Skip to main content
Top
Published in: Mechanics of Composite Materials 4/2017

04-09-2017

Improving the particle distribution and mechanical properties of friction-stir-welded composites by using a smooth pin tool

Authors: Huijie Liu, Yanying Hu, Yunqiang Zhao, Hidetoshi Fujii

Published in: Mechanics of Composite Materials | Issue 4/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Friction stir welding (FSW) is a very promising technique for joining particle-reinforced aluminum-matrix composites (PRAMCs), but with increase in the volume fraction of reinforcing particles, their distribution in welds becomes inhomogeneous. This leads to an inconsistent deformation of welds and their destruction at low stresses. In order to improve the weld microstructure, a smooth pin tool was used for the friction stir welding of AC4A + 30 vol.% SiC particle-reinforced aluminum-matrix composites. The present work describes the effect of welding parameters on the characteristics of particle distribution and the mechanical properties of welds. The ultimate strength of weld reached, 309 MPa, was almost 190% of that of the basic material. The mechanism of SiC particle conglomeration is clearly illustrated by means of schematic illustrations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference L. Ceschini, I. Boromei, G. Minak, A. Morri, and F. Tarterini, “Effect of friction stir welding on microstructure, tensile and fatigue properties of the AA7005/10 vol.% Al2O3p composite,” Compos. Sci. Technol., 67, No. 3-4, 605-615 (2007)CrossRef L. Ceschini, I. Boromei, G. Minak, A. Morri, and F. Tarterini, “Effect of friction stir welding on microstructure, tensile and fatigue properties of the AA7005/10 vol.% Al2O3p composite,” Compos. Sci. Technol., 67, No. 3-4, 605-615 (2007)CrossRef
2.
go back to reference Y. F. Sun and H. Fujii, “The effect of SiC particles on the microstructure and mechanical properties of friction stir welded pure copper joints,” Mat. Sci. Eng. a-Struct., 528, No. 16-17, 5470-5475 (2011)CrossRef Y. F. Sun and H. Fujii, “The effect of SiC particles on the microstructure and mechanical properties of friction stir welded pure copper joints,” Mat. Sci. Eng. a-Struct., 528, No. 16-17, 5470-5475 (2011)CrossRef
3.
go back to reference D. Wang, Q. Z. Wang, B. L. Xiao, and Z. Y. Ma, “Achieving friction stir welded SiCp/Al–Cu–Mg composite joint of nearly equal strength to base material at high welding speed,” Mat. Sci. Eng., A.. 589, 271-274 (2014).CrossRef D. Wang, Q. Z. Wang, B. L. Xiao, and Z. Y. Ma, “Achieving friction stir welded SiCp/Al–Cu–Mg composite joint of nearly equal strength to base material at high welding speed,” Mat. Sci. Eng., A.. 589, 271-274 (2014).CrossRef
4.
go back to reference R. Gürler, “Fusion welding of SiC particulate-reinforced aluminum 392 metal matrix composite,” J. Mater. Sci. Lett., 17, No. 18, 1543-1544 (1998)CrossRef R. Gürler, “Fusion welding of SiC particulate-reinforced aluminum 392 metal matrix composite,” J. Mater. Sci. Lett., 17, No. 18, 1543-1544 (1998)CrossRef
5.
go back to reference P. Bassani, E. Capello, D. Colombo, B. Previtali, and M. Vedani, “Effect of process parameters on bead properties of A359/SiC MMCs welded by laser,” Composites: Part a-Appl. S., 38, No. 4, 1089-1098 (2007).CrossRef P. Bassani, E. Capello, D. Colombo, B. Previtali, and M. Vedani, “Effect of process parameters on bead properties of A359/SiC MMCs welded by laser,” Composites: Part a-Appl. S., 38, No. 4, 1089-1098 (2007).CrossRef
6.
go back to reference N. B. Dahotre, T. D. McCay, and M. H. McCay, “Laser processing of a SiC/Al-alloy metal matrix composite,” J. Appl. Phys., 65, No. 12, 5072 (1989).CrossRef N. B. Dahotre, T. D. McCay, and M. H. McCay, “Laser processing of a SiC/Al-alloy metal matrix composite,” J. Appl. Phys., 65, No. 12, 5072 (1989).CrossRef
7.
