Skip to main content
Top
Published in: Journal of Electronic Materials 9/2022

17-06-2022 | Topical Collection: Advanced Metal Ion Batteries

Improved Lithium Storage Capability of Si Anode by Ball-Milling Produced Graphitic Carbon Sheet and Fe3O4 Nanoparticles

Authors: Junkai Ma, Yuxuan Zheng, Yongping Gan, Jun Zhang, Yang Xia, Xinping He, Wenkui Zhang, Hui Huang

Published in: Journal of Electronic Materials | Issue 9/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Silicon is considered the most promising material for anodes for the development of lithium-ion batteries (LIBs) due to its high theoretical capacity and natural abundance. However, the poor intrinsic conductivity and serious volume changes severely restrain the practical application. To address these issues, combining Si with carbon is confirmed as an effective strategy, but still suffers from uneven combination, poor interfacial contact and inferior electrochemical performance. Herein, Si@Fe3O4@C composites were synthesized by facile scalable ball-milling of nanosilicon, mesophase carbon microspheres (MCMB) and iron scurf from a stainless steel reactor. As compared to Si/C, the Si@Fe3O4@C composites exhibit much improved specific capacity, cycling stability and rate performance. The Fe3O4 nanoparticles not only help to boost the conductivity of Si but also accommodate their volume expansion during cycling. Consequently, the Si@Fe3O4@C anode delivers a reversible capacity of 1009 mA h g−1 at 200 mA g−1 after 110 cycles and 780.8 mA h g−1 at 1 A g−1 after 500 cycles. The method shows the merits of low cost, facile operation and easy industrial production for the synthesis of high-capacity Si anodes.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference F. Zhou, X.S. Yang, J. Liu, J. Liu, R. Hu, L. Ouyang, and M. Zhu, In-Situ Introducing TiP2 Nanocrystals in Black Phosphorus Anode to Promote High Rate-Capacity Synergy. J. Power Sources 499, 229979 (2021).CrossRef F. Zhou, X.S. Yang, J. Liu, J. Liu, R. Hu, L. Ouyang, and M. Zhu, In-Situ Introducing TiP2 Nanocrystals in Black Phosphorus Anode to Promote High Rate-Capacity Synergy. J. Power Sources 499, 229979 (2021).CrossRef
2.
go back to reference Z. Zheng, H.H. Wu, H. Liu, Q. Zhang, X. He, S. Yu, V. Petrova, J. Feng, R. Kostecki, P. Liu, D.L. Peng, M. Liu, and M.S. Wang, Achieving Fast and Durable Lithium Storage through Amorphous FeP Nanoparticles Encapsulated in Ultrathin 3D P-Doped Porous Carbon Nanosheets. ACS Nano 14, 9545 (2020).CrossRef Z. Zheng, H.H. Wu, H. Liu, Q. Zhang, X. He, S. Yu, V. Petrova, J. Feng, R. Kostecki, P. Liu, D.L. Peng, M. Liu, and M.S. Wang, Achieving Fast and Durable Lithium Storage through Amorphous FeP Nanoparticles Encapsulated in Ultrathin 3D P-Doped Porous Carbon Nanosheets. ACS Nano 14, 9545 (2020).CrossRef
3.
go back to reference S.D.A. Zaidi, C. Wang, B. György, C. Sun, H. Yuan, L. Tian, and J. Chen, Iron and Silicon Oxide Doped/PAN-Based Carbon Nanofibers as Free-Standing Anode Material for Li-ion Batteries. J. Colloid Interface Sci. 569, 164 (2020).CrossRef S.D.A. Zaidi, C. Wang, B. György, C. Sun, H. Yuan, L. Tian, and J. Chen, Iron and Silicon Oxide Doped/PAN-Based Carbon Nanofibers as Free-Standing Anode Material for Li-ion Batteries. J. Colloid Interface Sci. 569, 164 (2020).CrossRef
4.
go back to reference Q. Zhao, X. Chen, W. Hou, B. Ye, Y. Zhang, X. Xia, and J. Wang, A Facile, Scalable, High Stability Lithium Metal Anode. SusMat 2, 104 (2022).CrossRef Q. Zhao, X. Chen, W. Hou, B. Ye, Y. Zhang, X. Xia, and J. Wang, A Facile, Scalable, High Stability Lithium Metal Anode. SusMat 2, 104 (2022).CrossRef
5.
