Skip to main content
Top
Published in: Journal of Intelligent Manufacturing 4/2023

17-01-2022

Improved multi-core arithmetic optimization algorithm-based ensemble mutation for multidisciplinary applications

Authors: Laith Abualigah, Ali Diabat

Published in: Journal of Intelligent Manufacturing | Issue 4/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper proposes a new search method based on an augmented version of the Arithmetic Optimization Algorithm to solve various benchmark functions, engineering design cases, and feature selection problems. The proposed method is called MCAOA, combined with the Marine Predators Algorithm and a new proposed Ensemble Mutation Strategy. The Arithmetic Optimization Algorithm is a new meta-heuristic technique used to solve optimization problems. Sometimes, Arithmetic Optimization Algorithm faces convergence problems and falls into local optima for specific optimization problems, especially large-scale and multimodal problems. The Marine Predators Algorithm and Ensemble Mutation Strategy improve the Arithmetic Optimization Algorithm’s convergence rate and equilibrium in the exploration and exploitation search methods. The proposed method is tested on 23 different benchmark functions, seven common engineering design cases, and sixteen feature selection problems. The obtained results are compared with other well-known and state-of-the-art methods. The experimental results indicated that the proposed method found new best solutions for different complicated problems; the general performance is promising compared to other comparative methods.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Abd Elaziz, M., Oliva, D., & Xiong, S. (2017). An improved opposition-based sine cosine algorithm for global optimization. Expert Systems with Applications, 90, 484–500.CrossRef Abd Elaziz, M., Oliva, D., & Xiong, S. (2017). An improved opposition-based sine cosine algorithm for global optimization. Expert Systems with Applications, 90, 484–500.CrossRef
go back to reference Abualigah, L. (2020). Group search optimizer: A nature-inspired meta-heuristic optimization algorithm with its results, variants, and applications. Neural Computing and Applications, 1–24. Abualigah, L. (2020). Group search optimizer: A nature-inspired meta-heuristic optimization algorithm with its results, variants, and applications. Neural Computing and Applications, 1–24.
go back to reference Abualigah, L., & Diabat, A. (2020). A comprehensive survey of the grasshopper optimization algorithm: Results, variants, and applications. Neural Computing and Applications, 1–24. Abualigah, L., & Diabat, A. (2020). A comprehensive survey of the grasshopper optimization algorithm: Results, variants, and applications. Neural Computing and Applications, 1–24.
go back to reference Abualigah, L., & Diabat, A. (2020). A novel hybrid antlion optimization algorithm for multi-objective task scheduling problems in cloud computing environments. Cluster Computing, 1–19. Abualigah, L., & Diabat, A. (2020). A novel hybrid antlion optimization algorithm for multi-objective task scheduling problems in cloud computing environments. Cluster Computing, 1–19.
go back to reference Abualigah, L., & Diabat, A. (2021). Advances in sine cosine algorithm: A comprehensive survey. Artificial Intelligence Review, 1–42. Abualigah, L., & Diabat, A. (2021). Advances in sine cosine algorithm: A comprehensive survey. Artificial Intelligence Review, 1–42.
go back to reference Abualigah, L., Diabat, A., & Geem, Z. W. (2020). A comprehensive survey of the harmony search algorithm in clustering applications. Applied Sciences, 10(11), 3827. Abualigah, L., Diabat, A., & Geem, Z. W. (2020). A comprehensive survey of the harmony search algorithm in clustering applications. Applied Sciences, 10(11), 3827.
go back to reference Abualigah, L., Diabat, A., Mirjalili, S., Abd Elaziz, M., & Gandomi, A. H. (2021). The arithmetic optimization algorithm. Computer Methods in Applied Mechanics and Engineering Abualigah, L., Diabat, A., Mirjalili, S., Abd Elaziz, M., & Gandomi, A. H. (2021). The arithmetic optimization algorithm. Computer Methods in Applied Mechanics and Engineering
go back to reference Abualigah, L. M., Khader, A. T., & Hanandeh, E. S. (2018). A new feature selection method to improve the document clustering using particle swarm optimization algorithm. Journal of Computational Science, 25, 456–466.CrossRef Abualigah, L. M., Khader, A. T., & Hanandeh, E. S. (2018). A new feature selection method to improve the document clustering using particle swarm optimization algorithm. Journal of Computational Science, 25, 456–466.CrossRef
go back to reference Abualigah, L., Shehab, M., Alshinwan, M., & Alabool, H. (2019). Salp swarm algorithm: A comprehensive survey. Neural Computing and Applications, 1–21. Abualigah, L., Shehab, M., Alshinwan, M., & Alabool, H. (2019). Salp swarm algorithm: A comprehensive survey. Neural Computing and Applications, 1–21.
