Skip to main content
Top
Published in: Wireless Personal Communications 1/2021

17-02-2021

Improving Target Detection Ability Based on Time Invariant and Dot-Shape Beamforming in TMRC-FDA-MIMO Radar

Authors: Wei Chu, Yunqing Liu, Xiaolong Li, Yue Zhao, Qiong Zhang, Fei Yan

Published in: Wireless Personal Communications | Issue 1/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Frequency diverse array and multiple-input multiple-output (FDA-MIMO) radar is studied more to realise the joint estimation of range and angle. However, the estimation performance of target parameters for linear FDA radar with an identical frequency increment and multiple-input multiple-output (IFI-FDA-MIMO) and logarithmically increased frequency offset linear interval, and multiple-input multiple-output (LIFO-FDA-MIMO) is fundamentally limited by the periodic range-time variation and time-variant dot shape beampattern respectively. In this article, we proposed a joint range and angle estimation algorithm based on a new waveform synthesis model of time modulation and rang compensation FDA-MIMO (TMRC-FDA-MIMO). The emulation results demonstrate that the improved scheme achieves the goal of time-invariant, dot-shaped and low sidelobe beampattern, which is optimised by a new accelerated particle swarm optimisation (NAPSO) algorithm. The performance of target estimation under the Cramer Rao lower bound (CRLB), and the root means square errors (RMSE) of the radar system is analysed. Moreover, the mathematical formula derivation and numerical results verify the performance of the proposed algorithm, which shows that TMRC-FDA-MIMO radar system is superior to others mentioned above.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Wen, F.-Q., & Zhang, G. (2015). Multi-way compressive sensing based 2d doa estimation algorithm for monostatic mimo radar with arbitrary arrays. Wireless Personal Communications, 85(4), 2393–2406.CrossRef Wen, F.-Q., & Zhang, G. (2015). Multi-way compressive sensing based 2d doa estimation algorithm for monostatic mimo radar with arbitrary arrays. Wireless Personal Communications, 85(4), 2393–2406.CrossRef
2.
go back to reference Bobo Fu, & Hanying Hu. (2016). A two-dimensional DOA estimation algorithm based on propagator for monostatic MIMO radar. International Conference on Wireless Communications. IET. Bobo Fu, & Hanying Hu. (2016). A two-dimensional DOA estimation algorithm based on propagator for monostatic MIMO radar. International Conference on Wireless Communications. IET.
3.
go back to reference He, J., Swamy, M. N., & Ahmad, M. O. (2011). Joint DOD and DOA estimation for MIMO array with velocity receive sensors. IEEE Signal Processing Letters, 18, 399–402.CrossRef He, J., Swamy, M. N., & Ahmad, M. O. (2011). Joint DOD and DOA estimation for MIMO array with velocity receive sensors. IEEE Signal Processing Letters, 18, 399–402.CrossRef
4.
go back to reference Dong, Z., Yongshun, Z., Guimei, Z., Cunqian, F., & Jun, T. (2017). Esprit-like two-dimensional doa estimation for monostatic mimo radar with electromagnetic vector received sensors under the condition of gain and phase uncertainties and mutual coupling. Sensors. https://doi.org/10.3390/s17112457.CrossRef Dong, Z., Yongshun, Z., Guimei, Z., Cunqian, F., & Jun, T. (2017). Esprit-like two-dimensional doa estimation for monostatic mimo radar with electromagnetic vector received sensors under the condition of gain and phase uncertainties and mutual coupling. Sensors. https://​doi.​org/​10.​3390/​s17112457.CrossRef
5.
go back to reference Antonik, P., Wicks, M. C., Griffiths, H. D., & Baker, C. J. (2006). Frequency diverse array radars. Radar, 2006 IEEE Conference on. IEEE. Antonik, P., Wicks, M. C., Griffiths, H. D., & Baker, C. J. (2006). Frequency diverse array radars. Radar, 2006 IEEE Conference on. IEEE.
6.
go back to reference M.C. Wicks, P. (2008) Antonik, frequency diverse array with independent modulation of frequency, amplitude, and phase, U.S. Patent 7,319,427 B2. M.C. Wicks, P. (2008) Antonik, frequency diverse array with independent modulation of frequency, amplitude, and phase, U.S. Patent 7,319,427 B2.
