Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 11/2020

29-10-2020

Improvement in Mechanical Properties of a Surface-Carburized Ferrite–Martensite Dual-Phase Steel by Intercritical Annealing

Authors: Shichao Fan, Hai Hao, Xingguo Zhang, Qingkai Han

Published in: Journal of Materials Engineering and Performance | Issue 11/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This study investigated the effects of ferrite volume fraction and morphology on the mechanical properties and rolling contact fatigue life of surface-carburized G20CrNi2Mo-Al steel with ferrite–martensite dual-phase microstructures. Compared with full austenitization treatment, intercritical annealing treatment optimized the properties, and the microstructural evolution of different heat treatment processes was explored. The experimental results indicated that after austenitizing at 900 °C for 30 min and intercritical annealing at 805 °C for 40 min, the steel had 6.9 vol.% continuous grain boundary ferrite in the center, and the mechanical properties reached their maxima. Under the optimal heat treatment conditions, the hardness value, impact toughness and tensile strength increased by 4.0, 11.1 and 2.4%, respectively; the rolling contact fatigue life increased by 76.1% compared with that after conventional full austenitization treatment.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference S. Li, X. Yuan, and W. Jiang, Effects of Heat Treatment Influencing Factors on Microstructure and Mechanical Properties of a Low-Carbon Martensitic Stainless Bearing Steel, Mater. Sci. Eng. A, 2014, 605(5), p 229–235 (in Chinese) S. Li, X. Yuan, and W. Jiang, Effects of Heat Treatment Influencing Factors on Microstructure and Mechanical Properties of a Low-Carbon Martensitic Stainless Bearing Steel, Mater. Sci. Eng. A, 2014, 605(5), p 229–235 (in Chinese)
2.
go back to reference K. Clemons, C. Lorraine, and G. Salgado, Effects of Heat Treatments on Steels for Bearing Applications, J. Mater. Eng. Perform., 2007, 16(5), p 592–596 K. Clemons, C. Lorraine, and G. Salgado, Effects of Heat Treatments on Steels for Bearing Applications, J. Mater. Eng. Perform., 2007, 16(5), p 592–596
3.
go back to reference B. Jiang, L. Zhou, and X. Wen, Heat Treatment Properties of 42CrMo Steel for Bearing Ring of Varisized Shield Tunneling Machine, Acta Metall. Sin., 2014, 27(3), p 383–388 B. Jiang, L. Zhou, and X. Wen, Heat Treatment Properties of 42CrMo Steel for Bearing Ring of Varisized Shield Tunneling Machine, Acta Metall. Sin., 2014, 27(3), p 383–388
4.
go back to reference Y.H. Wang, Z.N. Yang, and F.C. Zhang, Microstructures and Mechanical Properties of Surface and Center of Carburizing G23Cr2Ni2Si1Mo Steel Subjected to Low Temperature Austempering, Mater. Sci. Eng. A, 2016, 670, p 166–177 Y.H. Wang, Z.N. Yang, and F.C. Zhang, Microstructures and Mechanical Properties of Surface and Center of Carburizing G23Cr2Ni2Si1Mo Steel Subjected to Low Temperature Austempering, Mater. Sci. Eng. A, 2016, 670, p 166–177
5.
go back to reference L. Ma, M.Q. Wang, and H. Dong, Research Progress in Microalloyed Case-Hardened Steels for Gear, Spec. Steel, 2008, 29(4), p 28–30 L. Ma, M.Q. Wang, and H. Dong, Research Progress in Microalloyed Case-Hardened Steels for Gear, Spec. Steel, 2008, 29(4), p 28–30
6.
go back to reference J.Z. Gao, A.X. Wang, and M. Gu, Comparative Study on Case Hardenability for Commonly Used High-alloy Carburizing Gear Steel, Heat Treat., 2010, 15, p 40–42 (in Chinese) J.Z. Gao, A.X. Wang, and M. Gu, Comparative Study on Case Hardenability for Commonly Used High-alloy Carburizing Gear Steel, Heat Treat., 2010, 15, p 40–42 (in Chinese)
7.
