Skip to main content
Top
Published in: International Journal of Computer Assisted Radiology and Surgery 10/2015

01-10-2015 | Original Article

Improving recorded volume in mesial temporal lobe by optimizing stereotactic intracranial electrode implantation planning

Authors: R. Zelmann, S. Beriault, M. M. Marinho, K. Mok, J. A. Hall, N. Guizard, C. Haegelen, A. Olivier, G. B. Pike, D. L. Collins

Published in: International Journal of Computer Assisted Radiology and Surgery | Issue 10/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Purpose

Intracranial electrodes are sometimes implanted in patients with refractory epilepsy to identify epileptic foci and propagation. Maximal recording of EEG activity from regions suspected of seizure generation is paramount. However, the location of individual contacts cannot be considered with current manual planning approaches. We propose and validate a procedure for optimizing intracranial electrode implantation planning that maximizes the recording volume, while constraining trajectories to safe paths.

Methods

Retrospective data from 20 patients with epilepsy that had electrodes implanted in the mesial temporal lobes were studied. Clinical imaging data (CT/A and T1w MRI) were automatically segmented to obtain targets and structures to avoid. These data were used as input to the optimization procedure. Each electrode was modeled to assess risk, while individual contacts were modeled to estimate their recording capability. Ordered lists of trajectories per target were obtained. Global optimization generated the best set of electrodes. The procedure was integrated into a neuronavigation system.

Results

Trajectories planned automatically covered statistically significant larger target volumes than manual plans \(({p}<0.001)\). Median volume coverage was \(419\,\hbox { mm}^{3}\) for automatic plans versus \(23\,\hbox { mm}^{3}\) for manual plans. Furthermore, automatic plans remained at statistically significant safer distance to vessels \(({p}<0.05)\) and sulci \(({p}<0.001)\). Surgeon’s scores of the optimized electrode sets indicated that 95 % of the automatic trajectories would be likely considered for use in a clinical setting.

