Skip to main content
Top
Published in: Cellulose 6/2011

01-12-2011

In situ modification of bacterial cellulose nanostructure by adding CMC during the growth of Gluconacetobacter xylinus

Authors: Hui-Huang Chen, Li-Chen Chen, Huang-Chan Huang, Shih-Bin Lin

Published in: Cellulose | Issue 6/2011

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Many studies focus on bacterial cellulose (BC) functioning as multi-function bio-resource polymers, due to its fine fiber network, biocompatibility, high water holding capacity, and high mechanical strength. However, BC exhibits poor rehydration after drying due to its high crystallinity. This study added carboxymethylcellulose (CMC) to a BC producing culture medium, which interfered with the formation of BC structure in situ. This process created a modified BC called CBC, whose mechanical strength was found weaker than BC. Scanning electron microscope (SEM) images showed that the cellulose network in CBC became denser. X-ray diffraction and Fourier transform infrared spectroscopy (FTIR) analysis demonstrated that the addition of CMC reduced crystallinity. CBC also exhibited the highest rehydration ratio because of the lowest crystallinity at the 1.0% CMC addition level.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Astley OM, Chanliaud E, Donald AM, Gidley MJ (2003) Tensile deformation of bacterial cellulose composites. Int J Biol Macromol 32:28–35CrossRef Astley OM, Chanliaud E, Donald AM, Gidley MJ (2003) Tensile deformation of bacterial cellulose composites. Int J Biol Macromol 32:28–35CrossRef
go back to reference Blackwell J (1982) The macromolecular organization of cellulose and chitin. In: Brown RM Jr (ed) Cellulose and other natural polymer systems. Plenum Publishing Corp, New York, pp 327–339 Blackwell J (1982) The macromolecular organization of cellulose and chitin. In: Brown RM Jr (ed) Cellulose and other natural polymer systems. Plenum Publishing Corp, New York, pp 327–339
go back to reference Brown RM Jr (1989) Bacterial cellulose. In: Kennedy JF, Phillips GO, Williams PA (eds) Cellulose: structural and functional aspects. Ellis Horwood Ltd, Chichester, pp 145–151 Brown RM Jr (1989) Bacterial cellulose. In: Kennedy JF, Phillips GO, Williams PA (eds) Cellulose: structural and functional aspects. Ellis Horwood Ltd, Chichester, pp 145–151
go back to reference Cannon RE, Anderson SM (1991) Biogenesis of bacterial cellulose. Crit Rev Microbiol 17:435–447CrossRef Cannon RE, Anderson SM (1991) Biogenesis of bacterial cellulose. Crit Rev Microbiol 17:435–447CrossRef
go back to reference Carrillo F, Colom X, Suñol JJ, Saurina J (2004) Structural FTIR analysis and thermal characterisation of lyocell and viscose-type fibres. Eur Polym J 40:2229–2234CrossRef Carrillo F, Colom X, Suñol JJ, Saurina J (2004) Structural FTIR analysis and thermal characterisation of lyocell and viscose-type fibres. Eur Polym J 40:2229–2234CrossRef
go back to reference Choi YJ, Ahn Y, Kang MS, Jun HK, Kim IS, Moon SH (2004) Preparation and characterization of acrylic acid-treated bacterial cellulose cation-exchange membrane. Chem Technol Biotechnol 79:79–84CrossRef Choi YJ, Ahn Y, Kang MS, Jun HK, Kim IS, Moon SH (2004) Preparation and characterization of acrylic acid-treated bacterial cellulose cation-exchange membrane. Chem Technol Biotechnol 79:79–84CrossRef
go back to reference Clasen C, Sultanova B, Wilhelms T, Heisig P, Kulicke W-M (2006) Effects of different drying processes on the material properties of bacterial cellulose membranes. Macromol Symp 244:48–58CrossRef Clasen C, Sultanova B, Wilhelms T, Heisig P, Kulicke W-M (2006) Effects of different drying processes on the material properties of bacterial cellulose membranes. Macromol Symp 244:48–58CrossRef