go back to reference J. Chakraborty, D. Bhattacharjee, and I. Manna, Austempering of Bearing Steel for Improved Mechanical Properties, Scr. Mater., 2008, 59(2), p 247–250 J. Chakraborty, D. Bhattacharjee, and I. Manna, Austempering of Bearing Steel for Improved Mechanical Properties, Scr. Mater., 2008, 59(2), p 247–250
8.
go back to reference J. Wen, Q. Li, and Y. Long, Effect of Austempering on Microstructure and Mechanical Properties of a GCr18Mo Steel, Mater. Sci. Eng. A, 2006, 438, p 251–253 J. Wen, Q. Li, and Y. Long, Effect of Austempering on Microstructure and Mechanical Properties of a GCr18Mo Steel, Mater. Sci. Eng. A, 2006, 438, p 251–253
9.
go back to reference H.Y. Li, Y.H. Li, and X.F. Wang, Effect of Quenching Process on Mechanical Properties and Ductile-Brittle Transition Behavior of 28CrMnMoV Steel, J. Cent. South Univ., 2013, 20(6), p 1456–1461 H.Y. Li, Y.H. Li, and X.F. Wang, Effect of Quenching Process on Mechanical Properties and Ductile-Brittle Transition Behavior of 28CrMnMoV Steel, J. Cent. South Univ., 2013, 20(6), p 1456–1461
10.
go back to reference M.A. Maleque, Y.M. Poon, and H.H. Masjuki, The Effect of Intercritical Heat Treatment on the Mechanical Properties of AISI, 3115 Steel, J. Mater. Process. Technol., 2004, 153(1), p 482–487 M.A. Maleque, Y.M. Poon, and H.H. Masjuki, The Effect of Intercritical Heat Treatment on the Mechanical Properties of AISI, 3115 Steel, J. Mater. Process. Technol., 2004, 153(1), p 482–487
11.
go back to reference A. Güral, B. Bostan, and A.T. Özdemir, Heat Treatment in Two Phase Region and Its Effect on Microstructure and Mechanical Strength after Welding of a Low Carbon Steel, Mater. Des., 2007, 28(3), p 897–903 A. Güral, B. Bostan, and A.T. Özdemir, Heat Treatment in Two Phase Region and Its Effect on Microstructure and Mechanical Strength after Welding of a Low Carbon Steel, Mater. Des., 2007, 28(3), p 897–903
12.
go back to reference A. Ebrahimian and S.S. Ghasemi Banadkouki, Mutual Mechanical Effects of Ferrite and Martensite in a Low Alloy Ferrite–Martensite Dual Phase Steel, J. Alloys Compd., 2017, 708, p 43–54 A. Ebrahimian and S.S. Ghasemi Banadkouki, Mutual Mechanical Effects of Ferrite and Martensite in a Low Alloy Ferrite–Martensite Dual Phase Steel, J. Alloys Compd., 2017, 708, p 43–54
13.
go back to reference H. Suzuki, S. Ouyabu, and T. Kunio, On Optimizing Microstructure-Resistance to Fracture in Duplex Ferrite–Martensite Steels, Fatigue Fract. Eng. Mater. Struct., 2010, 2(1), p 1–12 H. Suzuki, S. Ouyabu, and T. Kunio, On Optimizing Microstructure-Resistance to Fracture in Duplex Ferrite–Martensite Steels, Fatigue Fract. Eng. Mater. Struct., 2010, 2(1), p 1–12
14.
go back to reference M. Sarwar and R. Priestner, Influence of Ferrite–Martensite Microstructural Morphology on Tensile Properties of Dual-Phase Steel, J. Mater. Sci., 1996, 31(8), p 2091–2095 M. Sarwar and R. Priestner, Influence of Ferrite–Martensite Microstructural Morphology on Tensile Properties of Dual-Phase Steel, J. Mater. Sci., 1996, 31(8), p 2091–2095
15.