Conclusions

This study suggests that automatic electrode planning for epilepsy provides safe trajectories and increases the amount of information obtained from the intracranial investigation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Engel J, Pedley TA (2008) Epilepsy: a comprehensive textbook. Wolters Kluwer Health/Lippincott Williams & Wilkins, Philadelphia Engel J, Pedley TA (2008) Epilepsy: a comprehensive textbook. Wolters Kluwer Health/Lippincott Williams & Wilkins, Philadelphia
2.
go back to reference Olivier A, Boling WW, Tanriverdi T (2012) Techniques in epilepsy surgery: the MNI approach. Cambridge medicine. Cambridge University Press, CambridgeCrossRef Olivier A, Boling WW, Tanriverdi T (2012) Techniques in epilepsy surgery: the MNI approach. Cambridge medicine. Cambridge University Press, CambridgeCrossRef
3.
go back to reference Guenot M, Isnard J, Ryvlin P, Fischer C, Ostrowsky K, Mauguiere F, Sindou M (2001) Neurophysiological monitoring for epilepsy surgery: the Talairach SEEG method. Stereotact Funct Neurosurg 77(1–4):29–32CrossRefPubMed Guenot M, Isnard J, Ryvlin P, Fischer C, Ostrowsky K, Mauguiere F, Sindou M (2001) Neurophysiological monitoring for epilepsy surgery: the Talairach SEEG method. Stereotact Funct Neurosurg 77(1–4):29–32CrossRefPubMed
4.
go back to reference Cossu M, Schiariti M, Francione S, Fuschillo D, Gozzo F, Nobili L, Russo GL (2012) Stereoelectroencephalography in the presurgical evaluation of focal epilepsy in infancy and early childhood. J Neurosurg Pediatr 9(3):290–300. doi:10.3171/2011.12.PEDS11216 CrossRefPubMed Cossu M, Schiariti M, Francione S, Fuschillo D, Gozzo F, Nobili L, Russo GL (2012) Stereoelectroencephalography in the presurgical evaluation of focal epilepsy in infancy and early childhood. J Neurosurg Pediatr 9(3):290–300. doi:10.​3171/​2011.​12.​PEDS11216 CrossRefPubMed
5.
go back to reference Guénot MM (2011) SEEG-guided RF-thermocoagulation of epileptic foci: a therapeutic alternative for drug-resistant non-operable partial epilepsies. Adv Tech Stand Neurosurg 36:61–78PubMed Guénot MM (2011) SEEG-guided RF-thermocoagulation of epileptic foci: a therapeutic alternative for drug-resistant non-operable partial epilepsies. Adv Tech Stand Neurosurg 36:61–78PubMed
11.
go back to reference Beriault S, Al Subaie F, Mok K, Sadikot AF, Pike GB (2011) Automatic trajectory planning of DBS neurosurgery from multi-modal MRI datasets. Medical image computing and computer-assisted intervention: MICCAI International Conference on Medical Image Computing and Computer-Assisted Intervention 14(Pt 1), pp 259–266 Beriault S, Al Subaie F, Mok K, Sadikot AF, Pike GB (2011) Automatic trajectory planning of DBS neurosurgery from multi-modal MRI datasets. Medical image computing and computer-assisted intervention: MICCAI International Conference on Medical Image Computing and Computer-Assisted Intervention 14(Pt 1), pp 259–266
12.
13.
go back to reference Beriault S, Xiao Y, Bailey L, Collins DL, Sadikot AF, Pike GB (2012) Towards computer-assisted deep brain stimulation targeting with multiple active contacts. Medical image computing and computer-assisted intervention : MICCAI International Conference on Medical Image Computing and Computer-Assisted Intervention 15(Pt 1), pp 487–494 Beriault S, Xiao Y, Bailey L, Collins DL, Sadikot AF, Pike GB (2012) Towards computer-assisted deep brain stimulation targeting with multiple active contacts. Medical image computing and computer-assisted intervention : MICCAI International Conference on Medical Image Computing and Computer-Assisted Intervention 15(Pt 1), pp 487–494
14.
go back to reference D’Albis T, Haegelen C, Essert C, Fernandez-Vidal S, Lalys F, Jannin P (2014) PyDBS: an automated image processing workflow for deep brain stimulation surgery. Int J Comput Assist Radiol Surg. doi:10.1007/s11548-014-1007-y D’Albis T, Haegelen C, Essert C, Fernandez-Vidal S, Lalys F, Jannin P (2014) PyDBS: an automated image processing workflow for deep brain stimulation surgery. Int J Comput Assist Radiol Surg. doi:10.​1007/​s11548-014-1007-y
15.
go back to reference Essert C, Haegelen C, Lalys F, Abadie A, Jannin P (2012) Automatic computation of electrode trajectories for deep brain stimulation: a hybrid symbolic and numerical approach. Int J Comput Assist Radiol Surg 7(4):517–532CrossRefPubMed Essert C, Haegelen C, Lalys F, Abadie A, Jannin P (2012) Automatic computation of electrode trajectories for deep brain stimulation: a hybrid symbolic and numerical approach. Int J Comput Assist Radiol Surg 7(4):517–532CrossRefPubMed
16.
