Skip to main content
Top
Published in: Journal of Materials Science 21/2021

20-04-2021 | Ceramics

In-situ resource utilisation manufacturing of optically transparent glass from lunar regolith simulant

Authors: Juergen Schleppi, Geoffrey Bromiley, Nic Odling, Nick S. Bennett

Published in: Journal of Materials Science | Issue 21/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

International space agencies are aiming to establish permanent outposts on the lunar surface. For that purpose, new technologies and equipment are being developed which will enable and augment these mission goals. To increase the duration of a long-term planetary mission and to expand mission capabilities, the ability to manufacture transparent glass in-situ could be an important enabler on the lunar surface. Results presented in this work show that it is feasible to use different lunar regolith simulants to manufacture optically transparent glass by magnetically beneficiating regolith prior to processing. Beneficiated regolith simulant was melted, cast into glass nuggets which were then ground, lapped and polished into glass slides of 1 mm thickness. The glass slides’ surface roughness and geometry were measured, prior to optical analysis, which showed an average transmission of about 80% of light in the wavelength range from 250 to 1250 nm. A comparable reference glass sample performed only about 9% (absolute) better on average. From these results, it seems viable to manufacture transparent glass from actual lunar regolith on the lunar surface as well; however, differences in regolith simulant and actual regolith still need to be fully explored—regolith may be available on the lunar surface in unlimited quantities and therefore open up new strategic possibilities.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
Spectroflux 105 consists of a mixture of 47% Lithium tetraborate, LI2b4O7, 37% Lithium carbonate (Li2O) and 16% of La2O3, Lanthanum oxide as an X-ray heavy absorber.
 
Literature
1.
go back to reference Kinsman PD, Joyner CR, Kokan TS, Levack DJ, Morris DE (2019) Lunar surface logistical capability: a study of spacecraft needed to support human habitation, scientific research, and commercial operations on the lunar surface. In: AIAA Propulsion and Energy 2019 Forum Kinsman PD, Joyner CR, Kokan TS, Levack DJ, Morris DE (2019) Lunar surface logistical capability: a study of spacecraft needed to support human habitation, scientific research, and commercial operations on the lunar surface. In: AIAA Propulsion and Energy 2019 Forum
2.
go back to reference Saturn V (1968) Flight manual SA507, Revised Baseline Manual MSFC-MAN-507 Saturn V (1968) Flight manual SA507, Revised Baseline Manual MSFC-MAN-507
5.
go back to reference Hempsell M (2016) A concept study into a post ISS architecture. JBIS 69:163–174 Hempsell M (2016) A concept study into a post ISS architecture. JBIS 69:163–174
6.
go back to reference Zuniga A, Turner M, Rasky D (2017) Building an economical and sustainable lunar infrastructure to enable lunar science and space commerce. In: Annual meeting of the Lunar Exploration Analysis Group, held 10–12 October, 2017 in Columbia, Maryland, Vol. LPI Contribution No. 2041, id.5006, 2017 Zuniga A, Turner M, Rasky D (2017) Building an economical and sustainable lunar infrastructure to enable lunar science and space commerce. In: Annual meeting of the Lunar Exploration Analysis Group, held 10–12 October, 2017 in Columbia, Maryland, Vol. LPI Contribution No. 2041, id.5006, 2017
7.
go back to reference Jones H (2018) The recent large reduction in space launch cost. In: 48th international conference on environmental systems, Albuquerque, New Mexico, 2018 Jones H (2018) The recent large reduction in space launch cost. In: 48th international conference on environmental systems, Albuquerque, New Mexico, 2018
8.
go back to reference Hufenbach B, Reiter T, Sourgens E (2014) ESA strategic planning for space exploration. Space Policy 30:174–177CrossRef Hufenbach B, Reiter T, Sourgens E (2014) ESA strategic planning for space exploration. Space Policy 30:174–177CrossRef
9.