go back to reference M. Sciffer, S. Ables, and C. Waters, Impact and Tensile Properties of Ferrite–Martensite Dual-Phase Steels, Fatigue Fract. Eng. Mater. Struct., 2010, 32(2), p 141–147 M. Sciffer, S. Ables, and C. Waters, Impact and Tensile Properties of Ferrite–Martensite Dual-Phase Steels, Fatigue Fract. Eng. Mater. Struct., 2010, 32(2), p 141–147
16.
go back to reference P.C. Chakraborti and M.K. Mitra, Microstructural Response on the Room Temperature Low Cycle Fatigue Behaviour of Two High Strength Duplex Ferrite–Martensite Steels and a Normalized Ferrite–Pearlite Steel, Int. J. Fatigue, 2006, 28(3), p 194–202 P.C. Chakraborti and M.K. Mitra, Microstructural Response on the Room Temperature Low Cycle Fatigue Behaviour of Two High Strength Duplex Ferrite–Martensite Steels and a Normalized Ferrite–Pearlite Steel, Int. J. Fatigue, 2006, 28(3), p 194–202
17.
go back to reference A. Bag, K.K. Ray, and E.S. Dwarakadasa, Influence of Martensite Content and Morphology on the Toughness and Fatigue Behavior of High-Martensite Dual-Phase Steels, Metall. Mater. Trans. A, 2001, 32(9), p 2207–2217 A. Bag, K.K. Ray, and E.S. Dwarakadasa, Influence of Martensite Content and Morphology on the Toughness and Fatigue Behavior of High-Martensite Dual-Phase Steels, Metall. Mater. Trans. A, 2001, 32(9), p 2207–2217
18.
go back to reference E. Fereiduni and S.S. Ghasemi Banadkouki, Improvement of Mechanical Properties in a Dual-Phase Ferrite–Martensite AISI4140 Steel under Tough-Strong Ferrite Formation, Mater. Des., 2014, 56, p 232–240 E. Fereiduni and S.S. Ghasemi Banadkouki, Improvement of Mechanical Properties in a Dual-Phase Ferrite–Martensite AISI4140 Steel under Tough-Strong Ferrite Formation, Mater. Des., 2014, 56, p 232–240
19.
go back to reference J. Zhang, H. Di, and Y. Deng, Effect of Martensite Morphology and Volume Fraction on Strain Hardening and Fracture Behavior of Martensite–Ferrite Dual Phase Steel, Mater. Sci. Eng. A, 2015, 627, p 230–240 J. Zhang, H. Di, and Y. Deng, Effect of Martensite Morphology and Volume Fraction on Strain Hardening and Fracture Behavior of Martensite–Ferrite Dual Phase Steel, Mater. Sci. Eng. A, 2015, 627, p 230–240
20.
go back to reference M. Erdogan, The Effect of New Ferrite Content on the Tensile Fracture Behaviour of Dual Phase Steels, J. Mater. Sci., 2002, 37(17), p 3623–3630 M. Erdogan, The Effect of New Ferrite Content on the Tensile Fracture Behaviour of Dual Phase Steels, J. Mater. Sci., 2002, 37(17), p 3623–3630
21.
go back to reference S.Q. Qian and X.K. Chen, The Effects of Post-Carbonized Heat-Treatment Rules on Contact Fatigue Strength, Hot Work. Technol., 1995, 6, p 3–7 (in Chinese) S.Q. Qian and X.K. Chen, The Effects of Post-Carbonized Heat-Treatment Rules on Contact Fatigue Strength, Hot Work. Technol., 1995, 6, p 3–7 (in Chinese)
22.
go back to reference M. Sarwar, R. Priestner, and E. Ahmad, Influence of Martensite Volume Fraction on Fatigue Limit of a Dual-Phase Steel, J. Mater. Eng. Perform., 2002, 11(3), p 274–277 M. Sarwar, R. Priestner, and E. Ahmad, Influence of Martensite Volume Fraction on Fatigue Limit of a Dual-Phase Steel, J. Mater. Eng. Perform., 2002, 11(3), p 274–277
23.