go back to reference Dammström S, Salmén L, Gatenholm P (2005) The effect of moisture on the dynamical mechanical properties of bacterial cellulose/glucuronoxylan nanocomposites. Polymer 46:10364–10371CrossRef Dammström S, Salmén L, Gatenholm P (2005) The effect of moisture on the dynamical mechanical properties of bacterial cellulose/glucuronoxylan nanocomposites. Polymer 46:10364–10371CrossRef
go back to reference Embuscado ME, BeMiller JN, Marks JS (1996) Isolation and partial characterization of cellulose produced by Acetobacter xylinum. Food hydrocoll 10(1):73–82CrossRef Embuscado ME, BeMiller JN, Marks JS (1996) Isolation and partial characterization of cellulose produced by Acetobacter xylinum. Food hydrocoll 10(1):73–82CrossRef
go back to reference Engelhardt J (1995) Sources, industrial derivatives, and commercial applications of cellulose. Carbohydr Eur 12:5–14 Engelhardt J (1995) Sources, industrial derivatives, and commercial applications of cellulose. Carbohydr Eur 12:5–14
go back to reference Fengel D, Ludwig M (1991) Möglichkeiten und Grenzen der FTIR-Spektroskopie bei der charakterisierung von cellulose. Das Papier 45:45–51 Fengel D, Ludwig M (1991) Möglichkeiten und Grenzen der FTIR-Spektroskopie bei der charakterisierung von cellulose. Das Papier 45:45–51
go back to reference Haigler CH, Benziman M (1982) Biogenesis of cellulose I microfibrils occurs by cell-directed self-assembly in Acetobacter xylinum. In: Brown RM Jr (ed) Cellulose and other natural polymer systems. Plenum Press, New York, pp 273–296 Haigler CH, Benziman M (1982) Biogenesis of cellulose I microfibrils occurs by cell-directed self-assembly in Acetobacter xylinum. In: Brown RM Jr (ed) Cellulose and other natural polymer systems. Plenum Press, New York, pp 273–296
go back to reference Haigler CH, White AR, Brown RM Jr, Cooper KM (1982) Alteration of in vivo cellulose ribbon assembly by carboxymethylcellulose and other cellulose derivatives. J Cell Biol 94:64–69CrossRef Haigler CH, White AR, Brown RM Jr, Cooper KM (1982) Alteration of in vivo cellulose ribbon assembly by carboxymethylcellulose and other cellulose derivatives. J Cell Biol 94:64–69CrossRef
go back to reference Hirai A, Tsuji M, Yamamoto H, Horii F (1998) In situ crystallization of bacterial cellulose III. Influences of different polymeric additives on the formation of microfibrils as revealed by transmission electron microscopy. Cellulose 5:201–213CrossRef Hirai A, Tsuji M, Yamamoto H, Horii F (1998) In situ crystallization of bacterial cellulose III. Influences of different polymeric additives on the formation of microfibrils as revealed by transmission electron microscopy. Cellulose 5:201–213CrossRef
go back to reference Holmes D (2004) Bacterial cellulose. master thesis, Department of Chemical and Process Engineering, University of Canterbury, New Zealand Holmes D (2004) Bacterial cellulose. master thesis, Department of Chemical and Process Engineering, University of Canterbury, New Zealand
go back to reference Hong L, Wang YL, Jia SR, Huang Y, Gao C, Wan YZ (2006) Hydroxyapatite/bacterial cellulose composites synthesized via a biomimetic route. Mater Lett 60:1710–1713CrossRef Hong L, Wang YL, Jia SR, Huang Y, Gao C, Wan YZ (2006) Hydroxyapatite/bacterial cellulose composites synthesized via a biomimetic route. Mater Lett 60:1710–1713CrossRef
