Skip to main content
Top
Published in: Journal of Materials Science 11/2015

01-06-2015 | Original Paper

In situ random co-polycondensation for preparation of reduced graphene oxide/polyimide nanocomposites with amino-modified and chemically reduced graphene oxide

Authors: Wen-Qiu Chen, Quan-Tao Li, Peng-Hui Li, Quan-Yuan Zhang, Zu-Shun Xu, Paul K. Chu, Xian-Bao Wang, Chang-Feng Yi

Published in: Journal of Materials Science | Issue 11/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Reduced graphene oxide/polyimide (rGO/PI) nanocomposites are prepared via in situ random co-polycondensation of amino-modified and chemically reduced graphene oxide (rGO-NH2) with commercial diamine and dianhydrides. The chemical modification and reduction of graphene oxide (GO) endows rGO-NH2 with good solubility in organic solvents to prepare rGO/PI nanocomposites with high filler contents. rGO-NH2 is further used as a functional co-monomer to participate the polymerization of PI with full compatibility of the guest and host in molecular level. With the addition of rGO-NH2 at 2 wt% content, the thermal, mechanical properties, and hydrophobicities of rGO/PI nanocomposites are significantly enhanced with various indicators achieving or approaching the optimum. The positive or negative impacts of rGO-NH2 with various contents to the properties of the obtained nanocomposites are also illustrated incidentally from micromorphology. This effective approach provides a possibility for developing high-performance PI composites based on graphene for advanced engineering or functional materials.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Liaw D-J, Wang K-L, Huang Y-C, Lee K-R, Lai J-Y, Ha C-S (2012) Advanced polyimide materials: syntheses, physical properties and applications. Prog Polym Sci 37:907–974CrossRef Liaw D-J, Wang K-L, Huang Y-C, Lee K-R, Lai J-Y, Ha C-S (2012) Advanced polyimide materials: syntheses, physical properties and applications. Prog Polym Sci 37:907–974CrossRef
2.
go back to reference Zhang Q-H, Dai M, Ding M-X, Chen D-J, Gao L-X (2004) Mechanical properties of BPDA-ODA polyimide fibers. Eur Polym J 40:2487–2493CrossRef Zhang Q-H, Dai M, Ding M-X, Chen D-J, Gao L-X (2004) Mechanical properties of BPDA-ODA polyimide fibers. Eur Polym J 40:2487–2493CrossRef
3.
go back to reference Liu Y, Xing Y, Zhang Y, Guan S, Zhang H, Wang Y, Wang Y, Jiang Z (2010) Novel soluble fluorinated poly(ether imide)s with different pendant groups: synthesis, thermal, dielectric, and optical properties. J Polym Sci A 48:3281–3289CrossRef Liu Y, Xing Y, Zhang Y, Guan S, Zhang H, Wang Y, Wang Y, Jiang Z (2010) Novel soluble fluorinated poly(ether imide)s with different pendant groups: synthesis, thermal, dielectric, and optical properties. J Polym Sci A 48:3281–3289CrossRef
4.
go back to reference Hasegawa M, Hirano D, Fujii M, Haga M, Takezawa E, Yamaguchi S, Ishikawa A, Kagayama T (2013) Solution-processable colorless polyimides derived from hydrogenated pyromellitic dianhydride with controlled steric structure. J Polym Sci A 51:575–592CrossRef Hasegawa M, Hirano D, Fujii M, Haga M, Takezawa E, Yamaguchi S, Ishikawa A, Kagayama T (2013) Solution-processable colorless polyimides derived from hydrogenated pyromellitic dianhydride with controlled steric structure. J Polym Sci A 51:575–592CrossRef
5.
go back to reference Halim A, Gurr PA, Blencowe A, Bryant G, Kentish SE, Qiao GG (2013) Synthesis and self-assembly of polyimide/poly(dimethylsiloxane) brush triblock copolymers. Polymer 54:520–529CrossRef Halim A, Gurr PA, Blencowe A, Bryant G, Kentish SE, Qiao GG (2013) Synthesis and self-assembly of polyimide/poly(dimethylsiloxane) brush triblock copolymers. Polymer 54:520–529CrossRef
6.