go back to reference Y. Motoyashiki, A. Brückner-Foit, and A. Sugeta, Microstructural Influence on Small Fatigue Cracks in a Ferritic–Martensitic Steel, Eng. Fract. Mech., 2008, 75(3), p 768–778 Y. Motoyashiki, A. Brückner-Foit, and A. Sugeta, Microstructural Influence on Small Fatigue Cracks in a Ferritic–Martensitic Steel, Eng. Fract. Mech., 2008, 75(3), p 768–778
24.
go back to reference A. Aran and H. Türker, The Effect of Martensite Content on the Fatigue Behaviour of a Ferritic–Martensitic Steel, J. Mater. Sci. Lett., 1990, 9(12), p 1407–1408 A. Aran and H. Türker, The Effect of Martensite Content on the Fatigue Behaviour of a Ferritic–Martensitic Steel, J. Mater. Sci. Lett., 1990, 9(12), p 1407–1408
25.
go back to reference S.K. Akay, M. Yazici, and A. Bayram, Fatigue Life Behaviour of the Dual-Phase Low Carbon Steel Sheets, J. Mater. Process. Technol., 2009, 209(7), p 3358–3365 S.K. Akay, M. Yazici, and A. Bayram, Fatigue Life Behaviour of the Dual-Phase Low Carbon Steel Sheets, J. Mater. Process. Technol., 2009, 209(7), p 3358–3365
26.
go back to reference T. Alp and A. Wazzan, The Influence of Microstructure on the Tensile and Fatigue Behavior of SAE 6150 Steel, J. Mater. Eng. Perform., 2002, 11(4), p 351–359 T. Alp and A. Wazzan, The Influence of Microstructure on the Tensile and Fatigue Behavior of SAE 6150 Steel, J. Mater. Eng. Perform., 2002, 11(4), p 351–359
27.
go back to reference S.K. Paul, N. Stanford, and T. Hilditch, Effect of Martensite Volume Fraction on Low Cycle Fatigue Behaviour of Dual Phase Steels: Experimental and Microstructural Investigation, Mater. Sci. Eng. A, 2015, 638, p 296–304 S.K. Paul, N. Stanford, and T. Hilditch, Effect of Martensite Volume Fraction on Low Cycle Fatigue Behaviour of Dual Phase Steels: Experimental and Microstructural Investigation, Mater. Sci. Eng. A, 2015, 638, p 296–304
28.
go back to reference R. Idris and Y. Prawoto, Influence of Ferrite Fraction within Martensite Matrix on Fatigue Crack Propagation: An Experimental Verification with Dual Phase Steel, Mater. Sci. Eng. A, 2012, 552(34), p 547–554 R. Idris and Y. Prawoto, Influence of Ferrite Fraction within Martensite Matrix on Fatigue Crack Propagation: An Experimental Verification with Dual Phase Steel, Mater. Sci. Eng. A, 2012, 552(34), p 547–554
29.
go back to reference Y.Q. Liu, The Effect of Ferrite Morphology on the Mechanical Properties of 40Cr Steel with Martensite–Ferrite Dual-Phase Structure, Heat Treat. Met., 1987, 9, p 11–17 Y.Q. Liu, The Effect of Ferrite Morphology on the Mechanical Properties of 40Cr Steel with Martensite–Ferrite Dual-Phase Structure, Heat Treat. Met., 1987, 9, p 11–17
30.
go back to reference I.A. Vakulenko, O.N. Perkov, and V.G. Razdobreev, Mechanism of the Effect of the Ferrite Grain Size on the Fatigue Strength of a Low-Carbon Steel, Russ. Metall., 2008, 3, p 229–231 I.A. Vakulenko, O.N. Perkov, and V.G. Razdobreev, Mechanism of the Effect of the Ferrite Grain Size on the Fatigue Strength of a Low-Carbon Steel, Russ. Metall., 2008, 3, p 229–231
31.