go back to reference W. P. Weng and T. H. Chuang, “Interfacial characteristics for brazing of aluminum matrix composites with Al-12Si filler metals,” Metall. Mater. Trans. A., 28, No. 12, 2673-2682 (1997).CrossRef W. P. Weng and T. H. Chuang, “Interfacial characteristics for brazing of aluminum matrix composites with Al-12Si filler metals,” Metall. Mater. Trans. A., 28, No. 12, 2673-2682 (1997).CrossRef
8.
go back to reference J. Huang, Y. Wan, H. Zhang, and X. Zhao, “TLP bonding of SiCp/2618Al composites using mixed Al–Ag–Cu system powders as interlayers,” J. Mater. Sci., 42, No. 23, 9746-9749 (2007).CrossRef J. Huang, Y. Wan, H. Zhang, and X. Zhao, “TLP bonding of SiCp/2618Al composites using mixed Al–Ag–Cu system powders as interlayers,” J. Mater. Sci., 42, No. 23, 9746-9749 (2007).CrossRef
9.
go back to reference R. S. Mishra and Z. Y. Ma, “Friction stir welding and processing,” Mat. Sci. Eng. R., 50, No. 1-2, 1-78 (2005).CrossRef R. S. Mishra and Z. Y. Ma, “Friction stir welding and processing,” Mat. Sci. Eng. R., 50, No. 1-2, 1-78 (2005).CrossRef
10.
go back to reference D. R. Ni, D. L. Chen, D. Wang, B. L. Xiao, and Z. Y. Ma, “Influence of microstructural evolution on tensile properties of friction stir welded joint of rolled SiCp/AA2009-T351 sheet,” Materials & Design, 51, 199-205 (2013).CrossRef D. R. Ni, D. L. Chen, D. Wang, B. L. Xiao, and Z. Y. Ma, “Influence of microstructural evolution on tensile properties of friction stir welded joint of rolled SiCp/AA2009-T351 sheet,” Materials & Design, 51, 199-205 (2013).CrossRef
11.
go back to reference M. Amirizad, A. H. Kokabi, M. A. Gharacheh, R. Sarrafi, B. S. Amirkhiz, and M. Azizieh, “Evaluation of microstructure and mechanical properties in friction stir welded A356+15%SiCp cast composite,” Mater. Lett., 60, No. 4,:565-568 (2006).CrossRef M. Amirizad, A. H. Kokabi, M. A. Gharacheh, R. Sarrafi, B. S. Amirkhiz, and M. Azizieh, “Evaluation of microstructure and mechanical properties in friction stir welded A356+15%SiCp cast composite,” Mater. Lett., 60, No. 4,:565-568 (2006).CrossRef
12.
go back to reference G. J. Fernandez and L. E. Murr, “Characterization of tool wear and weld optimization in the friction-stir welding of cast aluminum 359+20% SiC metal-matrix composite,” Mater. Charact., 52, No. 1, 65-75 (2004).CrossRef G. J. Fernandez and L. E. Murr, “Characterization of tool wear and weld optimization in the friction-stir welding of cast aluminum 359+20% SiC metal-matrix composite,” Mater. Charact., 52, No. 1, 65-75 (2004).CrossRef
13.
go back to reference M. Bahrami, M. K. Besharati Givi, K. Dehghani, and N. Parvin, “On the role of pin geometry in microstructure and mechanical properties of AA7075/SiC nano-composite fabricated by friction stir welding technique,” Materials & Design, 53, 519-527 (2014).CrossRef M. Bahrami, M. K. Besharati Givi, K. Dehghani, and N. Parvin, “On the role of pin geometry in microstructure and mechanical properties of AA7075/SiC nano-composite fabricated by friction stir welding technique,” Materials & Design, 53, 519-527 (2014).CrossRef
14.
go back to reference T. Feng, Z. Q. Yu, Y. Han, Y. A. Zhang, and Y. Z. Wang, “Friction stir welding microstructure of SiCp/2024Al MMC,” J. Aeronautical Mater., 33, No. 4, 27-31 (2013. T. Feng, Z. Q. Yu, Y. Han, Y. A. Zhang, and Y. Z. Wang, “Friction stir welding microstructure of SiCp/2024Al MMC,” J. Aeronautical Mater., 33, No. 4, 27-31 (2013.