go back to reference Jia X, Zhang Q, Zhao M-Q, Xu G-H, Huang J-Q, Qian W, Lu Y, Wei F (2012) Dramatic enhancements in toughness of polyimide nanocomposite via long-CNT-induced long-range creep. J Mater Chem 22:7050–7056CrossRef Jia X, Zhang Q, Zhao M-Q, Xu G-H, Huang J-Q, Qian W, Lu Y, Wei F (2012) Dramatic enhancements in toughness of polyimide nanocomposite via long-CNT-induced long-range creep. J Mater Chem 22:7050–7056CrossRef
7.
go back to reference Chen D, Liu T, Zhou X, Tjiu WC, Hou H (2009) Electrospinning fabrication of high strength and toughness polyimide nanofiber membranes containing multiwalled carbon nanotubes. J Phys Chem B 113:9741–9748CrossRef Chen D, Liu T, Zhou X, Tjiu WC, Hou H (2009) Electrospinning fabrication of high strength and toughness polyimide nanofiber membranes containing multiwalled carbon nanotubes. J Phys Chem B 113:9741–9748CrossRef
8.
go back to reference Delozier DM, Watson KA, Smith JG Jr, Clancy TC, Connell JW (2006) Investigation of aromatic/aliphatic polyimides as dispersants for single wall carbon nanotubes. Macromolecules 39:1731–1739CrossRef Delozier DM, Watson KA, Smith JG Jr, Clancy TC, Connell JW (2006) Investigation of aromatic/aliphatic polyimides as dispersants for single wall carbon nanotubes. Macromolecules 39:1731–1739CrossRef
9.
go back to reference Gunasekaran SG, Rajakumar K, Alagar M, Dharmendirakumar M (2014) Siloxane core dianhydride modified ether linked cyclohexyl diamine based multi-walled carbon nanotube reinforced polyimide (MWCNT/PI) nanocomposites. J Polym Res 21:342CrossRef Gunasekaran SG, Rajakumar K, Alagar M, Dharmendirakumar M (2014) Siloxane core dianhydride modified ether linked cyclohexyl diamine based multi-walled carbon nanotube reinforced polyimide (MWCNT/PI) nanocomposites. J Polym Res 21:342CrossRef
10.
go back to reference Loh KP, Bao Q, Anga PK, Yang J (2010) The chemistry of graphene. J Mater Chem 20:2277–2289CrossRef Loh KP, Bao Q, Anga PK, Yang J (2010) The chemistry of graphene. J Mater Chem 20:2277–2289CrossRef
11.
go back to reference Yang SY, Ma CCM, Teng CC, Huang YW, Liao SH, Huang YL, Tien HW, Lee TM, Chiou KC (2010) Effect of functionalized carbon nanotubes on the thermal conductivity of epoxy composites. Carbon 48:592–603CrossRef Yang SY, Ma CCM, Teng CC, Huang YW, Liao SH, Huang YL, Tien HW, Lee TM, Chiou KC (2010) Effect of functionalized carbon nanotubes on the thermal conductivity of epoxy composites. Carbon 48:592–603CrossRef
12.
go back to reference Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen SBT, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286CrossRef Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen SBT, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286CrossRef
13.
go back to reference Bai H, Li C, Shi G (2011) Functional composite materials based on chemically converted graphene. Adv Mater 23:1089–1115CrossRef Bai H, Li C, Shi G (2011) Functional composite materials based on chemically converted graphene. Adv Mater 23:1089–1115CrossRef
14.
go back to reference Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240CrossRef Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240CrossRef
15.
go back to reference Gao W, Alemany LB, Ci L, Ajayan PM (2009) New insights into the structure and reduction of graphite oxide. Nat Chem 1:403–408CrossRef Gao W, Alemany LB, Ci L, Ajayan PM (2009) New insights into the structure and reduction of graphite oxide. Nat Chem 1:403–408CrossRef
16.