go back to reference Shafto M, Conroy M, Doyle R, Glaessgen E, Kemp C, LeMoigne J, Wang L (2010) Draft modeling, simulation, information technology and processing roadmap. Technology Area, 11 Shafto M, Conroy M, Doyle R, Glaessgen E, Kemp C, LeMoigne J, Wang L (2010) Draft modeling, simulation, information technology and processing roadmap. Technology Area, 11
10.
go back to reference Jakhu RS, Pelton JN, Nyampong YOM (2017) Space mining and its regulation. Springer, BerlinCrossRef Jakhu RS, Pelton JN, Nyampong YOM (2017) Space mining and its regulation. Springer, BerlinCrossRef
11.
go back to reference Zacny K (2012) Lunar drilling, excavation and mining in support of science, exploration, construction, and in situ resource utilization (ISRU). In: Moon Prospective Energy and Material Resources. Springer, pp. 235–265 Zacny K (2012) Lunar drilling, excavation and mining in support of science, exploration, construction, and in situ resource utilization (ISRU). In: Moon Prospective Energy and Material Resources. Springer, pp. 235–265
12.
13.
go back to reference Sanders GB, Romig KA, Larson WE, Johnson R, Rapp D, Johnson KR, Sacksteder K, Linne D, Curreri P, Duke M et al. (2005) Results from the NASA capability roadmap team for In-situ Resource Utilization (ISRU). In: International Lunar Conference, League City, Texas Sanders GB, Romig KA, Larson WE, Johnson R, Rapp D, Johnson KR, Sacksteder K, Linne D, Curreri P, Duke M et al. (2005) Results from the NASA capability roadmap team for In-situ Resource Utilization (ISRU). In: International Lunar Conference, League City, Texas
14.
go back to reference Phinney W, Criswell D (1977) Lunar resources and their utilization. In: 3rd Conference on space manufacturing facilities, Princeton, NJ, USA Phinney W, Criswell D (1977) Lunar resources and their utilization. In: 3rd Conference on space manufacturing facilities, Princeton, NJ, USA
15.
go back to reference Anand M, Crawford IA, Balat-Pichelin M, Abanades S, van Westrenen W, Péraudeau G, Jaumann R, Seboldt W (2012) A brief review of chemical and mineralogical resources on the Moon and likely initial In Situ Resource Utilization (ISRU) applications. Planet Space Sci 74:42–48CrossRef Anand M, Crawford IA, Balat-Pichelin M, Abanades S, van Westrenen W, Péraudeau G, Jaumann R, Seboldt W (2012) A brief review of chemical and mineralogical resources on the Moon and likely initial In Situ Resource Utilization (ISRU) applications. Planet Space Sci 74:42–48CrossRef
16.
go back to reference Schlüter L, Cowley A (2020) Review of techniques for in-situ oxygen extraction on the moon. Planet Space Sci 181:104753CrossRef Schlüter L, Cowley A (2020) Review of techniques for in-situ oxygen extraction on the moon. Planet Space Sci 181:104753CrossRef
17.
go back to reference Läkka H (2018) Fibrous habitat structure from lunar basalt fibre Hanna Läkka*, Jürgen Schleppib, Aidan Cowleyc, Lauren Vaseyd, Maria Yabloninad, Achim Mengesd. In: 69th International Astronautical Congress (IAC), Bremen, Germany, no. IAC-18-E5.1.8 x48245 Läkka H (2018) Fibrous habitat structure from lunar basalt fibre Hanna Läkka*, Jürgen Schleppib, Aidan Cowleyc, Lauren Vaseyd, Maria Yabloninad, Achim Mengesd. In: 69th International Astronautical Congress (IAC), Bremen, Germany, no. IAC-18-E5.1.8 x48245
18.
go back to reference Tucker D, Ethridge E, Toutanji H (2006) Production of glass fibers for reinforcement of lunar concrete. In: 44th AIAA aerospace sciences meeting and exhibit Tucker D, Ethridge E, Toutanji H (2006) Production of glass fibers for reinforcement of lunar concrete. In: 44th AIAA aerospace sciences meeting and exhibit
22.
go back to reference Fateri M, Gebhardt A (2015) Process parameters development of selective laser melting of lunar regolith for on-site manufacturing applications. Int J Appl Ceram Technol 12:46–52CrossRef Fateri M, Gebhardt A (2015) Process parameters development of selective laser melting of lunar regolith for on-site manufacturing applications. Int J Appl Ceram Technol 12:46–52CrossRef
23.
go back to reference Mackenzie J, Claridge R (1979) Glass and ceramics from lunar materials. In: 4th conference on space manufacturing facilities Princeton University, Princeton, NJ, USA1979. Mackenzie J, Claridge R (1979) Glass and ceramics from lunar materials. In: 4th conference on space manufacturing facilities Princeton University, Princeton, NJ, USA1979.
