Skip to main content
Top
Published in: Electrical Engineering 1/2024

01-09-2023 | Original Paper

Improved power quality for photovoltaic grid integration power system using an intelligent controller fed SL–SC boost converter supplied reduced switch cascade multilevel inverter

Authors: I. Mahendravarman, A. Ragavendiran, S. A. Chithradevi

Published in: Electrical Engineering | Issue 1/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The generation of electricity from renewable sources has made considerable strides in today's industrialized nations. The primary objective of this research is to examine the grid integration of solar systems within permissible total harmonic distortion (THD) limits, with the help of a proposed cascaded feedforward neural network (CFNN) controller fed advanced power conversion devices such as symmetrical hybrid (SH), switched inductor (SL), and switched capacitor (SC) based boost converter and reduced switch cascade multilevel inverter (CMLI). The SH–SL–SC converter for power conversion features a high voltage gain and reduced switch CMLI features minimum number of power electronic switches and low harmonic content in both the voltage and current profiles. When producing a control signal for the recommended SH–SL–SC boost converter, the proposed CFNN-MPPT controller performs better under different weather scenarios where it needs significant data to operate effectively. Consequently, the CFNN-MPPT controller fed SH–SC–SC boost converter-based PV system is integrated into the grid through reduced switch CMLI where it is controlled by proposed CFNN controller. The CMLI can be operated on asynchronous input voltage sources and making it ideal for PV systems when integrated to the grid with improved power quality by reducing total harmonic distortion (THD) to less than 5% at point of common coupling. With reference to the standards outlined in IEEE 1547 and 519, the simulation's outcomes were reviewed. Finally, a symmetric hybrid SL–SC boost converter and modified cascaded nine level inverter have been conceived and produced as a laboratory prototype model and its output waveforms are presented in this article. The proposed intelligent controller fed converter exhibits enhancements in the converter voltage gain and power quality by lowering the THD level at PCC in the grid integration with the PV power systems.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bogdanov D, Farfan J, Sadovskaia K, Aghahosseini A, Child M, Gulagi A, Oyewo AS, de Souza Noel Simas Barbosa L, Breyer C, (2019) Radical transformation pathway towards sustainable electricity via evolutionary steps. Nat Commun 10:1–16CrossRef Bogdanov D, Farfan J, Sadovskaia K, Aghahosseini A, Child M, Gulagi A, Oyewo AS, de Souza Noel Simas Barbosa L, Breyer C, (2019) Radical transformation pathway towards sustainable electricity via evolutionary steps. Nat Commun 10:1–16CrossRef
2.
go back to reference Al-Maamary HMS, Kazem HAA, Chaichan MT (2016) Changing the energy profile of the GCC states: a review. Int J Appl Eng Res 11:1980–1988 Al-Maamary HMS, Kazem HAA, Chaichan MT (2016) Changing the energy profile of the GCC states: a review. Int J Appl Eng Res 11:1980–1988
3.
go back to reference Zeb K, Uddin W, Khan MA, Ali Z, Ali MU, Christofides N, Kim HJA (2018) Comprehensive review of inverter topologies and control strategies for grid connected photovoltaic system. Renew Sustain Energy Rev 20(94):1120–1141CrossRef Zeb K, Uddin W, Khan MA, Ali Z, Ali MU, Christofides N, Kim HJA (2018) Comprehensive review of inverter topologies and control strategies for grid connected photovoltaic system. Renew Sustain Energy Rev 20(94):1120–1141CrossRef
4.
go back to reference Zeb K, Islam SU, Din WU, Khan I, Ishfaq M, Busarello TDC, Ahmad I, Kim HJ (2019) Design of Fuzzy-PI and fuzzy-sliding mode controllers for single-phase two-stages grid-connected transformer less photovoltaic inverter. Electronics 8:520CrossRef Zeb K, Islam SU, Din WU, Khan I, Ishfaq M, Busarello TDC, Ahmad I, Kim HJ (2019) Design of Fuzzy-PI and fuzzy-sliding mode controllers for single-phase two-stages grid-connected transformer less photovoltaic inverter. Electronics 8:520CrossRef
5.
go back to reference Dong L, Fujing D, Yanbo W, Zhe C (2017) Improved control strategy for T-type isolated DC/DC converters. J Power Electron 17:874–883 Dong L, Fujing D, Yanbo W, Zhe C (2017) Improved control strategy for T-type isolated DC/DC converters. J Power Electron 17:874–883
6.
go back to reference Saravanan S, Babu NR (2017) A modified high step-up non isolated dc–dc converter for PV application. J Appl Res Technol 15:242–249CrossRef Saravanan S, Babu NR (2017) A modified high step-up non isolated dc–dc converter for PV application. J Appl Res Technol 15:242–249CrossRef
8.