go back to reference Z. Xiao, C. Lei, C. Yu, X. Chen, Z. Zhu, H. Jiang, and F. Wei, Si@Si3N4@C Composite with Egg-Like Structure as High-Performance Anode Material for Lithium ion Batteries. Energy Storage Mater. 24, 565 (2020).CrossRef Z. Xiao, C. Lei, C. Yu, X. Chen, Z. Zhu, H. Jiang, and F. Wei, Si@Si3N4@C Composite with Egg-Like Structure as High-Performance Anode Material for Lithium ion Batteries. Energy Storage Mater. 24, 565 (2020).CrossRef
6.
go back to reference Y. Li, W. Liu, Z. Long, P. Xu, Y. Sun, X. Zhang, S. Ma, and N. Jiang, Si@C Microsphere Composite with Multiple Buffer Structures for High-Performance Lithium-Ion Battery Anodes. Chem. Eur. J. 24, 12912 (2018).CrossRef Y. Li, W. Liu, Z. Long, P. Xu, Y. Sun, X. Zhang, S. Ma, and N. Jiang, Si@C Microsphere Composite with Multiple Buffer Structures for High-Performance Lithium-Ion Battery Anodes. Chem. Eur. J. 24, 12912 (2018).CrossRef
7.
go back to reference H. Wang, H. Man, J. Yang, J. Zang, R. Che, F. Wang, D. Sun, and F. Fang, Self-Adapting Electrochemical Grinding Strategy for Stable Silicon Anode. Adv. Funct. Mater. 32, 2109887 (2021).CrossRef H. Wang, H. Man, J. Yang, J. Zang, R. Che, F. Wang, D. Sun, and F. Fang, Self-Adapting Electrochemical Grinding Strategy for Stable Silicon Anode. Adv. Funct. Mater. 32, 2109887 (2021).CrossRef
8.
go back to reference Y. He, L. Jiang, T. Chen, Y. Xu, H. Jia, R. Yi, D. Xue, M. Song, A. Genc, C. Bouchet-Marquis, L. Pullan, T. Tessner, J. Yoo, X. Li, J.G. Zhang, S. Zhang, and C. Wang, Progressive Growth of the Solid-Electrolyte Interphase Towards the Si Anode Interior Causes Capacity Fading. Nanomater. Nanotechnol. 16, 1113 (2021). Y. He, L. Jiang, T. Chen, Y. Xu, H. Jia, R. Yi, D. Xue, M. Song, A. Genc, C. Bouchet-Marquis, L. Pullan, T. Tessner, J. Yoo, X. Li, J.G. Zhang, S. Zhang, and C. Wang, Progressive Growth of the Solid-Electrolyte Interphase Towards the Si Anode Interior Causes Capacity Fading. Nanomater. Nanotechnol. 16, 1113 (2021).
9.
go back to reference R. Fang, R. Li, Z. Wang, C. Miao, W. Xiao, Y. Zhang, X. Yan, and Y. Jiang, Novel High-Performance Si-SiO2@Fe/C Composite Anodes from Low-Cost and Industrial AlSiFe Alloy Powders. Solid State Ion 337, 42 (2019).CrossRef R. Fang, R. Li, Z. Wang, C. Miao, W. Xiao, Y. Zhang, X. Yan, and Y. Jiang, Novel High-Performance Si-SiO2@Fe/C Composite Anodes from Low-Cost and Industrial AlSiFe Alloy Powders. Solid State Ion 337, 42 (2019).CrossRef
10.
go back to reference X. Gao, W. Lu, and J. Xu, Insights into the Li Diffusion Mechanism in Si/C Composite Anodes for Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 13, 21362 (2021).CrossRef X. Gao, W. Lu, and J. Xu, Insights into the Li Diffusion Mechanism in Si/C Composite Anodes for Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 13, 21362 (2021).CrossRef
11.
go back to reference M. Chen, W. Cao, L. Wang, X. Ma, and K. Han, Chessboard-Like Silicon/Graphite Anodes with High Cycling Stability toward Practical Lithium-Ion Batteries. ACS Appl. Energy Mater. 4, 775 (2020).CrossRef M. Chen, W. Cao, L. Wang, X. Ma, and K. Han, Chessboard-Like Silicon/Graphite Anodes with High Cycling Stability toward Practical Lithium-Ion Batteries. ACS Appl. Energy Mater. 4, 775 (2020).CrossRef
12.
