Skip to main content
Top
Published in: Designs, Codes and Cryptography 1/2017

25-10-2016

Improved upper bounds for partial spreads

Author: Sascha Kurz

Published in: Designs, Codes and Cryptography | Issue 1/2017

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A partial \((k-1)\)-spread in \({\text {PG}}(n-1,q)\) is a collection of \((k-1)\)-dimensional subspaces with trivial intersection. So far, the maximum size of a partial \((k-1)\)-spread in \({\text {PG}}(n-1,q)\) was known for the cases \(n\equiv 0\pmod k\), \(n\equiv 1\pmod k\), and \(n\equiv 2\pmod k\) with the additional requirements \(q=2\) and \(k=3\). We completely resolve the case \(n\equiv 2\pmod k\) for the binary case \(q=2\).
Footnotes
1
Instead of \({\text {PG}}(n-1,q)\) we will mainly use the notation \(\mathbb {F}_{q}^{n}\) in the following.
 
2
In the projective space the dimensions are commonly one less compared to the consideration of subspaces in \(\mathbb {F}_{q}^{n}\).
 
3
Obviously, we have \(A_q(n,2;1)=\genfrac[]{0.0pt}{}{n}{1}_{q}\).
 
4
As \(A_q(k+2,2k;k)=1\) for \(k\ge 2\), the assumption \(n\ge 2k+2\) is no restriction. The case \(k=3\) is covered by [6], see Theorem 4. For \(k=1,2\) the remainder of n is strictly smaller than 2. So, in other words, the binary case \(n\equiv 2\pmod k\) is completely resolved.
 
5
We have to exclude the trivial subspace partition \({\mathcal {P}}=\left\{ \mathbb {F}_{q}^{n}\right\} \), where \(d_1=n\) and \(d_2\) does not exist.
 
6
Theorem 10(ii,iv) yields \(n_1= 2^{k-1}-1\) or \(n_1>2^{k-1}\), if we set \(d_2=k-1\) and \(d_1=1\). The improvement of Theorem 10, i.e., see [12, Theorem 2], is not sufficient to exclude the case of Lemma 1.
 
7
The result is also valid for \(k=2r-1\), \(r\ge 2\), and \(q\in \{2,3\}\).
 
8
By a more refined analysis, one can classify the possible hole configurations up to isomorphism.
 
9
For even \(q>2\) the tail condition of Theorem 10 cannot be applied directly in the proof of Lemma 3.
 
10
The specific use of Theorem 10 is just a shortcut, resting on the same rough idea. However, it points to an area where even more theoretic results are available, that possibly can be used in more involved cases.
 
11
In this context, we would like to mention the very recent preprint [15].
 
12
Using the notation from this paper, we have \({\overline{s}}=q^k\), \({\overline{r}}=A_q(n,2k;k)\), and \(\mu =q^{n-2k}\).
 
Literature
3.
go back to reference Dembowski P.: Finite Geometries: Reprint of the 1968 Edition. Springer, Berlin (2012). Dembowski P.: Finite Geometries: Reprint of the 1968 Edition. Springer, Berlin (2012).
4.
5.
go back to reference Eisfeld J., Storme L.: \(t\)-Spreads and Minimal \(t\)-Covers in Finite Projective Spaces. Lecture NotesUniversiteit Gent, Gent (2000). Eisfeld J., Storme L.: \(t\)-Spreads and Minimal \(t\)-Covers in Finite Projective Spaces. Lecture NotesUniversiteit Gent, Gent (2000).
6.
go back to reference El-Zanati S., Jordon H., Seelinger G., Sissokho P., Spence L.: The maximum size of a partial 3-spread in a finite vector space over \({G}{F}(2)\). Des. Codes Cryptogr. 54(2), 101–107 (2010).MathSciNetCrossRefMATH El-Zanati S., Jordon H., Seelinger G., Sissokho P., Spence L.: The maximum size of a partial 3-spread in a finite vector space over \({G}{F}(2)\). Des. Codes Cryptogr. 54(2), 101–107 (2010).MathSciNetCrossRefMATH
8.
go back to reference Etzion T., Silberstein N.: Error-correcting codes in projective spaces via rank-metric codes and Ferrers diagrams. IEEE Trans. Inf. Theory 55(7), 2909–2919 (2009).MathSciNetCrossRef Etzion T., Silberstein N.: Error-correcting codes in projective spaces via rank-metric codes and Ferrers diagrams. IEEE Trans. Inf. Theory 55(7), 2909–2919 (2009).MathSciNetCrossRef
10.
go back to reference Gabidulin E.M.: Theory of codes with maximum rank distance. Problemy Peredachi Informatsii 21(1), 3–16 (1985).MathSciNetMATH Gabidulin E.M.: Theory of codes with maximum rank distance. Problemy Peredachi Informatsii 21(1), 3–16 (1985).MathSciNetMATH
12.
go back to reference Heden O., Lehmann J., Năstase E., Sissokho P.: The supertail of a subspace partition. Des. Codes Cryptogr. 69(3), 305–316 (2013).MathSciNetCrossRefMATH Heden O., Lehmann J., Năstase E., Sissokho P.: The supertail of a subspace partition. Des. Codes Cryptogr. 69(3), 305–316 (2013).MathSciNetCrossRefMATH
14.
go back to reference Hong S.J., Patel A.M.: A general class of maximal codes for computer applications. IEEE Trans. Comput. 100(12), 1322–1331 (1972).MathSciNetCrossRefMATH Hong S.J., Patel A.M.: A general class of maximal codes for computer applications. IEEE Trans. Comput. 100(12), 1322–1331 (1972).MathSciNetCrossRefMATH
15.
16.
go back to reference Silva D., Kschischang F.R., Koetter R.: A rank-metric approach to error control in random network coding. IEEE Trans. Inf. Theory 54(9), 3951–3967 (2008).MathSciNetCrossRefMATH Silva D., Kschischang F.R., Koetter R.: A rank-metric approach to error control in random network coding. IEEE Trans. Inf. Theory 54(9), 3951–3967 (2008).MathSciNetCrossRefMATH
Metadata
Title
Improved upper bounds for partial spreads
Author
Sascha Kurz
Publication date
25-10-2016
Publisher
Springer US
Published in
Designs, Codes and Cryptography / Issue 1/2017
Print ISSN: 0925-1022
Electronic ISSN: 1573-7586
DOI
https://doi.org/10.1007/s10623-016-0290-8

Other articles of this Issue 1/2017

Designs, Codes and Cryptography 1/2017 Go to the issue

Premium Partner