7.
go back to reference Xu, J., Liao, G., Zhu, S., Huang, L., & So, H. C. (2015). Joint range and angle estimation using mimo radar with frequency diverse array. Signal Processing IEEE Transactions on, 63(13), 3396–3410.MathSciNetCrossRef Xu, J., Liao, G., Zhu, S., Huang, L., & So, H. C. (2015). Joint range and angle estimation using mimo radar with frequency diverse array. Signal Processing IEEE Transactions on, 63(13), 3396–3410.MathSciNetCrossRef
8.
go back to reference Basit, A., Qureshi, I. M., Khan, W., & Malik, A. N. (2015). Range–angle-dependent beamforming for cognitive antenna array radar with frequency diversity. Cognitive Computation, 8(2), 1–13. Basit, A., Qureshi, I. M., Khan, W., & Malik, A. N. (2015). Range–angle-dependent beamforming for cognitive antenna array radar with frequency diversity. Cognitive Computation, 8(2), 1–13.
10.
go back to reference Gao, K., Shao, H., Chen, H., Cai, J., & Wang, W. Q. (2015). Impact of frequency increment errors on frequency diverse array mimo in adaptive beamforming and target localization. Digital Signal Processing, 44, 58–67.CrossRef Gao, K., Shao, H., Chen, H., Cai, J., & Wang, W. Q. (2015). Impact of frequency increment errors on frequency diverse array mimo in adaptive beamforming and target localization. Digital Signal Processing, 44, 58–67.CrossRef
11.
go back to reference Zhuang, L., & Liu, X. (2009). Application of frequency diversity to suppress grating lobes in coherent mimo radar with separated subapertures. Eurasip Journal on Advances in Signal Processing, 2009(1), 481792.CrossRef Zhuang, L., & Liu, X. (2009). Application of frequency diversity to suppress grating lobes in coherent mimo radar with separated subapertures. Eurasip Journal on Advances in Signal Processing, 2009(1), 481792.CrossRef
12.
go back to reference Shanbhag, K. V., Deb, D., & Kulkarni, M.. (2010). MIMO radar with spatial-frequency diversity for improved detection performance. IEEE International Conference on Communication Control & Computing Technologies. IEEE. Shanbhag, K. V., Deb, D., & Kulkarni, M.. (2010). MIMO radar with spatial-frequency diversity for improved detection performance. IEEE International Conference on Communication Control & Computing Technologies. IEEE.
13.
go back to reference Qin, S., Zhang, Y. D., Amin, M. G., & Gini, F. (2017). Frequency diverse coprime arrays with coprime frequency offsets for multitarget localization. IEEE Journal of Selected Topics in Signal Processing, 11(2), 321–335.CrossRef Qin, S., Zhang, Y. D., Amin, M. G., & Gini, F. (2017). Frequency diverse coprime arrays with coprime frequency offsets for multitarget localization. IEEE Journal of Selected Topics in Signal Processing, 11(2), 321–335.CrossRef
14.
go back to reference Yao, A. M., Wu, W., & Fang, D. G. (2016). Frequency diverse array antenna using time-modulated optimized frequency offset to obtain time-invariant spatial fine focusing beampattern. IEEE Transactions on Antennas and Propagation, 64(10), 4434–4446.MathSciNetCrossRef Yao, A. M., Wu, W., & Fang, D. G. (2016). Frequency diverse array antenna using time-modulated optimized frequency offset to obtain time-invariant spatial fine focusing beampattern. IEEE Transactions on Antennas and Propagation, 64(10), 4434–4446.MathSciNetCrossRef
15.
go back to reference Wang, Z., Song, Y., Mu, T., & Ahmad, Z. (2018). A short-range range-angle dependent beampattern synthesis by frequency diverse array. IEEE Access, 6(99), 22664–22669.CrossRef Wang, Z., Song, Y., Mu, T., & Ahmad, Z. (2018). A short-range range-angle dependent beampattern synthesis by frequency diverse array. IEEE Access, 6(99), 22664–22669.CrossRef
17.