go back to reference W. Luo, C. Fang, X. Zhang, J. Liu, H. Ma, G. Zhang, Z. Liu, and X. Li, In Situ Generated Carbon Nanosheet-Covered Micron-Sized Porous Si Composite for Long-Cycling Life Lithium-Ion Batteries. ACS Appl. Energy Mater. 4, 535 (2020).CrossRef W. Luo, C. Fang, X. Zhang, J. Liu, H. Ma, G. Zhang, Z. Liu, and X. Li, In Situ Generated Carbon Nanosheet-Covered Micron-Sized Porous Si Composite for Long-Cycling Life Lithium-Ion Batteries. ACS Appl. Energy Mater. 4, 535 (2020).CrossRef
13.
go back to reference P. Li, H. Kim, S.T. Myung, and Y.-K. Sun, Diverting Exploration of Silicon Anode into Practical Way: A Review Focused on Silicon-Graphite Composite for Lithium Ion Batteries. Energy Storage Mater. 35, 550 (2021).CrossRef P. Li, H. Kim, S.T. Myung, and Y.-K. Sun, Diverting Exploration of Silicon Anode into Practical Way: A Review Focused on Silicon-Graphite Composite for Lithium Ion Batteries. Energy Storage Mater. 35, 550 (2021).CrossRef
14.
go back to reference D. Sui, Y. Xie, W. Zhao, H. Zhang, Y. Zhou, X. Qin, Y. Ma, Y. Yang, and Y. Chen, A High-Performance Ternary Si Composite Anode Material with Crystal Graphite Core and Amorphous Carbon Shell. J. Power Sources 384, 328 (2018).CrossRef D. Sui, Y. Xie, W. Zhao, H. Zhang, Y. Zhou, X. Qin, Y. Ma, Y. Yang, and Y. Chen, A High-Performance Ternary Si Composite Anode Material with Crystal Graphite Core and Amorphous Carbon Shell. J. Power Sources 384, 328 (2018).CrossRef
15.
go back to reference X. Shen, Z. Tian, R. Fan, L. Shao, D. Zhang, G. Cao, L. Kou, and Y. Bai, Research Progress on Silicon/Carbon Composite Anode Materials for Lithium-Ion Battery. J. Energy Chem. 27, 1067 (2018).CrossRef X. Shen, Z. Tian, R. Fan, L. Shao, D. Zhang, G. Cao, L. Kou, and Y. Bai, Research Progress on Silicon/Carbon Composite Anode Materials for Lithium-Ion Battery. J. Energy Chem. 27, 1067 (2018).CrossRef
16.
go back to reference F. Dou, L. Shi, G. Chen, and D. Zhang, Silicon/Carbon Composite Anode Materials for Lithium-Ion Batteries. Electrochem. Energy Rev. 2, 149 (2019).CrossRef F. Dou, L. Shi, G. Chen, and D. Zhang, Silicon/Carbon Composite Anode Materials for Lithium-Ion Batteries. Electrochem. Energy Rev. 2, 149 (2019).CrossRef
17.
go back to reference X. Shan, Y. Zhong, L. Zhang, Y. Zhang, X. Xia, X. Wang, and J. Tu, A Brief Review on Solid Electrolyte Interphase Composition Characterization Technology for Lithium Metal Batteries: Challenges and Perspectives. J. Phys. Chem. C 125, 19060 (2021).CrossRef X. Shan, Y. Zhong, L. Zhang, Y. Zhang, X. Xia, X. Wang, and J. Tu, A Brief Review on Solid Electrolyte Interphase Composition Characterization Technology for Lithium Metal Batteries: Challenges and Perspectives. J. Phys. Chem. C 125, 19060 (2021).CrossRef
18.
go back to reference C. Wang, Y. Li, F. Cao, Y. Zhang, X. Xia, and L. Zhang, Employing Ni-Embedded Porous Graphitic Carbon Fibers for High-Efficiency Lithium-Sulfur Batterie. ACS Appl. Mater. Interfaces 14, 10457 (2022).CrossRef C. Wang, Y. Li, F. Cao, Y. Zhang, X. Xia, and L. Zhang, Employing Ni-Embedded Porous Graphitic Carbon Fibers for High-Efficiency Lithium-Sulfur Batterie. ACS Appl. Mater. Interfaces 14, 10457 (2022).CrossRef
19.