go back to reference Al-Qaness, M. A., Ewees, A. A., Fan, H., Abualigah, L., & Abd Elaziz, M. (2020). Marine predators algorithm for forecasting confirmed cases of COVID-19 in Italy, USA, Iran and Korea. International Journal of Environmental Research and Public Health, 17(10), 3520.CrossRef Al-Qaness, M. A., Ewees, A. A., Fan, H., Abualigah, L., & Abd Elaziz, M. (2020). Marine predators algorithm for forecasting confirmed cases of COVID-19 in Italy, USA, Iran and Korea. International Journal of Environmental Research and Public Health, 17(10), 3520.CrossRef
go back to reference Arora, J. S. (2004). Introduction to optimum design. Elsevier. Arora, J. S. (2004). Introduction to optimum design. Elsevier.
go back to reference Arora, S., & Anand, P. (2019). Chaotic grasshopper optimization algorithm for global optimization. Neural Computing and Applications, 31(8), 4385–4405.CrossRef Arora, S., & Anand, P. (2019). Chaotic grasshopper optimization algorithm for global optimization. Neural Computing and Applications, 31(8), 4385–4405.CrossRef
go back to reference Arora, S., & Anand, P. (2019). Binary butterfly optimization approaches for feature selection. Expert Systems with Applications, 116, 147–160.CrossRef Arora, S., & Anand, P. (2019). Binary butterfly optimization approaches for feature selection. Expert Systems with Applications, 116, 147–160.CrossRef
go back to reference Baykasoğlu, A., & Akpinar, Ş. (2015). Weighted superposition attraction (WSA): A swarm intelligence algorithm for optimization problems-part 2: Constrained optimization. Applied Soft Computing, 37, 396–415.CrossRef Baykasoğlu, A., & Akpinar, Ş. (2015). Weighted superposition attraction (WSA): A swarm intelligence algorithm for optimization problems-part 2: Constrained optimization. Applied Soft Computing, 37, 396–415.CrossRef
go back to reference Baykasoğlu, A., & Ozsoydan, F. B. (2015). Adaptive firefly algorithm with chaos for mechanical design optimization problems. Applied Soft Computing, 36, 152–164.CrossRef Baykasoğlu, A., & Ozsoydan, F. B. (2015). Adaptive firefly algorithm with chaos for mechanical design optimization problems. Applied Soft Computing, 36, 152–164.CrossRef
go back to reference Bhesdadiya, R., Trivedi, I. N., Jangir, P., & Jangir, N. (2018). Moth-flame optimizer method for solving constrained engineering optimization problems. In: Advances in computer and computational sciences (pp. 61–68). Springer. Bhesdadiya, R., Trivedi, I. N., Jangir, P., & Jangir, N. (2018). Moth-flame optimizer method for solving constrained engineering optimization problems. In: Advances in computer and computational sciences (pp. 61–68). Springer.
go back to reference Bogar, E., & Beyhan, S. (2020). Adolescent identity search algorithm (AISA): A novel metaheuristic approach for solving optimization problems. Applied Soft Computing, 95, 106503.CrossRef Bogar, E., & Beyhan, S. (2020). Adolescent identity search algorithm (AISA): A novel metaheuristic approach for solving optimization problems. Applied Soft Computing, 95, 106503.CrossRef
go back to reference Brancato, V., Calabrese, L., Palomba, V., Frazzica, A., Fullana-Puig, M., Solé, A., & Cabeza, L. F. (2018). Mgso4\(\cdot \) 7h2o filled macro cellular foams: An innovative composite sorbent for thermo-chemical energy storage applications for solar buildings. Solar Energy, 173, 1278–1286.CrossRef Brancato, V., Calabrese, L., Palomba, V., Frazzica, A., Fullana-Puig, M., Solé, A., & Cabeza, L. F. (2018). Mgso4\(\cdot \) 7h2o filled macro cellular foams: An innovative composite sorbent for thermo-chemical energy storage applications for solar buildings. Solar Energy, 173, 1278–1286.CrossRef
go back to reference Cheng, M.-Y., & Prayogo, D. (2014). Symbiotic organisms search: A new metaheuristic optimization algorithm. Computers& Structures, 139, 98–112.CrossRef Cheng, M.-Y., & Prayogo, D. (2014). Symbiotic organisms search: A new metaheuristic optimization algorithm. Computers& Structures, 139, 98–112.CrossRef
go back to reference Chickermane, H., & Gea, H. (1996). Structural optimization using a new local approximation method. International Journal for Numerical Methods in Engineering, 39(5), 829–846.CrossRef Chickermane, H., & Gea, H. (1996). Structural optimization using a new local approximation method. International Journal for Numerical Methods in Engineering, 39(5), 829–846.CrossRef
go back to reference Coello, C. A. C. (2000). Use of a self-adaptive penalty approach for engineering optimization problems. Computers in Industry, 41(2), 113–127.CrossRef Coello, C. A. C. (2000). Use of a self-adaptive penalty approach for engineering optimization problems. Computers in Industry, 41(2), 113–127.CrossRef
go back to reference Cover, T. M., & Thomas, J. A. (2012). Elements of information theory. Wiley. Cover, T. M., & Thomas, J. A. (2012). Elements of information theory. Wiley.