24.
go back to reference Bourhis EL (2014) Glass: mechanics and technology. Wiley, New Jersey Bourhis EL (2014) Glass: mechanics and technology. Wiley, New Jersey
25.
go back to reference Heiken G, Vaniman D, French BM (1991) Lunar sourcebook: a user’s guide to the Moon. CUP Archive, Cambridge Heiken G, Vaniman D, French BM (1991) Lunar sourcebook: a user’s guide to the Moon. CUP Archive, Cambridge
26.
go back to reference Delano JW (1986) Pristine lunar glasses: criteria, data, and implications. J Geophys Res Sol Earth 91:201–213CrossRef Delano JW (1986) Pristine lunar glasses: criteria, data, and implications. J Geophys Res Sol Earth 91:201–213CrossRef
27.
go back to reference Stöffler D (1984) Glasses formed by hypervelocity impact. J Non-Cryst Sol 67:465–502CrossRef Stöffler D (1984) Glasses formed by hypervelocity impact. J Non-Cryst Sol 67:465–502CrossRef
28.
go back to reference Saal AE, Hauri EH, Cascio ML, Van Orman JA, Rutherford MC, Cooper RF (2008) Volatile content of lunar volcanic glasses and the presence of water in the Moon’s interior. Nature 454:192–195CrossRef Saal AE, Hauri EH, Cascio ML, Van Orman JA, Rutherford MC, Cooper RF (2008) Volatile content of lunar volcanic glasses and the presence of water in the Moon’s interior. Nature 454:192–195CrossRef
29.
go back to reference Hauri EH, Saal AE, Rutherford MJ, Van Orman JA (2015) Water in the Moon’s interior: truth and consequences. Earth Planet Sci Lett 409:252–264CrossRef Hauri EH, Saal AE, Rutherford MJ, Van Orman JA (2015) Water in the Moon’s interior: truth and consequences. Earth Planet Sci Lett 409:252–264CrossRef
30.
go back to reference Saunders AD, Tarney J (1984) Geochemical characteristics of basaltic volcanism within back-arc basins. Geo Soc Lond Spec Publ 16:59–76CrossRef Saunders AD, Tarney J (1984) Geochemical characteristics of basaltic volcanism within back-arc basins. Geo Soc Lond Spec Publ 16:59–76CrossRef
31.
go back to reference Frey FA, Walker N, Stakes D, Hart SR, Nielsen R (1993) Geochemical characteristics of basaltic glasses from theamar andfamous axial valleys, Mid-Atlantic Ridge (36°–37° N): Petrogenetic implications. Earth Planet Sci Lett 115:117–136CrossRef Frey FA, Walker N, Stakes D, Hart SR, Nielsen R (1993) Geochemical characteristics of basaltic glasses from theamar andfamous axial valleys, Mid-Atlantic Ridge (36°–37° N): Petrogenetic implications. Earth Planet Sci Lett 115:117–136CrossRef
32.
go back to reference Sun S-S, Nesbitt RW, Sharaskin AY (1979) Geochemical characteristics of mid-ocean ridge basalts. Earth Planet Sci Lett 44:119–138CrossRef Sun S-S, Nesbitt RW, Sharaskin AY (1979) Geochemical characteristics of mid-ocean ridge basalts. Earth Planet Sci Lett 44:119–138CrossRef
33.
go back to reference Burkhard DJM (2001) Crystallization and oxidation of Kilauea basalt glass: processes during reheating experiments. J Petrol 42:507–527CrossRef Burkhard DJM (2001) Crystallization and oxidation of Kilauea basalt glass: processes during reheating experiments. J Petrol 42:507–527CrossRef
34.