go back to reference Y. Xia, T. Zhao, X. Zhu, Y. Zhao, H. He, C.T. Hung, X. Zhang, Y. Chen, X. Tang, J. Wang, W. Li, and D. Zhao, Inorganic-Organic Competitive Coating Strategy Derived Uniform Hollow Gradient-Structured Ferroferric Oxide-Carbon Nanospheres for Ultra-Fast and Long-Term Lithium-Ion Battery. Nat. Commun. 12, 2973 (2021).CrossRef Y. Xia, T. Zhao, X. Zhu, Y. Zhao, H. He, C.T. Hung, X. Zhang, Y. Chen, X. Tang, J. Wang, W. Li, and D. Zhao, Inorganic-Organic Competitive Coating Strategy Derived Uniform Hollow Gradient-Structured Ferroferric Oxide-Carbon Nanospheres for Ultra-Fast and Long-Term Lithium-Ion Battery. Nat. Commun. 12, 2973 (2021).CrossRef
20.
go back to reference B.H. Hou, Y.Y. Wang, J.Z. Guo, Y. Zhang, Q.L. Ning, Y. Yang, W.H. Li, J.P. Zhang, X.L. Wang, and X.L. Wu, A Scalable Strategy To Develop Advanced Anode for Sodium-Ion Batteries: Commercial Fe3O4-Derived Fe3O4@FeS with Superior Full-Cell Performance. ACS Appl. Mater. Interfaces 10, 3581 (2018).CrossRef B.H. Hou, Y.Y. Wang, J.Z. Guo, Y. Zhang, Q.L. Ning, Y. Yang, W.H. Li, J.P. Zhang, X.L. Wang, and X.L. Wu, A Scalable Strategy To Develop Advanced Anode for Sodium-Ion Batteries: Commercial Fe3O4-Derived Fe3O4@FeS with Superior Full-Cell Performance. ACS Appl. Mater. Interfaces 10, 3581 (2018).CrossRef
21.
go back to reference J. Jang, S.H. Song, H. Kim, J. Moon, H. Ahn, K.I. Jo, J. Bang, H. Kim, and J. Koo, Janus Graphene Oxide Sheets with Fe3O4 Nanoparticles and Polydopamine as Anodes for Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 13, 14786 (2021).CrossRef J. Jang, S.H. Song, H. Kim, J. Moon, H. Ahn, K.I. Jo, J. Bang, H. Kim, and J. Koo, Janus Graphene Oxide Sheets with Fe3O4 Nanoparticles and Polydopamine as Anodes for Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 13, 14786 (2021).CrossRef
22.
go back to reference C. Han, L. Xu, H. Li, R. Shi, T. Zhang, J. Li, C.P. Wong, F. Kang, Z. Lin, and B. Li, Biopolymer-Assisted Synthesis of 3D Interconnected Fe3O4@Carbon Core@Shell as Anode for Asymmetric Lithium Ion Capacitors. Carbon 140, 296 (2018).CrossRef C. Han, L. Xu, H. Li, R. Shi, T. Zhang, J. Li, C.P. Wong, F. Kang, Z. Lin, and B. Li, Biopolymer-Assisted Synthesis of 3D Interconnected Fe3O4@Carbon Core@Shell as Anode for Asymmetric Lithium Ion Capacitors. Carbon 140, 296 (2018).CrossRef
23.
go back to reference Q. Wang, C. Guo, J. He, S. Yang, Z. Liu, and Q. Wang, Fe2O3/C-Modified Si Nanoparticles as Anode Material for High-Performance Lithium-Ion Batteries. J. Alloys Compd. 795, 284 (2019).CrossRef Q. Wang, C. Guo, J. He, S. Yang, Z. Liu, and Q. Wang, Fe2O3/C-Modified Si Nanoparticles as Anode Material for High-Performance Lithium-Ion Batteries. J. Alloys Compd. 795, 284 (2019).CrossRef
24.
go back to reference Y. Yan, Y. Chen, Y. Li, X. Wu, C. Jin, and Z. Wang, Synthesis of Si/Fe2O3-Anchored rGO Frameworks as High-Performance Anodes for Li-Ion Batteries. Int. J. Mol. Med. 22, 11041 (2021). Y. Yan, Y. Chen, Y. Li, X. Wu, C. Jin, and Z. Wang, Synthesis of Si/Fe2O3-Anchored rGO Frameworks as High-Performance Anodes for Li-Ion Batteries. Int. J. Mol. Med. 22, 11041 (2021).