15.
go back to reference H. J. Liu, Y. Y. Hu, Y. Q. Zhao, and H. Fujii, “Microstructure and mechanical properties of friction stir welded AC4A+30vol.%SiCp composite,” Mater. Des., 65, 395-400 (2015).CrossRef H. J. Liu, Y. Y. Hu, Y. Q. Zhao, and H. Fujii, “Microstructure and mechanical properties of friction stir welded AC4A+30vol.%SiCp composite,” Mater. Des., 65, 395-400 (2015).CrossRef
16.
go back to reference H. J. Liu, J. C. Feng, H. Fujii, K. Nogi, “Wear characteristics of a WC–Co tool in friction stir welding of AC4A+30vol%SiCp composite,” Int. J. Mach. Tool Manu., 45, No. 14, 1635-1639 (2005).CrossRef H. J. Liu, J. C. Feng, H. Fujii, K. Nogi, “Wear characteristics of a WC–Co tool in friction stir welding of AC4A+30vol%SiCp composite,” Int. J. Mach. Tool Manu., 45, No. 14, 1635-1639 (2005).CrossRef
17.
go back to reference Y. H. Zhao, S. B. Lin, L. Wu, and F. X. Qu, “The influence of pin geometry on bonding and mechanical properties in friction stir weld 2014 Al alloy,” Mater. Lett., 59, No. 23, 2948-2952 (2005).CrossRef Y. H. Zhao, S. B. Lin, L. Wu, and F. X. Qu, “The influence of pin geometry on bonding and mechanical properties in friction stir weld 2014 Al alloy,” Mater. Lett., 59, No. 23, 2948-2952 (2005).CrossRef
18.
go back to reference H. Fujii, L. Cui, M. Maeda, and K. Nogi, “Effect of tool shape on mechanical properties and microstructure of friction stir welded aluminum alloys,” Mat. Sci. Eng. a-Struct., 419, No. 1-2, 25-31 (2006).CrossRef H. Fujii, L. Cui, M. Maeda, and K. Nogi, “Effect of tool shape on mechanical properties and microstructure of friction stir welded aluminum alloys,” Mat. Sci. Eng. a-Struct., 419, No. 1-2, 25-31 (2006).CrossRef
19.
go back to reference H. J. Liu, H. Fujii, M. Maeda, and K. Nogi, “Heterogeneity of mechanical properties of friction stir welded joints of 1050-H24 aluminum alloy,” J. Mater. Sci. Lett., 22, No. 6, 441-444 (2003).CrossRef H. J. Liu, H. Fujii, M. Maeda, and K. Nogi, “Heterogeneity of mechanical properties of friction stir welded joints of 1050-H24 aluminum alloy,” J. Mater. Sci. Lett., 22, No. 6, 441-444 (2003).CrossRef
20.
go back to reference H. J. Liu, H. Fujii, M. Maeda, and K. Nogi, “Tensile fracture location characterizations of friction stir welded joints of different aluminum alloys,” J. Mater. Sci. Technol., 20, No. 1, 103-105 (2004).CrossRef H. J. Liu, H. Fujii, M. Maeda, and K. Nogi, “Tensile fracture location characterizations of friction stir welded joints of different aluminum alloys,” J. Mater. Sci. Technol., 20, No. 1, 103-105 (2004).CrossRef
21.
go back to reference S. R. Ren, Z. Y. Ma, and L. Q. Chen, “Effect of welding parameters on tensile properties and fracture behavior of friction stir welded Al–Mg–Si alloy,” Scripta Mater., 56, No. 1, 69-72 (2007).CrossRef S. R. Ren, Z. Y. Ma, and L. Q. Chen, “Effect of welding parameters on tensile properties and fracture behavior of friction stir welded Al–Mg–Si alloy,” Scripta Mater., 56, No. 1, 69-72 (2007).CrossRef
22.
go back to reference R. S. Mishra and M. W. Mahoney, Friction Stir Welding and Processing. Materials Park, Ohio: ASM International, 2007. R. S. Mishra and M. W. Mahoney, Friction Stir Welding and Processing. Materials Park, Ohio: ASM International, 2007.