go back to reference Chen D, Zhu H, Liu T (2010) In situ thermal preparation of polyimide nanocomposite films containing functionalized grapheme sheets. ACS Appl Mater Interfaces 2:3702–3708CrossRef Chen D, Zhu H, Liu T (2010) In situ thermal preparation of polyimide nanocomposite films containing functionalized grapheme sheets. ACS Appl Mater Interfaces 2:3702–3708CrossRef
17.
go back to reference Huang T, Lu R, Su C, Wang H, Guo Z, Liu P, Huang Z, Chen H, Li T (2012) Chemically modified graphene/polyimide composite films based on utilization of covalent bonding and oriented distribution. ACS Appl Mater Interfaces 4:2699–2708CrossRef Huang T, Lu R, Su C, Wang H, Guo Z, Liu P, Huang Z, Chen H, Li T (2012) Chemically modified graphene/polyimide composite films based on utilization of covalent bonding and oriented distribution. ACS Appl Mater Interfaces 4:2699–2708CrossRef
18.
go back to reference Luong ND, Hippi U, Korhonen JT, Soininen AJ, Ruokolainen J, Johansson L-S, Nam J-D, Sinh LH, Seppälä J (2011) Enhanced mechanical and electrical properties of polyimide film by grapheme sheets via in situ polymerization. Polymer 52:5237–5242CrossRef Luong ND, Hippi U, Korhonen JT, Soininen AJ, Ruokolainen J, Johansson L-S, Nam J-D, Sinh LH, Seppälä J (2011) Enhanced mechanical and electrical properties of polyimide film by grapheme sheets via in situ polymerization. Polymer 52:5237–5242CrossRef
19.
go back to reference Qian Y, Lan Y-F, Xu J-P, Ye F-C, Dai S-Z (2014) Fabrication of polyimide-based nanocomposites containing functionalized graphene oxide nanosheets by in situ polymerization and their properties. Appl Surf Sci 314:991–999CrossRef Qian Y, Lan Y-F, Xu J-P, Ye F-C, Dai S-Z (2014) Fabrication of polyimide-based nanocomposites containing functionalized graphene oxide nanosheets by in situ polymerization and their properties. Appl Surf Sci 314:991–999CrossRef
20.
21.
go back to reference Kim GY, Choi M-C, Lee D, Ha C-S (2012) 2D-Aligned graphene sheets in transparent polyimide/graphene nanocomposite films based on noncovalent interactions between poly(amic acid) and graphene carboxylic acid. Macromol Mater Eng 297:303–311CrossRef Kim GY, Choi M-C, Lee D, Ha C-S (2012) 2D-Aligned graphene sheets in transparent polyimide/graphene nanocomposite films based on noncovalent interactions between poly(amic acid) and graphene carboxylic acid. Macromol Mater Eng 297:303–311CrossRef
22.
go back to reference Pramoda KP, Mya KY, Lin TT, Lu X, He C (2012) Investigation of thermomechanical properties and matrix-filler interaction on polyimide/graphene oxide composites. Polym Eng Sci 52:2530–2536CrossRef Pramoda KP, Mya KY, Lin TT, Lu X, He C (2012) Investigation of thermomechanical properties and matrix-filler interaction on polyimide/graphene oxide composites. Polym Eng Sci 52:2530–2536CrossRef
23.
go back to reference Tseng IH, Chang J-C, Huang S-L, Tsai M-H (2012) Enhanced thermal conductivity and dimensional stability of flexible polyimide nanocomposite film by addition of functionalized graphene oxide. Polym Int 62:827–835CrossRef Tseng IH, Chang J-C, Huang S-L, Tsai M-H (2012) Enhanced thermal conductivity and dimensional stability of flexible polyimide nanocomposite film by addition of functionalized graphene oxide. Polym Int 62:827–835CrossRef
24.
go back to reference Dong J, Yin C, Zhao X, Li Y, Zhang Q (2012) High strength polyimide fibers with functionalized grapheme. Polymer 54:6415–6424CrossRef Dong J, Yin C, Zhao X, Li Y, Zhang Q (2012) High strength polyimide fibers with functionalized grapheme. Polymer 54:6415–6424CrossRef
25.