go back to reference Zhang G, Zhang B, Li Z, Qiu D, Yang L, Halang WA (2014) A 3-Znetwork boost converter. IEEE Trans Ind Electron 62(1):278–288CrossRef Zhang G, Zhang B, Li Z, Qiu D, Yang L, Halang WA (2014) A 3-Znetwork boost converter. IEEE Trans Ind Electron 62(1):278–288CrossRef
9.
go back to reference Wu B, Li S, Liu Y, Smedley KM (2015) A new hybrid boosting converter for renewable energy applications. IEEE Trans Power Electron 31(2):1203–1215CrossRefADS Wu B, Li S, Liu Y, Smedley KM (2015) A new hybrid boosting converter for renewable energy applications. IEEE Trans Power Electron 31(2):1203–1215CrossRefADS
10.
go back to reference Dileep G, Singh SN (2017) Selection of non-isolated DC–DC converters for solar photovoltaic system. Renew Sustain Energy Rev 76:1230–1247CrossRef Dileep G, Singh SN (2017) Selection of non-isolated DC–DC converters for solar photovoltaic system. Renew Sustain Energy Rev 76:1230–1247CrossRef
11.
go back to reference Forouzesh M, Siwakoti YP, Gorji SA, Blaabjerg F, Lehman B (2017) Step-up DC–DC converters: a comprehensive review of voltage-boosting techniques, topologies, and applications. IEEE Trans Power Electron 32(12):9143–78CrossRefADS Forouzesh M, Siwakoti YP, Gorji SA, Blaabjerg F, Lehman B (2017) Step-up DC–DC converters: a comprehensive review of voltage-boosting techniques, topologies, and applications. IEEE Trans Power Electron 32(12):9143–78CrossRefADS
12.
go back to reference Acharya AB, Ricco M, Sera D, Teoderscu R, Norum LE (2019) Performance analysis of medium-voltagegrid integration of PV plant using modular multilevel converter. IEEE Trans Energy Convers 34:1731–1740CrossRefADS Acharya AB, Ricco M, Sera D, Teoderscu R, Norum LE (2019) Performance analysis of medium-voltagegrid integration of PV plant using modular multilevel converter. IEEE Trans Energy Convers 34:1731–1740CrossRefADS
13.
go back to reference Fei Y, Ruan Xinbo Wu, Gang YZ (2018) Discontinuous-current mode operation of two-phase interleaved boost DC–DC converter with coupled inductor. IEEE Trans Power Electron 33(1):188–198CrossRefADS Fei Y, Ruan Xinbo Wu, Gang YZ (2018) Discontinuous-current mode operation of two-phase interleaved boost DC–DC converter with coupled inductor. IEEE Trans Power Electron 33(1):188–198CrossRefADS
14.
go back to reference Muhammad M, Armstrong M, Elgendy MA (2017) Analysis and implementation of high-gain non-isolated D.C.–DC boost converter. IET Power Electron 10:1241–1249CrossRef Muhammad M, Armstrong M, Elgendy MA (2017) Analysis and implementation of high-gain non-isolated D.C.–DC boost converter. IET Power Electron 10:1241–1249CrossRef
15.
go back to reference Nguyen M, Duong T, Lim Y, Kim Y (2018) Isolated boost dc–dc converter with three switches. IEEE Trans Power Electron 33:1389–1398CrossRefADS Nguyen M, Duong T, Lim Y, Kim Y (2018) Isolated boost dc–dc converter with three switches. IEEE Trans Power Electron 33:1389–1398CrossRefADS
16.
go back to reference Forouzesh M, Shen Y, Yari K, Siwakoti YP, Blaabjerg F (2018) High efficiency high step-up DC–DC converter with dual coupled inductors for grid-connected photovoltaic systems. IEEE Trans Power Electron 33(7):5967–5982CrossRefADS Forouzesh M, Shen Y, Yari K, Siwakoti YP, Blaabjerg F (2018) High efficiency high step-up DC–DC converter with dual coupled inductors for grid-connected photovoltaic systems. IEEE Trans Power Electron 33(7):5967–5982CrossRefADS
17.
go back to reference Salvador MA, Lazzarin TB, Coelho RF (2018) High step-up DC–DC converter with active switched-inductor and passive switched-capacitor networks. IEEE Trans Ind Electron 65:5644–5654CrossRef Salvador MA, Lazzarin TB, Coelho RF (2018) High step-up DC–DC converter with active switched-inductor and passive switched-capacitor networks. IEEE Trans Ind Electron 65:5644–5654CrossRef
18.