go back to reference Wang, W. Q. (2014). Subarray-based frequency diverse array radar for target range-angle estimation. Aerospace and Electronic Systems IEEE Transactions on, 50(4), 3057–3067.CrossRef Wang, W. Q. (2014). Subarray-based frequency diverse array radar for target range-angle estimation. Aerospace and Electronic Systems IEEE Transactions on, 50(4), 3057–3067.CrossRef
18.
go back to reference Wang, W. Q., & Shao, H. (2014). Range-angle localization of targets by a double-pulse frequency diverse array radar. Selected Topics in Signal Processing, IEEE Journal of, 8(1), 106–114.CrossRef Wang, W. Q., & Shao, H. (2014). Range-angle localization of targets by a double-pulse frequency diverse array radar. Selected Topics in Signal Processing, IEEE Journal of, 8(1), 106–114.CrossRef
19.
go back to reference Aaron M. Jones, & Brian D. Rigling. (2012). Frequency diverse array radar receiver architectures. International Waveform Diversity & Design Conference. Aaron M. Jones, & Brian D. Rigling. (2012). Frequency diverse array radar receiver architectures. International Waveform Diversity & Design Conference.
20.
go back to reference Jones, A. M., & Rigling, B. D.. (2012). Planar frequency diverse array receiver architecture. IEEE Radar Conference. IEEE. Jones, A. M., & Rigling, B. D.. (2012). Planar frequency diverse array receiver architecture. IEEE Radar Conference. IEEE.
21.
go back to reference Jones, A.M. (2011). Frequency diverse array receiver architectures, Master’s thesis, Wright State University. Jones, A.M. (2011). Frequency diverse array receiver architectures, Master’s thesis, Wright State University.
22.
go back to reference Fartookzadeh, M., & Armaki, S. H. M. (2018). Synthesis of serial-fed frequency diverse arrays with periodic triangular frequency-modulated continuous waveform. IEEE Antennas and Wireless Propagation Letters, 17(2), 263–266.CrossRef Fartookzadeh, M., & Armaki, S. H. M. (2018). Synthesis of serial-fed frequency diverse arrays with periodic triangular frequency-modulated continuous waveform. IEEE Antennas and Wireless Propagation Letters, 17(2), 263–266.CrossRef
23.
go back to reference Guo, R., Ni, Y., Liu, H., Wang, F., & He, L. (2017). Signal diverse array radar for electronic warfare. IEEE Antennas & Wireless Propagation Letters, 16, 2906–2910.CrossRef Guo, R., Ni, Y., Liu, H., Wang, F., & He, L. (2017). Signal diverse array radar for electronic warfare. IEEE Antennas & Wireless Propagation Letters, 16, 2906–2910.CrossRef
24.
go back to reference Wang, W. Q. (2016). Overview of frequency diverse array in radar and navigation applications. Radar, Sonar & Navigation, IET, 10(6), 1001–1012.CrossRef Wang, W. Q. (2016). Overview of frequency diverse array in radar and navigation applications. Radar, Sonar & Navigation, IET, 10(6), 1001–1012.CrossRef
25.
go back to reference Xu, Y., Shi, X., Xu, J., & Li, P. (2015). Range-angle-dependent beamforming of pulsed frequency diverse array. IEEE Transactions on Antennas & Propagation, 63(7), 3262–3267.MathSciNetCrossRef Xu, Y., Shi, X., Xu, J., & Li, P. (2015). Range-angle-dependent beamforming of pulsed frequency diverse array. IEEE Transactions on Antennas & Propagation, 63(7), 3262–3267.MathSciNetCrossRef
26.
go back to reference Wang, W. Q., So, H. C., & Farina, A. (2017). An overview on time/frequency modulated array processing. Selected Topics in Signal Processing, IEEE Journal of, 11(2), 228–246.CrossRef Wang, W. Q., So, H. C., & Farina, A. (2017). An overview on time/frequency modulated array processing. Selected Topics in Signal Processing, IEEE Journal of, 11(2), 228–246.CrossRef
27.
go back to reference Wang, Y., Huang, G., & Li, W.. (2016). Transmit beampattern design in range and angel domains for mimo frequency diverse array radar. IEEE Antennas and Wireless Propagation Letters, 1–1. Wang, Y., Huang, G., & Li, W.. (2016). Transmit beampattern design in range and angel domains for mimo frequency diverse array radar. IEEE Antennas and Wireless Propagation Letters, 1–1.