go back to reference B.L. He, Y.X. Yu, and E.Y. Shao, Study on Impact Fatigue Life of 42CrMo Steel with M + F Dual-Phase Structure, Key Eng. Mater., 2007, 353, p 54–57 B.L. He, Y.X. Yu, and E.Y. Shao, Study on Impact Fatigue Life of 42CrMo Steel with M + F Dual-Phase Structure, Key Eng. Mater., 2007, 353, p 54–57
32.
go back to reference H.K. Khaira, A.K. Jena, and M.C. Chaturvedi, Effects of Heat Treatment Cycle on Equilibrium Between Ferrite and Austenite during Intercritical Annealing, Mater. Sci. Eng. A, 1993, 161, p 267–271 H.K. Khaira, A.K. Jena, and M.C. Chaturvedi, Effects of Heat Treatment Cycle on Equilibrium Between Ferrite and Austenite during Intercritical Annealing, Mater. Sci. Eng. A, 1993, 161, p 267–271
33.
go back to reference O. Henry and K.C. Monde, Evaluation of the Transformation Mechanisms and Mechanical Properties of Ferrite–Martensite Microalloyed Steels, Mater. Res., 2008, 1, p 97–101 O. Henry and K.C. Monde, Evaluation of the Transformation Mechanisms and Mechanical Properties of Ferrite–Martensite Microalloyed Steels, Mater. Res., 2008, 1, p 97–101
34.
go back to reference S.S. Zhong, C.S. Wang, Bearing Steel, Metallurgical Industry Press, Beijing, 2000, p 57–65 (in Chinese) S.S. Zhong, C.S. Wang, Bearing Steel, Metallurgical Industry Press, Beijing, 2000, p 57–65 (in Chinese)
35.
go back to reference “Test method for contact fatigue of rolling bearing material,” JB/T 10510-2005, Mechanical industry standard of the people’s Republic of China, 2005, p 1–7 (in Chinese) “Test method for contact fatigue of rolling bearing material,” JB/T 10510-2005, Mechanical industry standard of the people’s Republic of China, 2005, p 1–7 (in Chinese)
36.
go back to reference K.E. Olsson, Weibull Analysis of Fatigue Test Data, Qual. Reliab. Eng., 1994, 10(5), p 437–438 K.E. Olsson, Weibull Analysis of Fatigue Test Data, Qual. Reliab. Eng., 1994, 10(5), p 437–438
37.
go back to reference T. Tallian, Weibull Distribution of Rolling Contact Fatigue Life and Deviations Therefrom, ASLE Trans., 1962, 5(1), p 183–196 T. Tallian, Weibull Distribution of Rolling Contact Fatigue Life and Deviations Therefrom, ASLE Trans., 1962, 5(1), p 183–196
38.
go back to reference S. Shimizu, P-S-N/P-F-L Curve Approach using Three-Parameter Weibull Distribution for Life and Fatigue Analysis of Structural and Rolling Contact Components, Tribol. Trans., 2005, 48(4), p 576–582 S. Shimizu, P-S-N/P-F-L Curve Approach using Three-Parameter Weibull Distribution for Life and Fatigue Analysis of Structural and Rolling Contact Components, Tribol. Trans., 2005, 48(4), p 576–582
39.
go back to reference M. Soliman and H. Palkowski, Tensile Properties and Bake Hardening Response of Dual Phase Steels with Varied Martensite Volume Fraction, Mater. Sci. Eng. A, 2020, 777, p 1–13 M. Soliman and H. Palkowski, Tensile Properties and Bake Hardening Response of Dual Phase Steels with Varied Martensite Volume Fraction, Mater. Sci. Eng. A, 2020, 777, p 1–13
40.
go back to reference C. Huang, C. Zhang, and L. Jiang, Isothermal Heat Treatment of a Bearing Steel for Improved Mechanical Properties, J. Alloys Compd., 2016, 660, p 131–135 C. Huang, C. Zhang, and L. Jiang, Isothermal Heat Treatment of a Bearing Steel for Improved Mechanical Properties, J. Alloys Compd., 2016, 660, p 131–135
41.