23.
go back to reference Y. S. Sato, M. Urata, H. Kokawa, K. Ikeda, and M. Enomoto, “Retention of fine grained microstructure of equal channel angular pressed aluminum alloy 1050 by friction stir welding.” Scripta Mater., 45, No. 1, 109-114 (2001).CrossRef Y. S. Sato, M. Urata, H. Kokawa, K. Ikeda, and M. Enomoto, “Retention of fine grained microstructure of equal channel angular pressed aluminum alloy 1050 by friction stir welding.” Scripta Mater., 45, No. 1, 109-114 (2001).CrossRef
24.
go back to reference A. Sato and R. Mehrabian, “Aluminum matrix composites: Fabrication and properties,” Metall. Trans. B., 7, No. 3, 443-451 (1976).CrossRef A. Sato and R. Mehrabian, “Aluminum matrix composites: Fabrication and properties,” Metall. Trans. B., 7, No. 3, 443-451 (1976).CrossRef
25.
go back to reference M. Guerra, C. Schmidt, J. C. McClure, L. E. Murr, and A. C. Nunes, “Flow patterns during friction stir welding,” Mater. Charact., 49, No. 2, 95-101 (2002).CrossRef M. Guerra, C. Schmidt, J. C. McClure, L. E. Murr, and A. C. Nunes, “Flow patterns during friction stir welding,” Mater. Charact., 49, No. 2, 95-101 (2002).CrossRef
26.
go back to reference L. M. Marzoli, A. V. Strombeck, J. F. Dos Santos, C. Gambaro, and L. M. Volpone, “Friction stir welding of an AA6061/Al2O3/20p reinforced alloy,” Compos. Sci. Technol., 66, No. 2, 363-371 (2006).CrossRef L. M. Marzoli, A. V. Strombeck, J. F. Dos Santos, C. Gambaro, and L. M. Volpone, “Friction stir welding of an AA6061/Al2O3/20p reinforced alloy,” Compos. Sci. Technol., 66, No. 2, 363-371 (2006).CrossRef
27.
go back to reference K. V. Jata and S. L. Semiatin, “Continuous dynamic recrystallization during friction stir welding of high strength aluminum alloys,” Scripta Mater., 43, No. 8, 743-749 (2000).CrossRef K. V. Jata and S. L. Semiatin, “Continuous dynamic recrystallization during friction stir welding of high strength aluminum alloys,” Scripta Mater., 43, No. 8, 743-749 (2000).CrossRef
28.
go back to reference D. P. Field, T. W. Nelson, Y. Hovanski, and K. V. Jata, “Heterogeneity of crystallographic texture in friction stir welds of aluminum,” Metall. Mater. Trans. A., 32, No. 11, 2869-2877 (2001).CrossRef D. P. Field, T. W. Nelson, Y. Hovanski, and K. V. Jata, “Heterogeneity of crystallographic texture in friction stir welds of aluminum,” Metall. Mater. Trans. A., 32, No. 11, 2869-2877 (2001).CrossRef
29.
go back to reference Y. Li, L. E. Murr, and J. C. McClure, “Flow visualization and residual microstructures associated with the friction-stir welding of 2024 aluminum to 6061 aluminum,” Mat. Sci. Eng. A., 271, No. 1-2, 213-223 (1999).CrossRef Y. Li, L. E. Murr, and J. C. McClure, “Flow visualization and residual microstructures associated with the friction-stir welding of 2024 aluminum to 6061 aluminum,” Mat. Sci. Eng. A., 271, No. 1-2, 213-223 (1999).CrossRef
30.
go back to reference E. O. Hall, The deformation and ageing of mild steel: III Discussion of results,” Proc. Phys. Soc. Sect. B, 64, No. 9,747-753 (1951);CrossRef E. O. Hall, The deformation and ageing of mild steel: III Discussion of results,” Proc. Phys. Soc. Sect. B, 64, No. 9,747-753 (1951);CrossRef
31.
go back to reference J. C. McClure, W. Tang, L. Murr, X. Guo, Z. Feng, and J. E. Gould, “A thermal model of friction stir welding,” Proc. 5th Int. Conf. on Trends in Welding Research, Pine Mountain,GA1998. p. 590-595. J. C. McClure, W. Tang, L. Murr, X. Guo, Z. Feng, and J. E. Gould, “A thermal model of friction stir welding,” Proc. 5th Int. Conf. on Trends in Welding Research, Pine Mountain,GA1998. p. 590-595.
