic solvents for the conversion of lignin into high-value added phenolic monomers. Bioresour Technol 278:187–194CrossRef Wu Z, Zhao X, Zhang J, Li X, Zhang Y, Wang F (2019) Ethanol/1,4-dioxane/formic acid as synergetic solvents for the conversion of lignin into high-value added phenolic monomers. Bioresour Technol 278:187–194CrossRef
Metadata
Title
Improved lignin pyrolysis over attapulgite-supported solid acid catalysts
Authors
Zhen Wu
Fei Wang
Jiming Xu
Jun Zhang
Xinxu Zhao
Lei Hu
Yetao Jiang
Publication date
26-03-2020
Publisher
Springer Berlin Heidelberg
Published in
Biomass Conversion and Biorefinery / Issue 4/2022
Print ISSN: 2190-6815
Electronic ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-020-00667-4

Other articles of this Issue 4/2022

Biomass Conversion and Biorefinery 4/2022 Go to the issue