go back to reference Czerniak, J. M., Zarzycki, H., & Ewald, D. (2017). Aao as a new strategy in modeling and simulation of constructional problems optimization. Simulation Modelling Practice and Theory, 76, 22–33.CrossRef Czerniak, J. M., Zarzycki, H., & Ewald, D. (2017). Aao as a new strategy in modeling and simulation of constructional problems optimization. Simulation Modelling Practice and Theory, 76, 22–33.CrossRef
go back to reference Deb, K., & Srinivasan, A. (2008). Innovization: Discovery of innovative design principles through multiobjective evolutionary optimization. In: Multiobjective problem solving from nature (pp. 243–262). Springer. Deb, K., & Srinivasan, A. (2008). Innovization: Discovery of innovative design principles through multiobjective evolutionary optimization. In: Multiobjective problem solving from nature (pp. 243–262). Springer.
go back to reference Deb, K. (1991). Optimal design of a welded beam via genetic algorithms. AIAA Journal, 29(11), 2013–2015.CrossRef Deb, K. (1991). Optimal design of a welded beam via genetic algorithms. AIAA Journal, 29(11), 2013–2015.CrossRef
go back to reference Deb, K. (2000). An efficient constraint handling method for genetic algorithms. Computer Methods in Applied Mechanics and Engineering, 186(2–4), 311–338.CrossRef Deb, K. (2000). An efficient constraint handling method for genetic algorithms. Computer Methods in Applied Mechanics and Engineering, 186(2–4), 311–338.CrossRef
go back to reference Derrac, J., García, S., Molina, D., & Herrera, F. (2011). A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm and Evolutionary Computation, 1(1), 3–18.CrossRef Derrac, J., García, S., Molina, D., & Herrera, F. (2011). A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm and Evolutionary Computation, 1(1), 3–18.CrossRef
go back to reference Elaziz, M. A., Oliva, D., & Xiong, S. (2017). An improved opposition-based sine cosine algorithm for global optimization. Expert Systems with Applications, 90, 484–500.CrossRef Elaziz, M. A., Oliva, D., & Xiong, S. (2017). An improved opposition-based sine cosine algorithm for global optimization. Expert Systems with Applications, 90, 484–500.CrossRef
go back to reference Emary, E., Zawbaa, H. M., & Hassanien, A. E. (2016). Binary grey wolf optimization approaches for feature selection. Neurocomputing, 172, 371–381.CrossRef Emary, E., Zawbaa, H. M., & Hassanien, A. E. (2016). Binary grey wolf optimization approaches for feature selection. Neurocomputing, 172, 371–381.CrossRef
go back to reference Eskandar, H., Sadollah, A., Bahreininejad, A., & Hamdi, M. (2012). Water cycle algorithm-a novel metaheuristic optimization method for solving constrained engineering optimization problems. Computers& Structures, 110, 151–166.CrossRef Eskandar, H., Sadollah, A., Bahreininejad, A., & Hamdi, M. (2012). Water cycle algorithm-a novel metaheuristic optimization method for solving constrained engineering optimization problems. Computers& Structures, 110, 151–166.CrossRef
go back to reference Faramarzi, A., Heidarinejad, M., Mirjalili, S., & Gandomi, A. H. (2020). Marine predators algorithm: A nature-inspired metaheuristic. Expert Systems with Applications, 152, 113377.CrossRef Faramarzi, A., Heidarinejad, M., Mirjalili, S., & Gandomi, A. H. (2020). Marine predators algorithm: A nature-inspired metaheuristic. Expert Systems with Applications, 152, 113377.CrossRef