go back to reference Guo T, Parrent A, Peters T (2007) Automatic target and trajectory identification for deep brain stimulation (DBS) procedures. Medical Image Computing and Computer-Assisted Intervention-MICCAI 2007, pp 483–490 Guo T, Parrent A, Peters T (2007) Automatic target and trajectory identification for deep brain stimulation (DBS) procedures. Medical Image Computing and Computer-Assisted Intervention-MICCAI 2007, pp 483–490
17.
go back to reference Liu Y, Dawant BM, Pallavaram S, Neimat JS, Konrad PE, D’Haese P-F, Noble JH (2012) A surgeon specific automatic path planning algorithm for deep brain stimulation. In: SPIE Medical Imaging, International Society for Optics and Photonics, pp 83161D–83161D-83110 Liu Y, Dawant BM, Pallavaram S, Neimat JS, Konrad PE, D’Haese P-F, Noble JH (2012) A surgeon specific automatic path planning algorithm for deep brain stimulation. In: SPIE Medical Imaging, International Society for Optics and Photonics, pp 83161D–83161D-83110
18.
go back to reference De Momi E, Caborni C, Cardinale F, Casaceli G, Castana L, Cossu M, Ferrigno G (2014) Multi-trajectories automatic planner for StereoElectroEncephaloGraphy (SEEG). Int J Comput Assist Radiol Surg. doi:10.1007/s11548-014-1004-1 De Momi E, Caborni C, Cardinale F, Casaceli G, Castana L, Cossu M, Ferrigno G (2014) Multi-trajectories automatic planner for StereoElectroEncephaloGraphy (SEEG). Int J Comput Assist Radiol Surg. doi:10.​1007/​s11548-014-1004-1
19.
go back to reference De Momi E, Caborni C, Cardinale F, Castana L, Casaceli G, Cossu M, Ferrigno G (2013) Automatic trajectory planner for stereoelectroencephalography procedures: a retrospective study. IEEE Trans Biomed Eng 60(4):986–993CrossRefPubMed De Momi E, Caborni C, Cardinale F, Castana L, Casaceli G, Cossu M, Ferrigno G (2013) Automatic trajectory planner for stereoelectroencephalography procedures: a retrospective study. IEEE Trans Biomed Eng 60(4):986–993CrossRefPubMed
20.
go back to reference Zombori G, Rodionov R, Nowell M, Zuluaga MA, Clarkson M, Micallef C, et al. (2014) A computer assisted planning system for the placement of SEEG electrodes in the treatment of epilepsy. In: Stoyanov D, Collins DL, Sakuma I, Abolmaesumi P, Jannin P (eds) Information processing in computer-assisted interventions, vol 8498. Lecture notes in computer science. Springer, pp 118–127. doi:10.1007/978-3-319-07521-1_13 Zombori G, Rodionov R, Nowell M, Zuluaga MA, Clarkson M, Micallef C, et al. (2014) A computer assisted planning system for the placement of SEEG electrodes in the treatment of epilepsy. In: Stoyanov D, Collins DL, Sakuma I, Abolmaesumi P, Jannin P (eds) Information processing in computer-assisted interventions, vol 8498. Lecture notes in computer science. Springer, pp 118–127. doi:10.​1007/​978-3-319-07521-1_​13
21.
go back to reference Zelmann R, Beriault S, Mok K, Haegelen C, Hall J, Pike GB, Collins DL (2014) Automatic optimization of depth electrode trajectory planning. In: Clinical image-based procedures translational research in medical imaging, pp 99–107 Zelmann R, Beriault S, Mok K, Haegelen C, Hall J, Pike GB, Collins DL (2014) Automatic optimization of depth electrode trajectory planning. In: Clinical image-based procedures translational research in medical imaging, pp 99–107
22.
go back to reference Mok K, Barecki R, Podaras M, Chatillion C, Sherafat E, Olivier A (2011) Towards detailed representation of cortical anatomy and vasculature in neuronavigation. In: Epilepsy currents, 12(s1):125 Mok K, Barecki R, Podaras M, Chatillion C, Sherafat E, Olivier A (2011) Towards detailed representation of cortical anatomy and vasculature in neuronavigation. In: Epilepsy currents, 12(s1):125
23.
go back to reference Collins DL, Pruessner JC (2010) Towards accurate, automatic segmentation of the hippocampus and amygdala from MRI by augmenting ANIMAL with a template library and label fusion. NeuroImage 52(4):1355–1366. doi:10.1016/j.neuroimage.2010.04.193 Collins DL, Pruessner JC (2010) Towards accurate, automatic segmentation of the hippocampus and amygdala from MRI by augmenting ANIMAL with a template library and label fusion. NeuroImage 52(4):1355–1366. doi:10.​1016/​j.​neuroimage.​2010.​04.​193
24.
go back to reference Danielsson P-E (1980) Euclidean distance mapping. Comput Graph Image Process 14(3):227–248CrossRef Danielsson P-E (1980) Euclidean distance mapping. Comput Graph Image Process 14(3):227–248CrossRef
25.
go back to reference Collins D, Zijdenbos A, Baaré W, Evans A (1999) ANIMAL+ INSECT: improved cortical structure segmentation. In: Information processing in medical imaging. Springer, pp 210–223 Collins D, Zijdenbos A, Baaré W, Evans A (1999) ANIMAL+ INSECT: improved cortical structure segmentation. In: Information processing in medical imaging. Springer, pp 210–223
26.
go back to reference Frangi A, Niessen W, Vincken K, Viergever M (1998) Multiscale vessel enhancement filtering. Medical image computing and computer-assisted interventation–MICCAI’98, pp 130–137 Frangi A, Niessen W, Vincken K, Viergever M (1998) Multiscale vessel enhancement filtering. Medical image computing and computer-assisted interventation–MICCAI’98, pp 130–137