go back to reference Huang HC, Chen LC, Lin SB, Hsu CP, Chen HH (2010) In situ modification of bacterial cellulose network structure by adding interfering substances during fermentation. Bioresour Technol 101:6084–6091CrossRef Huang HC, Chen LC, Lin SB, Hsu CP, Chen HH (2010) In situ modification of bacterial cellulose network structure by adding interfering substances during fermentation. Bioresour Technol 101:6084–6091CrossRef
go back to reference Ivanova NV, Korolenko EA, Korolik EV, Zbankov RG (1989) Mathematical processing of IR-spectra of cellulose. Zurnal Prikladnoj Spektroskopii 51:301–306 Ivanova NV, Korolenko EA, Korolik EV, Zbankov RG (1989) Mathematical processing of IR-spectra of cellulose. Zurnal Prikladnoj Spektroskopii 51:301–306
go back to reference Jonas R, Farah LF (1998) Production and application of microbial cellulose. Polym Degrad Stab 59:101–106CrossRef Jonas R, Farah LF (1998) Production and application of microbial cellulose. Polym Degrad Stab 59:101–106CrossRef
go back to reference Keshk S (2006) Physical properties of bacterial cellulose sheets produced in presence of lignosulfonate. Enzyme Microbiol Technol 40:9–12CrossRef Keshk S (2006) Physical properties of bacterial cellulose sheets produced in presence of lignosulfonate. Enzyme Microbiol Technol 40:9–12CrossRef
go back to reference Lin SB, Hsu CP, Chen LC, Chen HH (2009) Adding enzymatically modified gelatin to enhance the rehydration abilities of bacterial cellulose. Food Hydrocoll 23:2195–2203CrossRef Lin SB, Hsu CP, Chen LC, Chen HH (2009) Adding enzymatically modified gelatin to enhance the rehydration abilities of bacterial cellulose. Food Hydrocoll 23:2195–2203CrossRef
go back to reference Macosko CW (1994) Rheology: principles measurements and applications. VCH Publishers, New York Macosko CW (1994) Rheology: principles measurements and applications. VCH Publishers, New York
go back to reference Mansikkamäki P, Lahtinen M, Rissanen K (2005) Structural changes of cellulose crystallites induced by mercerisation in different solvent systems; determined by powder X-ray diffraction method. Cellulose 12:233–242CrossRef Mansikkamäki P, Lahtinen M, Rissanen K (2005) Structural changes of cellulose crystallites induced by mercerisation in different solvent systems; determined by powder X-ray diffraction method. Cellulose 12:233–242CrossRef
go back to reference Maréchal Y, Chanzy H (2000) The hydrogen bond network in Iβ cellulose as observed by infrared spectrometry. J Mol Struct 523:183–196CrossRef Maréchal Y, Chanzy H (2000) The hydrogen bond network in Iβ cellulose as observed by infrared spectrometry. J Mol Struct 523:183–196CrossRef
go back to reference Morris VJ (1985) Multicomponent gels. In: Philips GO, Wedlock DJ, Williams PA (eds) Gums and stabilizers for the food industry, vol 3. Elsevier Applied Science Publishers Ltd, Barking Essex, pp 87–99 Morris VJ (1985) Multicomponent gels. In: Philips GO, Wedlock DJ, Williams PA (eds) Gums and stabilizers for the food industry, vol 3. Elsevier Applied Science Publishers Ltd, Barking Essex, pp 87–99
go back to reference Morris ER, Ross-Murphy SB (1981) Chain flexibility of polysaccharides and glycoproteins from viscosity measurement. In: Northcote DH (ed) Techniques in carbohydrate metabolism. Elsevier/North-Holland, Amsterdam, pp 1–46 Morris ER, Ross-Murphy SB (1981) Chain flexibility of polysaccharides and glycoproteins from viscosity measurement. In: Northcote DH (ed) Techniques in carbohydrate metabolism. Elsevier/North-Holland, Amsterdam, pp 1–46
go back to reference Musampa RM, Alves MM, Maia JM (2007) Phase separation, rheology and microstructure of pea protein-kappa-carrageenan mixtures. Food Hydrocoll 21:92–99CrossRef Musampa RM, Alves MM, Maia JM (2007) Phase separation, rheology and microstructure of pea protein-kappa-carrageenan mixtures. Food Hydrocoll 21:92–99CrossRef