go back to reference Wang J-Y, Yang S-Y, Huang Y-L, Tien H-W, Chin W-K, Ma C-M (2011) Preparation and properties of graphene oxide/polyimide composite films with low dielectric constant and ultrahigh strength via in situ polymerization. J Mater Chem 21:13569–13575CrossRef Wang J-Y, Yang S-Y, Huang Y-L, Tien H-W, Chin W-K, Ma C-M (2011) Preparation and properties of graphene oxide/polyimide composite films with low dielectric constant and ultrahigh strength via in situ polymerization. J Mater Chem 21:13569–13575CrossRef
26.
go back to reference Zhang L-B, Wang J-Q, Wang H-G, Xu Y, Wang Z-F, Li Z-P, Mi Y-J, Yang S-R (2012) Preparation, mechanical and thermal properties of functionalized graphene/polyimide nanocomposites. Compos A 43:1537–1545CrossRef Zhang L-B, Wang J-Q, Wang H-G, Xu Y, Wang Z-F, Li Z-P, Mi Y-J, Yang S-R (2012) Preparation, mechanical and thermal properties of functionalized graphene/polyimide nanocomposites. Compos A 43:1537–1545CrossRef
27.
go back to reference Cao L, Sun Q-Q, Wang H-X, Zhang X-X, Shi H-F (2015) Enhanced stress transfer and thermal properties of polyimide composites with covalent functionalized reduced graphene oxide. Compos A 68:140–148CrossRef Cao L, Sun Q-Q, Wang H-X, Zhang X-X, Shi H-F (2015) Enhanced stress transfer and thermal properties of polyimide composites with covalent functionalized reduced graphene oxide. Compos A 68:140–148CrossRef
28.
go back to reference Yoonessi M, Shi Y, Scheiman DA, Lebron-Colon M, Tigelaar DM, Weiss RA, Meador MA (2012) Graphene polyimide nanocomposites; thermal, mechanical, and high-temperature shape memory effects. ACS Nanotechnol 6:7644–7655 Yoonessi M, Shi Y, Scheiman DA, Lebron-Colon M, Tigelaar DM, Weiss RA, Meador MA (2012) Graphene polyimide nanocomposites; thermal, mechanical, and high-temperature shape memory effects. ACS Nanotechnol 6:7644–7655
29.
go back to reference Kong J-Y, Choi M-C, Kim GY, Park JJ, Selvaraj M, Han M, Ha C-S (2012) Preparation and properties of polyimide/graphene oxide nanocomposite films with Mg ion crosslinker. Eur Polym J 48:1394–1405CrossRef Kong J-Y, Choi M-C, Kim GY, Park JJ, Selvaraj M, Han M, Ha C-S (2012) Preparation and properties of polyimide/graphene oxide nanocomposite films with Mg ion crosslinker. Eur Polym J 48:1394–1405CrossRef
30.
go back to reference Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224CrossRef Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224CrossRef
31.
go back to reference Paredes JI, Villar-Rodil S, Martinez-Alonso A, Tascon JMD (2008) Graphene oxide dispersions in organic solvents. Langmuir 24:10560–10564CrossRef Paredes JI, Villar-Rodil S, Martinez-Alonso A, Tascon JMD (2008) Graphene oxide dispersions in organic solvents. Langmuir 24:10560–10564CrossRef
32.
go back to reference Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565CrossRef Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565CrossRef
33.
go back to reference Wang J-C, Wang X-B, Wan L, Yang Y-K, Wang S-M (2010) An effective method for bulk obtaining graphene oxide solids. Chin J Chem 28:1935–1940CrossRef Wang J-C, Wang X-B, Wan L, Yang Y-K, Wang S-M (2010) An effective method for bulk obtaining graphene oxide solids. Chin J Chem 28:1935–1940CrossRef
34.