go back to reference Fesanghary, M., Mahdavi, M., Minary-Jolandan, M., & Alizadeh, Y. (2008). Hybridizing harmony search algorithm with sequential quadratic programming for engineering optimization problems. Computer Methods in Applied Mechanics and Engineering, 197(33–40), 3080–3091.CrossRef Fesanghary, M., Mahdavi, M., Minary-Jolandan, M., & Alizadeh, Y. (2008). Hybridizing harmony search algorithm with sequential quadratic programming for engineering optimization problems. Computer Methods in Applied Mechanics and Engineering, 197(33–40), 3080–3091.CrossRef
go back to reference Fouad, M. M., El-Desouky, A. I., Al-Hajj, R., & El-Kenawy, E.-S.M. (2020). Dynamic group-based cooperative optimization algorithm. IEEE Access, 8, 148378–148403.CrossRef Fouad, M. M., El-Desouky, A. I., Al-Hajj, R., & El-Kenawy, E.-S.M. (2020). Dynamic group-based cooperative optimization algorithm. IEEE Access, 8, 148378–148403.CrossRef
go back to reference Gandomi, A. H., & Alavi, A. H. (2012). Krill herd: a new bio-inspired optimization algorithm. Communications in Nonlinear Science and Numerical Simulation, 17(12), 4831–4845.CrossRef Gandomi, A. H., & Alavi, A. H. (2012). Krill herd: a new bio-inspired optimization algorithm. Communications in Nonlinear Science and Numerical Simulation, 17(12), 4831–4845.CrossRef
go back to reference Gandomi, A. H., & Deb, K. (2020). Implicit constraints handling for efficient search of feasible solutions. Computer Methods in Applied Mechanics and Engineering, 363, 112917.CrossRef Gandomi, A. H., & Deb, K. (2020). Implicit constraints handling for efficient search of feasible solutions. Computer Methods in Applied Mechanics and Engineering, 363, 112917.CrossRef
go back to reference Gandomi, A. H., Yang, X.-S., & Alavi, A. H. (2013). Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems. Engineering with Computers, 29(1), 17–35.CrossRef Gandomi, A. H., Yang, X.-S., & Alavi, A. H. (2013). Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems. Engineering with Computers, 29(1), 17–35.CrossRef
go back to reference García, S., Fernández, A., Luengo, J., & Herrera, F. (2010). Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power. Information Sciences, 180(10), 2044–2064.CrossRef García, S., Fernández, A., Luengo, J., & Herrera, F. (2010). Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power. Information Sciences, 180(10), 2044–2064.CrossRef
go back to reference Guedria, N. B. (2016). Improved accelerated PSO algorithm for mechanical engineering optimization problems. Applied Soft Computing, 40, 455–467.CrossRef Guedria, N. B. (2016). Improved accelerated PSO algorithm for mechanical engineering optimization problems. Applied Soft Computing, 40, 455–467.CrossRef
go back to reference Hall, M. A., & Smith, L. A. (1999). Feature selection for machine learning: Comparing a correlation-based filter approach to the wrapper. In: FLAIRS conference (Vol. 1999, pp. 235–239). Hall, M. A., & Smith, L. A. (1999). Feature selection for machine learning: Comparing a correlation-based filter approach to the wrapper. In: FLAIRS conference (Vol. 1999, pp. 235–239).
go back to reference Han, X., Xu, Q., Yue, L., Dong, Y., Xie, G., & Xu, X. (2020). An improved crow search algorithm based on spiral search mechanism for solving numerical and engineering optimization problems. IEEE Access, 8, 92363–92382. Han, X., Xu, Q., Yue, L., Dong, Y., Xie, G., & Xu, X. (2020). An improved crow search algorithm based on spiral search mechanism for solving numerical and engineering optimization problems. IEEE Access, 8, 92363–92382.