28.
go back to reference Gui, R., Wang, W. Q., Cui, C., & So, H. C. (2018). Coherent pulsed-fda radar receiver design with time-variance consideration: sinr and crb analysis. IEEE Transactions on Signal Processing, 66(1), 200–214.MathSciNetCrossRef Gui, R., Wang, W. Q., Cui, C., & So, H. C. (2018). Coherent pulsed-fda radar receiver design with time-variance consideration: sinr and crb analysis. IEEE Transactions on Signal Processing, 66(1), 200–214.MathSciNetCrossRef
29.
go back to reference Yang, K., Hong, S., Zhu, Q., & Ye, Y. (2020). Maximum likelihood angle-range estimation for monostatic fda-mimo radar with extended range ambiguity using subarrays. International Journal of Antennas and Propagation, 2020, 1–10. Yang, K., Hong, S., Zhu, Q., & Ye, Y. (2020). Maximum likelihood angle-range estimation for monostatic fda-mimo radar with extended range ambiguity using subarrays. International Journal of Antennas and Propagation, 2020, 1–10.
32.
go back to reference Khan, W., Qureshi, I. M., Basit, A., & Khan, W. (2015). Range-bins-based mimo frequency diverse array radar with logarithmic frequency offset. IEEE Antennas and Wireless Propagation Letters, 15, 885–888.CrossRef Khan, W., Qureshi, I. M., Basit, A., & Khan, W. (2015). Range-bins-based mimo frequency diverse array radar with logarithmic frequency offset. IEEE Antennas and Wireless Propagation Letters, 15, 885–888.CrossRef
33.
go back to reference Secmen, M., Demir, S., Hizal, A., & Eker, T. (2007). Frequency diverse array antenna with periodic time modulated pattern in range and angle. IEEE Radar Conference., 2007, 427–430. Secmen, M., Demir, S., Hizal, A., & Eker, T. (2007). Frequency diverse array antenna with periodic time modulated pattern in range and angle. IEEE Radar Conference., 2007, 427–430.
34.
go back to reference Wang, & W.-Q. . (2013). Range-angle dependent transmit beampattern synthesis for linear frequency diverse arrays. IEEE Transactions on Antennas and Propagation, 61(8), 4073–4081.MathSciNetCrossRef Wang, & W.-Q. . (2013). Range-angle dependent transmit beampattern synthesis for linear frequency diverse arrays. IEEE Transactions on Antennas and Propagation, 61(8), 4073–4081.MathSciNetCrossRef
35.
go back to reference Da-Gang Fang, A-Min Yao, & Wen Wu. (2016). Synthesis of 4-D beampatterns using 4-D arrays. IEEE International Symposium on Antennas & Propagation. IEEE, 703–704. Da-Gang Fang, A-Min Yao, & Wen Wu. (2016). Synthesis of 4-D beampatterns using 4-D arrays. IEEE International Symposium on Antennas & Propagation. IEEE, 703–704.
36.
go back to reference Wang, C., Li, Z., & Zhang, X. (2020). Fda-mimo for joint angle and range estimation: unfolded coprime framework and parameter estimation algorithm. IET Radar, Sonar & Navigation, 14(6), 917–926.CrossRef Wang, C., Li, Z., & Zhang, X. (2020). Fda-mimo for joint angle and range estimation: unfolded coprime framework and parameter estimation algorithm. IET Radar, Sonar & Navigation, 14(6), 917–926.CrossRef
Metadata
Title
Improving Target Detection Ability Based on Time Invariant and Dot-Shape Beamforming in TMRC-FDA-MIMO Radar
Authors
Wei Chu
Yunqing Liu
Xiaolong Li
Yue Zhao
Qiong Zhang
Fei Yan
Publication date
17-02-2021
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 1/2021
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-021-08240-6

Other articles of this Issue 1/2021

Wireless Personal Communications 1/2021 Go to the issue