25.
go back to reference G. Grinbom, D. Duveau, G. Gershinsky, L. Monconduit, and D. Zitoun, Silicon/Hollow γ-Fe2O3 Nanoparticles as Efficient Anodes for Li-Ion Batteries. Chem. Mater. 27, 2703 (2015).CrossRef G. Grinbom, D. Duveau, G. Gershinsky, L. Monconduit, and D. Zitoun, Silicon/Hollow γ-Fe2O3 Nanoparticles as Efficient Anodes for Li-Ion Batteries. Chem. Mater. 27, 2703 (2015).CrossRef
26.
go back to reference C. Liao, and S. Wu, Pseudocapacitance Behavior on Fe3O4-Pillared SiOx Microsphere Wrapped by Graphene as High Performance Anodes for Lithium-Ion Batteries. Chem. Eng. J. 355, 805 (2019).CrossRef C. Liao, and S. Wu, Pseudocapacitance Behavior on Fe3O4-Pillared SiOx Microsphere Wrapped by Graphene as High Performance Anodes for Lithium-Ion Batteries. Chem. Eng. J. 355, 805 (2019).CrossRef
27.
go back to reference L. Su, Y. Zhong, and Z. Zhou, Role of Transition metal Nanoparticles in the Extra Lithium Storage Capacity of Transition Metal Oxides: A Case Study of Hierarchical Core–Shell Fe 3 O 4@ C and Fe@ C Microspheres. J. Mater. Chem. A 1, 15158–15166 (2013).CrossRef L. Su, Y. Zhong, and Z. Zhou, Role of Transition metal Nanoparticles in the Extra Lithium Storage Capacity of Transition Metal Oxides: A Case Study of Hierarchical Core–Shell Fe 3 O 4@ C and Fe@ C Microspheres. J. Mater. Chem. A 1, 15158–15166 (2013).CrossRef
28.
go back to reference C. Liu, Q. Xia, C. Liao, and S. Wu, Pseudocapacitance Contribution to Three-Dimensional Micro-Sized Silicon@Fe3O4@Few-Layered Graphene for High-Rate and Long-Life Lithium Ion Batteries. Mater. Today Commun. 18, 66 (2019).CrossRef C. Liu, Q. Xia, C. Liao, and S. Wu, Pseudocapacitance Contribution to Three-Dimensional Micro-Sized Silicon@Fe3O4@Few-Layered Graphene for High-Rate and Long-Life Lithium Ion Batteries. Mater. Today Commun. 18, 66 (2019).CrossRef
29.
go back to reference H. Wang, Y. Ding, J. Nong, Q. Pan, Z. Qiu, X. Zhang, F. Zheng, Q. Wu, Y. Huang, and Q. Li, Bifunctional NaCl Template for the Synthesis of Si@Graphitic Carbon Nanosheets as Advanced Anode Materials for Lithium Ion Batteries. New J. Chem. 44, 14278 (2020).CrossRef H. Wang, Y. Ding, J. Nong, Q. Pan, Z. Qiu, X. Zhang, F. Zheng, Q. Wu, Y. Huang, and Q. Li, Bifunctional NaCl Template for the Synthesis of Si@Graphitic Carbon Nanosheets as Advanced Anode Materials for Lithium Ion Batteries. New J. Chem. 44, 14278 (2020).CrossRef
30.
go back to reference Q. He, M. Ashuri, Y. Liu, B. Liu, and L. Shaw, Silicon Microreactor as a Fast Charge, Long Cycle Life Anode with High Initial Coulombic Efficiency Synthesized via a Scalable Method. ACS Appl. Energy Mater. 4, 4744 (2021).CrossRef Q. He, M. Ashuri, Y. Liu, B. Liu, and L. Shaw, Silicon Microreactor as a Fast Charge, Long Cycle Life Anode with High Initial Coulombic Efficiency Synthesized via a Scalable Method. ACS Appl. Energy Mater. 4, 4744 (2021).CrossRef
31.