go back to reference He, Q., & Wang, L. (2007). An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Engineering Applications of Artificial Intelligence, 20(1), 89–99.CrossRef He, Q., & Wang, L. (2007). An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Engineering Applications of Artificial Intelligence, 20(1), 89–99.CrossRef
go back to reference He, Q., & Wang, L. (2007). A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization. Applied Mathematics and Computation, 186(2), 1407–1422.CrossRef He, Q., & Wang, L. (2007). A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization. Applied Mathematics and Computation, 186(2), 1407–1422.CrossRef
go back to reference Houssein, E. H., Saad, M. R., Hashim, F. A., Shaban, H., & Hassaballah, M. (2020). Lévy flight distribution: A new metaheuristic algorithm for solving engineering optimization problems. Engineering Applications of Artificial Intelligence, 94, 103731.CrossRef Houssein, E. H., Saad, M. R., Hashim, F. A., Shaban, H., & Hassaballah, M. (2020). Lévy flight distribution: A new metaheuristic algorithm for solving engineering optimization problems. Engineering Applications of Artificial Intelligence, 94, 103731.CrossRef
go back to reference Huang, F.-Z., Wang, L., & He, Q. (2007). An effective co-evolutionary differential evolution for constrained optimization. Applied Mathematics and Computation, 186(1), 340–356.CrossRef Huang, F.-Z., Wang, L., & He, Q. (2007). An effective co-evolutionary differential evolution for constrained optimization. Applied Mathematics and Computation, 186(1), 340–356.CrossRef
go back to reference Kamboj, V. K., Nandi, A., Bhadoria, A., & Sehgal, S. (2020). An intensify harris hawks optimizer for numerical and engineering optimization problems. Applied Soft Computing, 89, 106018.CrossRef Kamboj, V. K., Nandi, A., Bhadoria, A., & Sehgal, S. (2020). An intensify harris hawks optimizer for numerical and engineering optimization problems. Applied Soft Computing, 89, 106018.CrossRef
go back to reference Kashef, S., & Nezamabadi-pour, H. (2015). An advanced ACO algorithm for feature subset selection. Neurocomputing, 147, 271–279.CrossRef Kashef, S., & Nezamabadi-pour, H. (2015). An advanced ACO algorithm for feature subset selection. Neurocomputing, 147, 271–279.CrossRef
go back to reference Kaveh, A., & Khayatazad, M. (2012). A new meta-heuristic method: Ray optimization. Computers& Structures, 112, 283–294.CrossRef Kaveh, A., & Khayatazad, M. (2012). A new meta-heuristic method: Ray optimization. Computers& Structures, 112, 283–294.CrossRef
go back to reference Kaveh, A., & Talatahari, S. (2010). An improved ant colony optimization for constrained engineering design problems. Engineering. (Computations). Kaveh, A., & Talatahari, S. (2010). An improved ant colony optimization for constrained engineering design problems. Engineering. (Computations).
go back to reference Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In: Proceedings of ICNN’95-international conference on neural networks (Vol. 4, pp. 1942–1948). IEEE. Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In: Proceedings of ICNN’95-international conference on neural networks (Vol. 4, pp. 1942–1948). IEEE.
go back to reference Khishe, M., & Mosavi, M. R. (2020). Chimp optimization algorithm. Expert Systems with Applications, 149, 113338.CrossRef Khishe, M., & Mosavi, M. R. (2020). Chimp optimization algorithm. Expert Systems with Applications, 149, 113338.CrossRef
go back to reference Lee, K. S., & Geem, Z. W. (2005). A new meta-heuristic algorithm for continuous engineering optimization: Harmony search theory and practice. Computer Methods in Applied Mechanics and Engineering, 194(36–38), 3902–3933.CrossRef Lee, K. S., & Geem, Z. W. (2005). A new meta-heuristic algorithm for continuous engineering optimization: Harmony search theory and practice. Computer Methods in Applied Mechanics and Engineering, 194(36–38), 3902–3933.CrossRef
go back to reference Li, S., Chen, H., Wang, M., Heidari, A. A., & Mirjalili, S. (2020). Slime mould algorithm: A new method for stochastic optimization. Future Generation Computer Systems. Li, S., Chen, H., Wang, M., Heidari, A. A., & Mirjalili, S. (2020). Slime mould algorithm: A new method for stochastic optimization. Future Generation Computer Systems.
go back to reference Ling, Y., Zhou, Y., & Luo, Q. (2017). Lévy flight trajectory-based whale optimization algorithm for global optimization. IEEE Access, 5, 6168–6186.CrossRef Ling, Y., Zhou, Y., & Luo, Q. (2017). Lévy flight trajectory-based whale optimization algorithm for global optimization. IEEE Access, 5, 6168–6186.CrossRef
go back to reference Liu, H., Cai, Z., & Wang, Y. (2010). Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization. Applied Soft Computing, 10(2), 629–640.CrossRef Liu, H., Cai, Z., & Wang, Y. (2010). Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization. Applied Soft Computing, 10(2), 629–640.CrossRef
go back to reference Mack, G. A., & Skillings, J. H. (1980). A Friedman-type rank test for main effects in a two-factor ANOVA. Journal of the American Statistical Association, 75(372), 947–951.CrossRef Mack, G. A., & Skillings, J. H. (1980). A Friedman-type rank test for main effects in a two-factor ANOVA. Journal of the American Statistical Association, 75(372), 947–951.CrossRef
go back to reference Mafarja, M., Aljarah, I., Heidari, A. A., Hammouri, A. I., Faris, H., & Ala’M, A.-Z., & Mirjalili, S. (2018). Evolutionary population dynamics and grasshopper optimization approaches for feature selection problems. Knowledge-Based Systems, 145, 25–45. Mafarja, M., Aljarah, I., Heidari, A. A., Hammouri, A. I., Faris, H., & Ala’M, A.-Z., & Mirjalili, S. (2018). Evolutionary population dynamics and grasshopper optimization approaches for feature selection problems. Knowledge-Based Systems, 145, 25–45.