go back to reference Nakayama A, Kakugo A, Gong JP, Osada Y, Takai M, Erata T, Kawano S (2004) High mechanical strength double-network hydrogel with bacterial cellulose. Adv Funct Mater 14:1124–1128CrossRef Nakayama A, Kakugo A, Gong JP, Osada Y, Takai M, Erata T, Kawano S (2004) High mechanical strength double-network hydrogel with bacterial cellulose. Adv Funct Mater 14:1124–1128CrossRef
go back to reference Nishi Y, Uryu M, Yamanaka S, Watanabe K, Kitamura N, Iguchi M, Mitsuhashi S (1990) The structure and mechanical properties of sheets prepared from bacterial cellulose. part 2: improvement of the mechanical properties of sheets and their applicability to diaphragms of electroacoustic transducers. J Mater Sci 25:2997–3001CrossRef Nishi Y, Uryu M, Yamanaka S, Watanabe K, Kitamura N, Iguchi M, Mitsuhashi S (1990) The structure and mechanical properties of sheets prepared from bacterial cellulose. part 2: improvement of the mechanical properties of sheets and their applicability to diaphragms of electroacoustic transducers. J Mater Sci 25:2997–3001CrossRef
go back to reference Oh SY, Yoo DI, Shin Y, Kim HC, Kim HY, Chung YS, Park WH, Youk JH (2005) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydr Polym 340:2376–2391 Oh SY, Yoo DI, Shin Y, Kim HC, Kim HY, Chung YS, Park WH, Youk JH (2005) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydr Polym 340:2376–2391
go back to reference Okiyama A, Motoki M, Yamanaka S (1993) Bacterial cellulose.IV. Application to processed foods. Food Hydrocoll 6:503–511CrossRef Okiyama A, Motoki M, Yamanaka S (1993) Bacterial cellulose.IV. Application to processed foods. Food Hydrocoll 6:503–511CrossRef
go back to reference Ross P, Mayer R, Benziman M (1991) Cellulose biosynthesis and function in bacteria. Microbiol Mol Biol Rev 55:35–58 Ross P, Mayer R, Benziman M (1991) Cellulose biosynthesis and function in bacteria. Microbiol Mol Biol Rev 55:35–58
go back to reference Schrecker S, Gostomski P (2005) Determining the water holding capacity of microbial cellulose. Biotechnol Lett 27:1435–1438CrossRef Schrecker S, Gostomski P (2005) Determining the water holding capacity of microbial cellulose. Biotechnol Lett 27:1435–1438CrossRef
go back to reference Schwanninger M, Rodrigues JC, Pereira H, Hinterstoisser B (2004) Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vib Spectrosc 36:23–40CrossRef Schwanninger M, Rodrigues JC, Pereira H, Hinterstoisser B (2004) Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vib Spectrosc 36:23–40CrossRef
go back to reference Segal L, Creely JJ, Martin AEJ, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794CrossRef Segal L, Creely JJ, Martin AEJ, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794CrossRef
go back to reference Šturcová A, His I, Apperley DC, Sugiyama J, Jarvis MC (2004) Structural details of crystalline cellulose from higher plants. Biomacromolecules 5:1333–1339CrossRef Šturcová A, His I, Apperley DC, Sugiyama J, Jarvis MC (2004) Structural details of crystalline cellulose from higher plants. Biomacromolecules 5:1333–1339CrossRef
go back to reference Sugiyama J, Persson J, Chanzy H (1991) Combined infrared and electron diffraction study of the polymorphism of native celluloses. Macromolecules 24:2461–2466CrossRef Sugiyama J, Persson J, Chanzy H (1991) Combined infrared and electron diffraction study of the polymorphism of native celluloses. Macromolecules 24:2461–2466CrossRef