go back to reference Yilmaz S, Özkan OT, Günay V (1996) Crystallization kinetics of basalt glass. Ceram Int 22:477–481CrossRef Yilmaz S, Özkan OT, Günay V (1996) Crystallization kinetics of basalt glass. Ceram Int 22:477–481CrossRef
35.
go back to reference Ericson JE, Makishima A, Mackenzie JD, Berger R (1975) Chemical and physical properties of obsidian: a naturally occuring glass. J Non-Cryst Sol 17:129–142CrossRef Ericson JE, Makishima A, Mackenzie JD, Berger R (1975) Chemical and physical properties of obsidian: a naturally occuring glass. J Non-Cryst Sol 17:129–142CrossRef
36.
go back to reference Bandyopadhyay AK, Zarzycki J, Auric P, Chappert J (1980) Magnetic properties of a basalt glass and glass-ceramics. J Non-Cryst Sol 40:353–368CrossRef Bandyopadhyay AK, Zarzycki J, Auric P, Chappert J (1980) Magnetic properties of a basalt glass and glass-ceramics. J Non-Cryst Sol 40:353–368CrossRef
37.
go back to reference Kirthika SK, Singh SK (2018) Experimental investigations on basalt fibre-reinforced concrete. J Inst Eng (India) Ser A 99(4):661–670CrossRef Kirthika SK, Singh SK (2018) Experimental investigations on basalt fibre-reinforced concrete. J Inst Eng (India) Ser A 99(4):661–670CrossRef
38.
go back to reference Lokken RO, Chick LA, Thomas LE (1982) Development and characterization of basalt-glass ceramics for the immobilization of transuranic wastes. Tech report prepared for the U.S. Department of ENergy under contract DE-AC06-76RLO 1830. Pacific Northwest Lab Operated by U.S. Department of Energy by Battelle Memorial Institute, Pacific Northwest Lab., Richland, WA 99352 Lokken RO, Chick LA, Thomas LE (1982) Development and characterization of basalt-glass ceramics for the immobilization of transuranic wastes. Tech report prepared for the U.S. Department of ENergy under contract DE-AC06-76RLO 1830. Pacific Northwest Lab Operated by U.S. Department of Energy by Battelle Memorial Institute, Pacific Northwest Lab., Richland, WA 99352
39.
go back to reference Muthesius S (2008) Victorian Glassworlds: glass culture and the imagination 1830–1880 by Isobel Armstrong. Oxford University Press, Oxford, p 472 Muthesius S (2008) Victorian Glassworlds: glass culture and the imagination 1830–1880 by Isobel Armstrong. Oxford University Press, Oxford, p 472
41.
go back to reference Henderson J (1985) The raw materials of early glass production. Oxf J Archaeol 4:267–291CrossRef Henderson J (1985) The raw materials of early glass production. Oxf J Archaeol 4:267–291CrossRef
42.
go back to reference Pilkington LAB (1969) Review lecture. The float glass process. In: Proceedings of the Royal Society of London. Series A, mathematical and physical sciences, vol. 314, pp. 1–25 Pilkington LAB (1969) Review lecture. The float glass process. In: Proceedings of the Royal Society of London. Series A, mathematical and physical sciences, vol. 314, pp. 1–25
43.
go back to reference Yue Y-Z (2008) Characteristic temperatures of enthalpy relaxation in glass. J Non-Cryst Sol. 354:1112–1118CrossRef Yue Y-Z (2008) Characteristic temperatures of enthalpy relaxation in glass. J Non-Cryst Sol. 354:1112–1118CrossRef
44.
go back to reference Bach H, Neuroth N (2012) The properties of optical glass. Springer, Berlin Bach H, Neuroth N (2012) The properties of optical glass. Springer, Berlin
45.
go back to reference Rao KJ (2002) Structural chemistry of glasses. Elsevier Science, Amsterdam Rao KJ (2002) Structural chemistry of glasses. Elsevier Science, Amsterdam
46.