go back to reference Mahdavi, M., Fesanghary, M., & Damangir, E. (2007). An improved harmony search algorithm for solving optimization problems. Applied Mathematics and Computation, 188(2), 1567–1579.CrossRef Mahdavi, M., Fesanghary, M., & Damangir, E. (2007). An improved harmony search algorithm for solving optimization problems. Applied Mathematics and Computation, 188(2), 1567–1579.CrossRef
go back to reference Mezura-Montes, E., & Coello, C. A. C. (2008). An empirical study about the usefulness of evolution strategies to solve constrained optimization problems. International Journal of General Systems, 37(4), 443–473.CrossRef Mezura-Montes, E., & Coello, C. A. C. (2008). An empirical study about the usefulness of evolution strategies to solve constrained optimization problems. International Journal of General Systems, 37(4), 443–473.CrossRef
go back to reference Mirjalili, S. (2015). The ant lion optimizer. Advances in Engineering Software, 83, 80–98.CrossRef Mirjalili, S. (2015). The ant lion optimizer. Advances in Engineering Software, 83, 80–98.CrossRef
go back to reference Mirjalili, S. (2015). Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowledge-Based Systems, 89, 228–249.CrossRef Mirjalili, S. (2015). Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowledge-Based Systems, 89, 228–249.CrossRef
go back to reference Mirjalili, S. (2016). Sca: A sine cosine algorithm for solving optimization problems. Knowledge-Based Systems, 96, 120–133.CrossRef Mirjalili, S. (2016). Sca: A sine cosine algorithm for solving optimization problems. Knowledge-Based Systems, 96, 120–133.CrossRef
go back to reference Mirjalili, S., Gandomi, A. H., Mirjalili, S. Z., Saremi, S., Faris, H., & Mirjalili, S. M. (2017). Salp swarm algorithm: A bio-inspired optimizer for engineering design problems. Advances in Engineering Software, 114, 163–191.CrossRef Mirjalili, S., Gandomi, A. H., Mirjalili, S. Z., Saremi, S., Faris, H., & Mirjalili, S. M. (2017). Salp swarm algorithm: A bio-inspired optimizer for engineering design problems. Advances in Engineering Software, 114, 163–191.CrossRef
go back to reference Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. Advances in Engineering Software, 95, 51–67.CrossRef Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. Advances in Engineering Software, 95, 51–67.CrossRef
go back to reference Mirjalili, S., Mirjalili, S. M., & Hatamlou, A. (2016). Multi-verse optimizer: A nature-inspired algorithm for global optimization. Neural Computing and Applications, 27(2), 495–513.CrossRef Mirjalili, S., Mirjalili, S. M., & Hatamlou, A. (2016). Multi-verse optimizer: A nature-inspired algorithm for global optimization. Neural Computing and Applications, 27(2), 495–513.CrossRef
go back to reference Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering Software, 69, 46–61.CrossRef Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering Software, 69, 46–61.CrossRef
go back to reference Mohammed, H., & Rashid, T. (2020). A novel hybrid gwo with woa for global numerical optimization and solving pressure vessel design. Neural Computing and Applications, 1–18. Mohammed, H., & Rashid, T. (2020). A novel hybrid gwo with woa for global numerical optimization and solving pressure vessel design. Neural Computing and Applications, 1–18.
go back to reference Nobile, M. S., Cazzaniga, P., Besozzi, D., Colombo, R., Mauri, G., & Pasi, G. (2018). Fuzzy self-tuning PSO: A settings-free algorithm for global optimization. Swarm and Evolutionary Computation, 39, 70–85.CrossRef Nobile, M. S., Cazzaniga, P., Besozzi, D., Colombo, R., Mauri, G., & Pasi, G. (2018). Fuzzy self-tuning PSO: A settings-free algorithm for global optimization. Swarm and Evolutionary Computation, 39, 70–85.CrossRef
go back to reference Qais, M. H., Hasanien, H. M., & Alghuwainem, S. (2020). Transient search optimization: A new meta-heuristic optimization algorithm. Applied Intelligence, 50(11), 3926–3941. Qais, M. H., Hasanien, H. M., & Alghuwainem, S. (2020). Transient search optimization: A new meta-heuristic optimization algorithm. Applied Intelligence, 50(11), 3926–3941.