go back to reference Yang H, Li F, Shan C, Han D, Zhang Q, Niu L, Ivaska A (2009) Covalent functionalization of chemically converted graphene sheets via silane and its reinforcement. J Mater Chem 19:4632–4638CrossRef Yang H, Li F, Shan C, Han D, Zhang Q, Niu L, Ivaska A (2009) Covalent functionalization of chemically converted graphene sheets via silane and its reinforcement. J Mater Chem 19:4632–4638CrossRef
35.
go back to reference Stankovich S, Piner RD, Chen X, Wu N, Nguyen ST, Ruoff RS (2006) Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J Mater Chem 16:155–158CrossRef Stankovich S, Piner RD, Chen X, Wu N, Nguyen ST, Ruoff RS (2006) Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J Mater Chem 16:155–158CrossRef
36.
go back to reference Zhu YW, Murali S, Cai WW, Li XS, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924CrossRef Zhu YW, Murali S, Cai WW, Li XS, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924CrossRef
37.
go back to reference Luong ND, Pahimanolis N, Hippi U, Korhonen JT, Ruokolainen J, Johansson LS, Nam JD, Seppälä J (2011) Graphene/cellulose nanocomposite paper with high electrical and mechanical performances. J Mater Chem 21:13991–13998CrossRef Luong ND, Pahimanolis N, Hippi U, Korhonen JT, Ruokolainen J, Johansson LS, Nam JD, Seppälä J (2011) Graphene/cellulose nanocomposite paper with high electrical and mechanical performances. J Mater Chem 21:13991–13998CrossRef
38.
go back to reference Yang D, Velamakanni A, Bozoklu G, Park S, Stoller M, Piner RD, Stankovich S, Jung I, Field DA, Ventrice CA Jr, Ruoff RS (2009) Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-raman spectroscopy. Carbon 47:145–152CrossRef Yang D, Velamakanni A, Bozoklu G, Park S, Stoller M, Piner RD, Stankovich S, Jung I, Field DA, Ventrice CA Jr, Ruoff RS (2009) Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-raman spectroscopy. Carbon 47:145–152CrossRef
39.
go back to reference Ferrari AC (2007) Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun 143:47–57CrossRef Ferrari AC (2007) Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun 143:47–57CrossRef
40.
go back to reference Ha HW, Choudhury A, Kamal T, Kim D-H, Park S-Y (2012) Effect of chemical modification of graphene on mechanical, electrical, and thermal properties of polyimide/graphene nanocomposites. ACS Appl Mater Interfaces 4:4623–4630CrossRef Ha HW, Choudhury A, Kamal T, Kim D-H, Park S-Y (2012) Effect of chemical modification of graphene on mechanical, electrical, and thermal properties of polyimide/graphene nanocomposites. ACS Appl Mater Interfaces 4:4623–4630CrossRef
41.
go back to reference Zhao X, Zhang Q, Chen D, Lu P (2010) Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites. Macromolecules 43:2357–2363CrossRef Zhao X, Zhang Q, Chen D, Lu P (2010) Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites. Macromolecules 43:2357–2363CrossRef
42.
go back to reference Zhang X, Wan S, Pu J, Wang L, Liu X (2011) Highly hydrophobic and adhesive performance of graphene films. J Mater Chem 21:12251–12258CrossRef Zhang X, Wan S, Pu J, Wang L, Liu X (2011) Highly hydrophobic and adhesive performance of graphene films. J Mater Chem 21:12251–12258CrossRef
Metadata
Title
In situ random co-polycondensation for preparation of reduced graphene oxide/polyimide nanocomposites with amino-modified and chemically reduced graphene oxide
Authors
Wen-Qiu Chen
Quan-Tao Li
Peng-Hui Li
Quan-Yuan Zhang
Zu-Shun Xu
Paul K. Chu
Xian-Bao Wang
Chang-Feng Yi
Publication date
01-06-2015
Publisher
Springer US
Published in
Journal of Materials Science / Issue 11/2015
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-015-8890-7

Other articles of this Issue 11/2015

Journal of Materials Science 11/2015 Go to the issue

Premium Partners