go back to reference Thimman KV (1968) The life of bacteria, 2nd edn. The MacMillan Co., New York Thimman KV (1968) The life of bacteria, 2nd edn. The MacMillan Co., New York
go back to reference Tokoh C, Takabe K, Sugiyama J, Fujita M (2002) CP/MAS 13C NMR and electron diffraction study of bacterial cellulose structure affected by cell wall polysaccharides. Cellulose 9:351–360CrossRef Tokoh C, Takabe K, Sugiyama J, Fujita M (2002) CP/MAS 13C NMR and electron diffraction study of bacterial cellulose structure affected by cell wall polysaccharides. Cellulose 9:351–360CrossRef
go back to reference Uhlin KI, Atalla RH, Thompson NS (1995) Influence of hemicelluloses on the aggregation patterns of bacterial cellulose. Cellulose 2:129–144CrossRef Uhlin KI, Atalla RH, Thompson NS (1995) Influence of hemicelluloses on the aggregation patterns of bacterial cellulose. Cellulose 2:129–144CrossRef
go back to reference Whitney SEC, Brigham JE, Darke AH, Reid JSG, Gidley MJ (1995) In vitro assembly of cellulose/xyloglucan networks—ultrastructural and molecular aspects. Plant J 8:491–504CrossRef Whitney SEC, Brigham JE, Darke AH, Reid JSG, Gidley MJ (1995) In vitro assembly of cellulose/xyloglucan networks—ultrastructural and molecular aspects. Plant J 8:491–504CrossRef
go back to reference Yamamoto H, Horii F, Hirai A (1996) In situ crystallization of bacterial cellulose II. Influences of polymeric additives with different molecular weights on the formation of celluloses Iα and Iβ at the early stage of incubation. Cellulose 3:229–242CrossRef Yamamoto H, Horii F, Hirai A (1996) In situ crystallization of bacterial cellulose II. Influences of polymeric additives with different molecular weights on the formation of celluloses Iα and Iβ at the early stage of incubation. Cellulose 3:229–242CrossRef
go back to reference Yamanaka S, Watanabe K, Kitamura N, Iguchi M, Mitsuhashi S, Nishi Y, Uryu M (1989) The structure and mechanical properties of sheets prepared from bacterial cellulose. J Mater Sci 24:3141–3145CrossRef Yamanaka S, Watanabe K, Kitamura N, Iguchi M, Mitsuhashi S, Nishi Y, Uryu M (1989) The structure and mechanical properties of sheets prepared from bacterial cellulose. J Mater Sci 24:3141–3145CrossRef
go back to reference Yamanaka S, Ishihara M, Sugiyama J (2000) Structural modification of bacterial cellulose. Cellulose 7:213–225CrossRef Yamanaka S, Ishihara M, Sugiyama J (2000) Structural modification of bacterial cellulose. Cellulose 7:213–225CrossRef
go back to reference Yan Z, Chen S, Wang H, Wang B, Wang C, Jiang J (2008) Cellulose synthesized by Acetobacter xylinum in the presence of multi-walled carbon nanotubes. Carbohydr Res 343:73–80CrossRef Yan Z, Chen S, Wang H, Wang B, Wang C, Jiang J (2008) Cellulose synthesized by Acetobacter xylinum in the presence of multi-walled carbon nanotubes. Carbohydr Res 343:73–80CrossRef
go back to reference Zugenmaier P (2008) Cellulose. In: Crystalline cellulose and cellulose derivatives: characterization and Structures. Springer series in wood science. Springer, Berlin, Heidelberg, pp 101–174 Zugenmaier P (2008) Cellulose. In: Crystalline cellulose and cellulose derivatives: characterization and Structures. Springer series in wood science. Springer, Berlin, Heidelberg, pp 101–174
Metadata
Title
In situ modification of bacterial cellulose nanostructure by adding CMC during the growth of Gluconacetobacter xylinus
Authors
Hui-Huang Chen
Li-Chen Chen
Huang-Chan Huang
Shih-Bin Lin
Publication date
01-12-2011
Publisher
Springer Netherlands
Published in
Cellulose / Issue 6/2011
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-011-9594-z

Other articles of this Issue 6/2011

Cellulose 6/2011 Go to the issue