32.
go back to reference Y. J. Chao and X. Qi, “Heat transfer and thermo-mechanical analysis of friction stir joining of AA6061-T6 plates,” 1st Int. Symp. on Friction Stir Welding, Thousand Oaks,CA: Rockwell Science Center, 1999. Y. J. Chao and X. Qi, “Heat transfer and thermo-mechanical analysis of friction stir joining of AA6061-T6 plates,” 1st Int. Symp. on Friction Stir Welding, Thousand Oaks,CA: Rockwell Science Center, 1999.
33.
go back to reference M. Russell and H. Shercliff, “Analytical modelling of microstructure development in friction stir welding,” 1st Int. Symp. on Friction Stir Welding, Thousand Oaks,CA: Rockwell Science Center; 1999. M. Russell and H. Shercliff, “Analytical modelling of microstructure development in friction stir welding,” 1st Int. Symp. on Friction Stir Welding, Thousand Oaks,CA: Rockwell Science Center; 1999.
34.
go back to reference O. Frigaard, O. Grong, O. Bjørneklett, and O. Midling, “Modeling of thermal and microstructure fields during friction stir welding of aluminum alloys,” 1st Int. Symp. on Friction Stir Welding, Thousand Oaks,CA: Rockwell Science Center; 1999. O. Frigaard, O. Grong, O. Bjørneklett, and O. Midling, “Modeling of thermal and microstructure fields during friction stir welding of aluminum alloys,” 1st Int. Symp. on Friction Stir Welding, Thousand Oaks,CA: Rockwell Science Center; 1999.
35.
go back to reference P. A. Colegrove, 3-Dimensional Flow and Thermal Modelling of the Friction Stir Welding Process, University of Adelaide, Department of Mechanical Engineering; 2002. P. A. Colegrove, 3-Dimensional Flow and Thermal Modelling of the Friction Stir Welding Process, University of Adelaide, Department of Mechanical Engineering; 2002.
36.
go back to reference M. W. Mahoney, C. G. Rhodes, J. G. Flintoff, W. H. Bingel, and R. A. Spurling, “Properties of friction-stir-welded 7075 T651 aluminum,” Metall. Mater. Trans. A, 29, No. 7, 1955-1964 (1998).CrossRef M. W. Mahoney, C. G. Rhodes, J. G. Flintoff, W. H. Bingel, and R. A. Spurling, “Properties of friction-stir-welded 7075 T651 aluminum,” Metall. Mater. Trans. A, 29, No. 7, 1955-1964 (1998).CrossRef
37.
go back to reference K. Colligan, “Material flow behaviour during friction welding of aluminum,” Weld J., 78, No. 7, 229-237 (1999). K. Colligan, “Material flow behaviour during friction welding of aluminum,” Weld J., 78, No. 7, 229-237 (1999).
38.
go back to reference A. P. Reynolds, “Visualisation of material flow in autogenous friction stir welds,” Sci. Technol. Weld Joining, 5, No. 2, 120-124 (2000).CrossRef A. P. Reynolds, “Visualisation of material flow in autogenous friction stir welds,” Sci. Technol. Weld Joining, 5, No. 2, 120-124 (2000).CrossRef
39.
go back to reference H. B. Schmidt and J. H. Hattel, “Thermal modelling of friction stir welding,” Scripta Mater., 58, No. 5, 332-337 (2008).CrossRef H. B. Schmidt and J. H. Hattel, “Thermal modelling of friction stir welding,” Scripta Mater., 58, No. 5, 332-337 (2008).CrossRef
Metadata
Title
Improving the particle distribution and mechanical properties of friction-stir-welded composites by using a smooth pin tool
Authors
Huijie Liu
Yanying Hu
Yunqiang Zhao
Hidetoshi Fujii
Publication date
04-09-2017
Publisher
Springer US
Published in
Mechanics of Composite Materials / Issue 4/2017
Print ISSN: 0191-5665
Electronic ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-017-9681-9

Other articles of this Issue 4/2017

Mechanics of Composite Materials 4/2017 Go to the issue

Premium Partners