go back to reference P. Movahed, S. Kolahgar, and S.P.H. Marashi, The Effect of Intercritical Heat Treatment Temperature on the Tensile Properties and Work Hardening Behavior of Ferrite–Martensite Dual Phase Steel Sheets, Mater. Sci. Eng. A, 2009, 518(1), p 1–6 P. Movahed, S. Kolahgar, and S.P.H. Marashi, The Effect of Intercritical Heat Treatment Temperature on the Tensile Properties and Work Hardening Behavior of Ferrite–Martensite Dual Phase Steel Sheets, Mater. Sci. Eng. A, 2009, 518(1), p 1–6
42.
go back to reference W.J. Nie, S.C. Jia, and H.L. Guan, Control of Microstructure of Ferrite/Bainite (F/B) Dual-Phase Steels and Analysis of Their Resistance to Deformation Behavior, Acta Metall. Sin., 2012, 48(003), p 298–306 W.J. Nie, S.C. Jia, and H.L. Guan, Control of Microstructure of Ferrite/Bainite (F/B) Dual-Phase Steels and Analysis of Their Resistance to Deformation Behavior, Acta Metall. Sin., 2012, 48(003), p 298–306
43.
go back to reference Y. Peng, C. Wu, and J. Gan, Characterization of Heterogeneous Constitutive Relationship of the Welded Joint Based on the Stress–Hardness Relationship using Micro-Hardness Tests, Constr. Build. Mater., 2019, 202(30), p 37–45 Y. Peng, C. Wu, and J. Gan, Characterization of Heterogeneous Constitutive Relationship of the Welded Joint Based on the Stress–Hardness Relationship using Micro-Hardness Tests, Constr. Build. Mater., 2019, 202(30), p 37–45
44.
go back to reference Z. Jiang, J. Lian, and J. Chen, Strain Hardening Behaviour and its Relationship to Tensile Mechanical Properties of Dual Phase Steel, Metal. Sci. Technol., 2014, 8(12), p 1075–1081 Z. Jiang, J. Lian, and J. Chen, Strain Hardening Behaviour and its Relationship to Tensile Mechanical Properties of Dual Phase Steel, Metal. Sci. Technol., 2014, 8(12), p 1075–1081
45.
go back to reference D. Das and P.P. Chattopadhyay, Influence of Martensite Morphology on the Work-Hardening Behavior of High Strength Ferrite–Martensite Dual-Phase Steel, J. Mater. Sci., 2009, 44(11), p 2957–2965 D. Das and P.P. Chattopadhyay, Influence of Martensite Morphology on the Work-Hardening Behavior of High Strength Ferrite–Martensite Dual-Phase Steel, J. Mater. Sci., 2009, 44(11), p 2957–2965
46.
go back to reference H. Li, S. Gao, and Y. Tian, Influence of Tempering on Mechanical Properties of Ferrite and Martensite Dual Phase Steel, Mater. Today, 2015, 2(4), p 667–671 H. Li, S. Gao, and Y. Tian, Influence of Tempering on Mechanical Properties of Ferrite and Martensite Dual Phase Steel, Mater. Today, 2015, 2(4), p 667–671
47.
go back to reference M. Okayasu, K. Sato, and M. Mizuno, Fatigue Properties of Ultra-Fine Grained Dual Phase Ferrite/Martensite Low Carbon Steel, Int. J. Fatigue, 2008, 30(8), p 1358–1365 M. Okayasu, K. Sato, and M. Mizuno, Fatigue Properties of Ultra-Fine Grained Dual Phase Ferrite/Martensite Low Carbon Steel, Int. J. Fatigue, 2008, 30(8), p 1358–1365
Metadata
Title
Improvement in Mechanical Properties of a Surface-Carburized Ferrite–Martensite Dual-Phase Steel by Intercritical Annealing
Authors
Shichao Fan
Hai Hao
Xingguo Zhang
Qingkai Han
Publication date
29-10-2020
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 11/2020
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-020-05196-9

Other articles of this Issue 11/2020

Journal of Materials Engineering and Performance 11/2020 Go to the issue

Premium Partners