go back to reference Tangc Y, Fu D, Wang T, Xu Z (2014) Hybrid switched-inductor converters for high step-up conversion. IEEE Trans Ind Electron 62(3):1480–1490CrossRefADS Tangc Y, Fu D, Wang T, Xu Z (2014) Hybrid switched-inductor converters for high step-up conversion. IEEE Trans Ind Electron 62(3):1480–1490CrossRefADS
19.
go back to reference Wang Y, Jing W, Qiu Y, Wang Y, Deng X, Hua K, Hu B, Xu D (2018) A family of Y-source DC/DC converter based on switched inductor. IEEE Trans Ind Appl 55(2):1587–1597CrossRef Wang Y, Jing W, Qiu Y, Wang Y, Deng X, Hua K, Hu B, Xu D (2018) A family of Y-source DC/DC converter based on switched inductor. IEEE Trans Ind Appl 55(2):1587–1597CrossRef
20.
go back to reference Zhang Y, Liu Q, Gao Y, Li J, Sumner M (2018) Hybrid switched capacitor/ switched-Quasi-Z-source bidirectional DC–DC converter with a wide voltage gain range for hybrid energy sources EVs. IEEE Trans Indust Electron 66(4):2680–2690CrossRef Zhang Y, Liu Q, Gao Y, Li J, Sumner M (2018) Hybrid switched capacitor/ switched-Quasi-Z-source bidirectional DC–DC converter with a wide voltage gain range for hybrid energy sources EVs. IEEE Trans Indust Electron 66(4):2680–2690CrossRef
21.
go back to reference Salvador MA, Lazzarin TB, Coelho RB (2017) High step-up DC–DC converter with active switched-inductor and passive switched-capacitor networks. IEEE Trans Ind Electron 65(7):5644–5654CrossRef Salvador MA, Lazzarin TB, Coelho RB (2017) High step-up DC–DC converter with active switched-inductor and passive switched-capacitor networks. IEEE Trans Ind Electron 65(7):5644–5654CrossRef
22.
go back to reference Axelrod Y, Berkovich Ioinovici A (2008) Switched-capacitor/ switched-inductor structures for getting transformer less hybrid D.C.–DC PWM converters. IEEE Trans Circuits Syst I, Reg Papers 55(2):687–696CrossRef Axelrod Y, Berkovich Ioinovici A (2008) Switched-capacitor/ switched-inductor structures for getting transformer less hybrid D.C.–DC PWM converters. IEEE Trans Circuits Syst I, Reg Papers 55(2):687–696CrossRef
23.
go back to reference Faridpak B, Bayat M, Nasiri M, Samanbakhsh R, Farrokhifar M (2020) Improved hybrid switched inductor/ switched capacitor DC–DC converters. IEEE Trans Power Electron 36(3):3053–3052CrossRefADS Faridpak B, Bayat M, Nasiri M, Samanbakhsh R, Farrokhifar M (2020) Improved hybrid switched inductor/ switched capacitor DC–DC converters. IEEE Trans Power Electron 36(3):3053–3052CrossRefADS
24.
go back to reference Amir A, Amir J, Selvaraj RNA (2016) Study of the MPP tracking algorithms: focusing the numerical method techniques,". Renew Sustain Energy Rev 62:350–371CrossRef Amir A, Amir J, Selvaraj RNA (2016) Study of the MPP tracking algorithms: focusing the numerical method techniques,". Renew Sustain Energy Rev 62:350–371CrossRef
25.
go back to reference Tang Y, Wang T, Fu D (2014) Multicell switched-inductor/switched capacitor combined active-network converters. IEEE Trans Power Electron 30(4):2063–2072CrossRefADS Tang Y, Wang T, Fu D (2014) Multicell switched-inductor/switched capacitor combined active-network converters. IEEE Trans Power Electron 30(4):2063–2072CrossRefADS
26.
go back to reference Wu B, Li S, Liu Y, Smedley KM (2016) A new hybrid boosting converter for renewable energy applications power electronics. IEEE Trans 31:1203–1215 Wu B, Li S, Liu Y, Smedley KM (2016) A new hybrid boosting converter for renewable energy applications power electronics. IEEE Trans 31:1203–1215
27.
go back to reference Babaei E, Maheri HM, Sabahi M, Hosseini SH (2018) Extendable non isolated high gain D.C.–DC converter based on active–passive inductor cells. IEEE Trans Ind Electron 65(12):9478–9487CrossRef Babaei E, Maheri HM, Sabahi M, Hosseini SH (2018) Extendable non isolated high gain D.C.–DC converter based on active–passive inductor cells. IEEE Trans Ind Electron 65(12):9478–9487CrossRef
28.
go back to reference Kumar B, Jha S, Kumar T (2018) Review of maximum power point tracking techniques for photovoltaic arrays working under uniform/non-uniform insolation level. Int J Renew Energy Technol 9:439CrossRef Kumar B, Jha S, Kumar T (2018) Review of maximum power point tracking techniques for photovoltaic arrays working under uniform/non-uniform insolation level. Int J Renew Energy Technol 9:439CrossRef
29.