28.
go back to reference Eskildsen SF, Ostergaard LR (2006) Active surface approach for extraction of the human cerebral cortex from MRI. Medical image computing and computer-assisted intervention: MICCAI International Conference on medical image computing and computer-assisted intervention, 9(Pt 2), pp 823–830 Eskildsen SF, Ostergaard LR (2006) Active surface approach for extraction of the human cerebral cortex from MRI. Medical image computing and computer-assisted intervention: MICCAI International Conference on medical image computing and computer-assisted intervention, 9(Pt 2), pp 823–830
31.
go back to reference Collins DL, Holmes CJ, Peters TM, Evans AC (1995) Automatic 3D model based neuroanatomical segmentation. Hum Brain Map 3(3):190–208CrossRef Collins DL, Holmes CJ, Peters TM, Evans AC (1995) Automatic 3D model based neuroanatomical segmentation. Hum Brain Map 3(3):190–208CrossRef
32.
go back to reference Mazziotta J, Toga A, Evans A, Fox P, Lancaster J, Zilles K, Mazoyer B (2001) A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). Philos Trans R Soc Lond Ser B Biol Sci 356(1412):1293–1322. doi:10.1098/rstb.2001.0915 CrossRef Mazziotta J, Toga A, Evans A, Fox P, Lancaster J, Zilles K, Mazoyer B (2001) A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). Philos Trans R Soc Lond Ser B Biol Sci 356(1412):1293–1322. doi:10.​1098/​rstb.​2001.​0915 CrossRef
33.
go back to reference Mercier L, Del Maestro RF, Petrecca K, Kochanowska A, Drouin S, Yan CX, Collins DL (2011) New prototype neuronavigation system based on preoperative imaging and intraoperative freehand ultrasound: system description and validation. Int J Comput Assist Radiol Surg 6(4):507–522. doi:10.1007/s11548-010-0535-3 CrossRefPubMed Mercier L, Del Maestro RF, Petrecca K, Kochanowska A, Drouin S, Yan CX, Collins DL (2011) New prototype neuronavigation system based on preoperative imaging and intraoperative freehand ultrasound: system description and validation. Int J Comput Assist Radiol Surg 6(4):507–522. doi:10.​1007/​s11548-010-0535-3 CrossRefPubMed
34.
go back to reference Cardinale F, Cossu M, Castana L, Casaceli G, Schiariti MP, Miserocchi A, Lo Russo G (2013) Stereoelectroencephalography: surgical methodology, safety, and stereotactic application accuracy in 500 procedures. Neurosurgery 72(3):353–366. doi:10.1227/NEU.0b013e31827d1161 discussion 366CrossRefPubMed Cardinale F, Cossu M, Castana L, Casaceli G, Schiariti MP, Miserocchi A, Lo Russo G (2013) Stereoelectroencephalography: surgical methodology, safety, and stereotactic application accuracy in 500 procedures. Neurosurgery 72(3):353–366. doi:10.​1227/​NEU.​0b013e31827d1161​ discussion 366CrossRefPubMed
35.
go back to reference Ryvlin P, Kahane P (2005) The hidden causes of surgery-resistant temporal lobe epilepsy: extratemporal or temporal plus? Current Opin Neurol 18(2):125–127CrossRef Ryvlin P, Kahane P (2005) The hidden causes of surgery-resistant temporal lobe epilepsy: extratemporal or temporal plus? Current Opin Neurol 18(2):125–127CrossRef
36.
go back to reference Liu Y, Konrad P, Neimat J, Tatter S, Yu H, Datteri R, Dhaese P (2014) Multi-surgeon, multi-site validation of a trajectory planning algorithm for deep brain stimulation procedures. IEEE Trans Biomedi Eng 99:1–10. doi:10.1109/TBME.2014.2322776 Liu Y, Konrad P, Neimat J, Tatter S, Yu H, Datteri R, Dhaese P (2014) Multi-surgeon, multi-site validation of a trajectory planning algorithm for deep brain stimulation procedures. IEEE Trans Biomedi Eng 99:1–10. doi:10.​1109/​TBME.​2014.​2322776
38.
go back to reference Essert C, Marchal M, Fernandez-Vidal S, D’Albis T, Bardinet E, Haegelen C, Jannin P (2012) Automatic parameters optimization for deep brain stimulation trajectory planning. DBSMC 2012:20 Essert C, Marchal M, Fernandez-Vidal S, D’Albis T, Bardinet E, Haegelen C, Jannin P (2012) Automatic parameters optimization for deep brain stimulation trajectory planning. DBSMC 2012:20
Metadata
Title
Improving recorded volume in mesial temporal lobe by optimizing stereotactic intracranial electrode implantation planning
Authors
R. Zelmann
S. Beriault
M. M. Marinho
K. Mok
J. A. Hall
N. Guizard
C. Haegelen
A. Olivier
G. B. Pike
D. L. Collins
Publication date
01-10-2015
Publisher
Springer Berlin Heidelberg
Published in
International Journal of Computer Assisted Radiology and Surgery / Issue 10/2015
Print ISSN: 1861-6410
Electronic ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-015-1165-6

Other articles of this Issue 10/2015

International Journal of Computer Assisted Radiology and Surgery 10/2015 Go to the issue

Premium Partner