go back to reference Qiao, W., & Yang, Z. (2019). Solving large-scale function optimization problem by using a new metaheuristic algorithm based on quantum dolphin swarm algorithm. IEEE Access, 7, 138972–138989.CrossRef Qiao, W., & Yang, Z. (2019). Solving large-scale function optimization problem by using a new metaheuristic algorithm based on quantum dolphin swarm algorithm. IEEE Access, 7, 138972–138989.CrossRef
go back to reference Ragsdell, K., & Phillips, D. (1976). Optimal design of a class of welded structures using geometric programming. Ragsdell, K., & Phillips, D. (1976). Optimal design of a class of welded structures using geometric programming.
go back to reference Rahkar Farshi, T. (2020). Battle royale optimization algorithm. Neural Computing and Applications, 1–19. Rahkar Farshi, T. (2020). Battle royale optimization algorithm. Neural Computing and Applications, 1–19.
go back to reference Rahman, C. M., & Rashid, T. A. (2020). A new evolutionary algorithm: Learner performance based behavior algorithm. Egyptian Informatics Journal. Rahman, C. M., & Rashid, T. A. (2020). A new evolutionary algorithm: Learner performance based behavior algorithm. Egyptian Informatics Journal.
go back to reference Rao, R. V., Savsani, V. J., & Vakharia, D. (2011). Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems. Computer-Aided Design, 43(3), 303–315.CrossRef Rao, R. V., Savsani, V. J., & Vakharia, D. (2011). Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems. Computer-Aided Design, 43(3), 303–315.CrossRef
go back to reference Rashedi, E., Nezamabadi-Pour, H., & Saryazdi, S. (2009). Gsa: A gravitational search algorithm. Information Sciences, 179(13), 2232–2248.CrossRef Rashedi, E., Nezamabadi-Pour, H., & Saryazdi, S. (2009). Gsa: A gravitational search algorithm. Information Sciences, 179(13), 2232–2248.CrossRef
go back to reference Rashedi, E., Nezamabadi-Pour, H., & Saryazdi, S. (2010). BGSA: Binary gravitational search algorithm. Natural Computing, 9(3), 727–745.CrossRef Rashedi, E., Nezamabadi-Pour, H., & Saryazdi, S. (2010). BGSA: Binary gravitational search algorithm. Natural Computing, 9(3), 727–745.CrossRef
go back to reference Ray, T., & Saini, P. (2001). Engineering design optimization using a swarm with an intelligent information sharing among individuals. Engineering Optimization, 33(6), 735–748.CrossRef Ray, T., & Saini, P. (2001). Engineering design optimization using a swarm with an intelligent information sharing among individuals. Engineering Optimization, 33(6), 735–748.CrossRef
go back to reference Sadollah, A., Bahreininejad, A., Eskandar, H., & Hamdi, M. (2013). Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems. Applied Soft Computing, 13(5), 2592–2612.CrossRef Sadollah, A., Bahreininejad, A., Eskandar, H., & Hamdi, M. (2013). Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems. Applied Soft Computing, 13(5), 2592–2612.CrossRef
go back to reference Safaldin, M., Otair, M., & Abualigah, L. (2020). Improved binary gray wolf optimizer and SVM for intrusion detection system in wireless sensor networks. Journal of Ambient Intelligence and Humanized Computing, 1–18. Safaldin, M., Otair, M., & Abualigah, L. (2020). Improved binary gray wolf optimizer and SVM for intrusion detection system in wireless sensor networks. Journal of Ambient Intelligence and Humanized Computing, 1–18.
go back to reference Sandgren, E. (1990). Nonlinear integer and discrete programming in mechanical design optimization. Sandgren, E. (1990). Nonlinear integer and discrete programming in mechanical design optimization.
go back to reference Sayed, G. I., Darwish, A., & Hassanien, A. E. (2018). A new chaotic multi-verse optimization algorithm for solving engineering optimization problems. Journal of Experimental& Theoretical Artificial Intelligence, 30(2), 293–317.CrossRef Sayed, G. I., Darwish, A., & Hassanien, A. E. (2018). A new chaotic multi-verse optimization algorithm for solving engineering optimization problems. Journal of Experimental& Theoretical Artificial Intelligence, 30(2), 293–317.CrossRef
go back to reference Tsai, J.-F. (2005). Global optimization of nonlinear fractional programming problems in engineering design. Engineering Optimization, 37(4), 399–409.CrossRef Tsai, J.-F. (2005). Global optimization of nonlinear fractional programming problems in engineering design. Engineering Optimization, 37(4), 399–409.CrossRef
go back to reference Wang, G.-G., Lu, M., & Zhao, X.-J. (2016) An improved bat algorithm with variable neighborhood search for global optimization. In. IEEE congress on evolutionary computation (CEC). IEEE (Vol. 2016, pp. 1773–1778). Wang, G.-G., Lu, M., & Zhao, X.-J. (2016) An improved bat algorithm with variable neighborhood search for global optimization. In. IEEE congress on evolutionary computation (CEC). IEEE (Vol. 2016, pp. 1773–1778).