go back to reference J. Han, X. Tang, S. Ge, Y. Shi, C. Zhang, F. Li, and S. Bai, Si/C Particles on Graphene Sheet as Stable Anode for Lithium-Ion Batteries. J. Mater. Sci. Technol. 80, 259 (2021).CrossRef J. Han, X. Tang, S. Ge, Y. Shi, C. Zhang, F. Li, and S. Bai, Si/C Particles on Graphene Sheet as Stable Anode for Lithium-Ion Batteries. J. Mater. Sci. Technol. 80, 259 (2021).CrossRef
32.
go back to reference H. Huang, G. Yang, J. Yu, J. Zhang, Y. Xia, K. Wang, C. Liang, Y. Gan, X. He, and W. Zhang, One-Pot Synthesis of Nanocrystalline SnS@ Tremella-Like Porous Carbon by Supercritical CO2 Method for Excellent Sodium Storage Performance. Electrochim. Acta 373, 137933 (2021).CrossRef H. Huang, G. Yang, J. Yu, J. Zhang, Y. Xia, K. Wang, C. Liang, Y. Gan, X. He, and W. Zhang, One-Pot Synthesis of Nanocrystalline SnS@ Tremella-Like Porous Carbon by Supercritical CO2 Method for Excellent Sodium Storage Performance. Electrochim. Acta 373, 137933 (2021).CrossRef
33.
go back to reference J. Chen, Z. Mao, L. Zhang, D. Wang, R. Xu, L. Bie, and B.D. Fahlman, Nitrogen-Deficient Graphitic Carbon Nitride with Enhanced Performance for Lithium Ion Battery Anodes. ACS Nano 11, 12650 (2017).CrossRef J. Chen, Z. Mao, L. Zhang, D. Wang, R. Xu, L. Bie, and B.D. Fahlman, Nitrogen-Deficient Graphitic Carbon Nitride with Enhanced Performance for Lithium Ion Battery Anodes. ACS Nano 11, 12650 (2017).CrossRef
34.
go back to reference L. Shi, W. Wang, A. Wang, K. Yuan, Z. Jin, and Y. Yang, Scalable Synthesis of Core-Shell Structured SiO x/Nitrogen-Doped Carbon Composite as a High-Performance Anode Material for Lithium-Ion Batteries. J. Power Sources 318, 184 (2016).CrossRef L. Shi, W. Wang, A. Wang, K. Yuan, Z. Jin, and Y. Yang, Scalable Synthesis of Core-Shell Structured SiO x/Nitrogen-Doped Carbon Composite as a High-Performance Anode Material for Lithium-Ion Batteries. J. Power Sources 318, 184 (2016).CrossRef
35.
go back to reference N. Zhang, C. Chen, X. Yan, Y. Huang, J. Li, J. Ma, and D.H.L. Ng, Bacteria-Inspired Fabrication of Fe3O4-Carbon/Graphene Foam for Lithium-Ion Battery Anodes. Electrochim. Acta 223, 39 (2017).CrossRef N. Zhang, C. Chen, X. Yan, Y. Huang, J. Li, J. Ma, and D.H.L. Ng, Bacteria-Inspired Fabrication of Fe3O4-Carbon/Graphene Foam for Lithium-Ion Battery Anodes. Electrochim. Acta 223, 39 (2017).CrossRef
36.
go back to reference P. Sabhapathy, C.C. Liao, W.F. Chen, T.C. Chou, I. Shown, A. Sabbah, Y.G. Lin, J.F. Lee, M.K. Tsai, K.H. Chen, and L.C. Chen, Highly Efficient Nitrogen and Carbon Coordinated N-Co-C Electrocatalysts on Reduced Graphene Oxide Derived from Vitamin-B12 for the Hydrogen Evolution Reaction. J. Mater. Chem. A 7, 7179 (2019).CrossRef P. Sabhapathy, C.C. Liao, W.F. Chen, T.C. Chou, I. Shown, A. Sabbah, Y.G. Lin, J.F. Lee, M.K. Tsai, K.H. Chen, and L.C. Chen, Highly Efficient Nitrogen and Carbon Coordinated N-Co-C Electrocatalysts on Reduced Graphene Oxide Derived from Vitamin-B12 for the Hydrogen Evolution Reaction. J. Mater. Chem. A 7, 7179 (2019).CrossRef
37.