go back to reference Bastidas-Rodríguez JD, Spagnuolo G, Franco E, Ramos-Paja CA, Petrone G (2014) Maximum power point tracking architectures for photovoltaic systems in mismatching conditions: a review. IET Power Electron 7:1396–1413CrossRef Bastidas-Rodríguez JD, Spagnuolo G, Franco E, Ramos-Paja CA, Petrone G (2014) Maximum power point tracking architectures for photovoltaic systems in mismatching conditions: a review. IET Power Electron 7:1396–1413CrossRef
30.
go back to reference Javed K, Ashfaq H, Singh R (2019) A new simple MPPT algorithm to track MPP under partial shading for solar photovoltaic systems. Int J Green Energy 17:1–14 Javed K, Ashfaq H, Singh R (2019) A new simple MPPT algorithm to track MPP under partial shading for solar photovoltaic systems. Int J Green Energy 17:1–14
31.
go back to reference Tey KS, Mekhilef S (2014) Modified incremental conductance algorithm for photovoltaic system under partial shading conditions and load variation. IEEE Trans Ind Electron 61:5384–5392CrossRef Tey KS, Mekhilef S (2014) Modified incremental conductance algorithm for photovoltaic system under partial shading conditions and load variation. IEEE Trans Ind Electron 61:5384–5392CrossRef
33.
go back to reference Venkateshkumar M, Raghavan R (2015) Fuel cell power penetration into AC distribution grid by using new cascaded multilevel inverter with minimum number of switches. In: international conference on smart technologies and management for computing, communication, controls, energy and materials (ICSTM) 568–574 https://doi.org/10.1109/ICSTM.2015.7225480 Venkateshkumar M, Raghavan R (2015) Fuel cell power penetration into AC distribution grid by using new cascaded multilevel inverter with minimum number of switches. In: international conference on smart technologies and management for computing, communication, controls, energy and materials (ICSTM) 568–574 https://​doi.​org/​10.​1109/​ICSTM.​2015.​7225480
34.
go back to reference Huang YP, Hsu SY (2016) A performance evaluation model of a high concentration photovoltaic module with a fractional open circuit voltage-based maximum power point tracking algorithm. Comput Electr Eng 51:331–342CrossRef Huang YP, Hsu SY (2016) A performance evaluation model of a high concentration photovoltaic module with a fractional open circuit voltage-based maximum power point tracking algorithm. Comput Electr Eng 51:331–342CrossRef
35.
go back to reference Kinattingal S, Simon SP, Nayak PSR, Sundareswaran K (2020) MPPT in PV systems using ant colony optimisation with dwindling population. I.E.T. Renew Power Gener 14:1105–1112CrossRef Kinattingal S, Simon SP, Nayak PSR, Sundareswaran K (2020) MPPT in PV systems using ant colony optimisation with dwindling population. I.E.T. Renew Power Gener 14:1105–1112CrossRef
38.
go back to reference Mahendravarman I, Elankurisil SA, Venkateshkumar M et al (2020) Artificial intelligent controller-based power quality improvement for microgrid integration of photovoltaic system using a new cascade multilevel inverter. Soft Comput 24:18909–18926CrossRef Mahendravarman I, Elankurisil SA, Venkateshkumar M et al (2020) Artificial intelligent controller-based power quality improvement for microgrid integration of photovoltaic system using a new cascade multilevel inverter. Soft Comput 24:18909–18926CrossRef
40.
go back to reference Mahendravarman I, Venkateshkumar M (2021) Improvement of power system stability and power quality of artificial intelligent controller based grid connected PV system using cascaded multilevel inverter, recent trends in renewable energy sources and power conversion, Springer Proceedings in Energy book series (S.P.E.) 175–189 Mahendravarman I, Venkateshkumar M (2021) Improvement of power system stability and power quality of artificial intelligent controller based grid connected PV system using cascaded multilevel inverter, recent trends in renewable energy sources and power conversion, Springer Proceedings in Energy book series (S.P.E.) 175–189
Metadata
Title
Improved power quality for photovoltaic grid integration power system using an intelligent controller fed SL–SC boost converter supplied reduced switch cascade multilevel inverter
Authors
I. Mahendravarman
A. Ragavendiran
S. A. Chithradevi
Publication date
01-09-2023
Publisher
Springer Berlin Heidelberg
Published in
Electrical Engineering / Issue 1/2024
Print ISSN: 0948-7921
Electronic ISSN: 1432-0487
DOI
https://doi.org/10.1007/s00202-023-01981-6

Other articles of this Issue 1/2024

Electrical Engineering 1/2024 Go to the issue