go back to reference Wang, G.-G., Deb, S., Gandomi, A. H., Zhang, Z., & Alavi, A. H. (2016). Chaotic cuckoo search. Soft Computing, 20(9), 3349–3362.CrossRef Wang, G.-G., Deb, S., Gandomi, A. H., Zhang, Z., & Alavi, A. H. (2016). Chaotic cuckoo search. Soft Computing, 20(9), 3349–3362.CrossRef
go back to reference Wang, G.-G., Gandomi, A. H., & Alavi, A. H. (2014). Stud krill herd algorithm. Neurocomputing, 128, 363–370.CrossRef Wang, G.-G., Gandomi, A. H., & Alavi, A. H. (2014). Stud krill herd algorithm. Neurocomputing, 128, 363–370.CrossRef
go back to reference Wang, G.-G., Gandomi, A. H., Alavi, A. H., & Hao, G.-S. (2014). Hybrid krill herd algorithm with differential evolution for global numerical optimization. Neural Computing and Applications, 25(2), 297–308.CrossRef Wang, G.-G., Gandomi, A. H., Alavi, A. H., & Hao, G.-S. (2014). Hybrid krill herd algorithm with differential evolution for global numerical optimization. Neural Computing and Applications, 25(2), 297–308.CrossRef
go back to reference Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1(1), 67–82.CrossRef Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1(1), 67–82.CrossRef
go back to reference Xiang, W.-L., & An, M.-Q. (2013). An efficient and robust artificial bee colony algorithm for numerical optimization. Computers& Operations Research, 40(5), 1256–1265.CrossRef Xiang, W.-L., & An, M.-Q. (2013). An efficient and robust artificial bee colony algorithm for numerical optimization. Computers& Operations Research, 40(5), 1256–1265.CrossRef
go back to reference Xin-gang, Z., Ji, L., Jin, M., & Ying, Z. (2020). An improved quantum particle swarm optimization algorithm for environmental economic dispatch. Expert Systems with Applications, 152, 113370.CrossRef Xin-gang, Z., Ji, L., Jin, M., & Ying, Z. (2020). An improved quantum particle swarm optimization algorithm for environmental economic dispatch. Expert Systems with Applications, 152, 113370.CrossRef
go back to reference Xu, M., You, X., & Liu, S. (2017). A novel heuristic communication heterogeneous dual population ant colony optimization algorithm. IEEE Access, 5, 18506–18515.CrossRef Xu, M., You, X., & Liu, S. (2017). A novel heuristic communication heterogeneous dual population ant colony optimization algorithm. IEEE Access, 5, 18506–18515.CrossRef
go back to reference Zhang, M., Luo, W., & Wang, X. (2008). Differential evolution with dynamic stochastic selection for constrained optimization. Information Sciences, 178(15), 3043–3074.CrossRef Zhang, M., Luo, W., & Wang, X. (2008). Differential evolution with dynamic stochastic selection for constrained optimization. Information Sciences, 178(15), 3043–3074.CrossRef
go back to reference Zhang, H., Yuan, M., Liang, Y., & Liao, Q. (2018). A novel particle swarm optimization based on prey-predator relationship. Applied Soft Computing, 68, 202–218.CrossRef Zhang, H., Yuan, M., Liang, Y., & Liao, Q. (2018). A novel particle swarm optimization based on prey-predator relationship. Applied Soft Computing, 68, 202–218.CrossRef
Metadata
Title
Improved multi-core arithmetic optimization algorithm-based ensemble mutation for multidisciplinary applications
Authors
Laith Abualigah
Ali Diabat
Publication date
17-01-2022
Publisher
Springer US
Published in
Journal of Intelligent Manufacturing / Issue 4/2023
Print ISSN: 0956-5515
Electronic ISSN: 1572-8145
DOI
https://doi.org/10.1007/s10845-021-01877-x

Other articles of this Issue 4/2023

Journal of Intelligent Manufacturing 4/2023 Go to the issue

Premium Partners