go back to reference W. Ren, H. Zhang, C. Guan, and C. Cheng, Ultrathin MoS2 Nanosheets@Metal Organic Framework-Derived N-Doped Carbon Nanowall Arrays as Sodium Ion Battery Anode with Superior Cycling Life and Rate Capability. Adv. Funct. Mater. 27, 1702116 (2017).CrossRef W. Ren, H. Zhang, C. Guan, and C. Cheng, Ultrathin MoS2 Nanosheets@Metal Organic Framework-Derived N-Doped Carbon Nanowall Arrays as Sodium Ion Battery Anode with Superior Cycling Life and Rate Capability. Adv. Funct. Mater. 27, 1702116 (2017).CrossRef
38.
go back to reference P. Limthongkul, Y.I. Jang, N.J. Dudney, and Y.M. Chiang, Electrochemically-Driven Solid-State Amorphization in Lithium-Silicon Alloys and Implications for Lithium Storage. Acta Mater. 51, 1103 (2003).CrossRef P. Limthongkul, Y.I. Jang, N.J. Dudney, and Y.M. Chiang, Electrochemically-Driven Solid-State Amorphization in Lithium-Silicon Alloys and Implications for Lithium Storage. Acta Mater. 51, 1103 (2003).CrossRef
39.
go back to reference M. Furquan, A.R. Khatribail, S. Vijayalakshmi, and S. Mitra, Efficient Conversion of Sand to Nano-Silicon and its Energetic Si-C Composite Anode Design for High Volumetric Capacity Lithium-Ion Battery. J. Power Sources 382, 56–68 (2018).CrossRef M. Furquan, A.R. Khatribail, S. Vijayalakshmi, and S. Mitra, Efficient Conversion of Sand to Nano-Silicon and its Energetic Si-C Composite Anode Design for High Volumetric Capacity Lithium-Ion Battery. J. Power Sources 382, 56–68 (2018).CrossRef
40.
go back to reference X. Pu, M. Liu, L. Li, C. Zhang, Y. Pang, C. Jiang, L. Shao, W. Hu, and Z.L. Wang, Efficient Charging of Li-Ion Batteries with Pulsed Output Current of Triboelectric Nanogenerators. Adv. Sci. (Weinh) 3, 1500255 (2016).CrossRef X. Pu, M. Liu, L. Li, C. Zhang, Y. Pang, C. Jiang, L. Shao, W. Hu, and Z.L. Wang, Efficient Charging of Li-Ion Batteries with Pulsed Output Current of Triboelectric Nanogenerators. Adv. Sci. (Weinh) 3, 1500255 (2016).CrossRef
41.
go back to reference M. Zhang, Y. Li, E. Uchaker, S. Candelaria, L. Shen, T. Wang, and G. Cao, Homogenous Incorporation of SnO2 Nanoparticles in Carbon Cryogels via the Thermal Decomposition of Stannous Sulfate and their Enhanced Lithium-Ion Intercalation Properties. Nano Energy 2, 769 (2013).CrossRef M. Zhang, Y. Li, E. Uchaker, S. Candelaria, L. Shen, T. Wang, and G. Cao, Homogenous Incorporation of SnO2 Nanoparticles in Carbon Cryogels via the Thermal Decomposition of Stannous Sulfate and their Enhanced Lithium-Ion Intercalation Properties. Nano Energy 2, 769 (2013).CrossRef
Metadata
Title
Improved Lithium Storage Capability of Si Anode by Ball-Milling Produced Graphitic Carbon Sheet and Fe3O4 Nanoparticles
Authors
Junkai Ma
Yuxuan Zheng
Yongping Gan
Jun Zhang
Yang Xia
Xinping He
Wenkui Zhang
Hui Huang
Publication date
17-06-2022
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 9/2022
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-022-09736-y

Other articles of this Issue 9/2022

Journal of Electronic Materials 9/2022 Go to the issue

2021 U.S. Workshop on Physics and Chemistry of II-VI Materials

XBn and XBp Detectors Based on Type II Superlattices