go back to reference Yang JK, An XH, Liu YL, Zhao HL (2009) Analysis and calculation of melting performance for the low-iron glass. J Mater Sci Eng 4:034 Yang JK, An XH, Liu YL, Zhao HL (2009) Analysis and calculation of melting performance for the low-iron glass. J Mater Sci Eng 4:034
47.
go back to reference Pierre Combes J-JMPCA (1990) Colored glass compositions and glazings produced therewith. Patent US5352640A Pierre Combes J-JMPCA (1990) Colored glass compositions and glazings produced therewith. Patent US5352640A
48.
go back to reference Suescun-Florez E, Roslyakov S, Iskander M, Baamer M (2014) Geotechnical properties of BP-1 lunar regolith simulant. J Aerosp Eng 28(5):04014124CrossRef Suescun-Florez E, Roslyakov S, Iskander M, Baamer M (2014) Geotechnical properties of BP-1 lunar regolith simulant. J Aerosp Eng 28(5):04014124CrossRef
49.
go back to reference Engelschiøn VS, Eriksson SR, Cowley A, Fateri M, Meurisse A, Kueppers U, Sperl M (2020) EAC-1A: a novel large-volume lunar regolith simulant. Sci Rep 10:1–9CrossRef Engelschiøn VS, Eriksson SR, Cowley A, Fateri M, Meurisse A, Kueppers U, Sperl M (2020) EAC-1A: a novel large-volume lunar regolith simulant. Sci Rep 10:1–9CrossRef
50.
go back to reference Nash VE, Cowley A, Fateri M, Coene S, Siarov S, Cristoforetti S (2017) Human exploration initiatives at EAC: Spaceship EAC and the Development of Large-Volume Lunar Regolith Simulant for LUNA, European Planetary Science Congress, pp. EPSC2017–463 Nash VE, Cowley A, Fateri M, Coene S, Siarov S, Cristoforetti S (2017) Human exploration initiatives at EAC: Spaceship EAC and the Development of Large-Volume Lunar Regolith Simulant for LUNA, European Planetary Science Congress, pp. EPSC2017–463
52.
go back to reference Zeng X, He C, Oravec H, Wilkinson A, Agui J, Asnani V (2009) Geotechnical properties of JSC-1A Lunar soil simulant. J Aerosp Eng 23:111–116CrossRef Zeng X, He C, Oravec H, Wilkinson A, Agui J, Asnani V (2009) Geotechnical properties of JSC-1A Lunar soil simulant. J Aerosp Eng 23:111–116CrossRef
54.
go back to reference Zeng X, He C, Wilkinson A (2010) Geotechnical properties of NT-LHT-2M lunar highland simulant. J Aerosp Eng 23:213–218CrossRef Zeng X, He C, Wilkinson A (2010) Geotechnical properties of NT-LHT-2M lunar highland simulant. J Aerosp Eng 23:213–218CrossRef
55.
go back to reference Norrish K, Hutton JT (1969) An accurate X-ray spectrographic method for the analysis of a wide range of geological samples. Geochim Cosmochim Acta 33:431–453CrossRef Norrish K, Hutton JT (1969) An accurate X-ray spectrographic method for the analysis of a wide range of geological samples. Geochim Cosmochim Acta 33:431–453CrossRef
56.
go back to reference Stoeser DB, Rickman DL, Wilson S (2010) Preliminary geological findings on the BP-1 simulant. NASA USGS, MSFC Huntsville, Alabama Stoeser DB, Rickman DL, Wilson S (2010) Preliminary geological findings on the BP-1 simulant. NASA USGS, MSFC Huntsville, Alabama
57.
go back to reference Williams J-P, Paige DA, Greenhagen BT, Sefton-Nash E (2017) The global surface temperatures of the moon as measured by the diviner lunar radiometer experiment. Icarus 283:300–325CrossRef Williams J-P, Paige DA, Greenhagen BT, Sefton-Nash E (2017) The global surface temperatures of the moon as measured by the diviner lunar radiometer experiment. Icarus 283:300–325CrossRef
59.
go back to reference Ran Z, Wang Z (2014) Simulations of lunar equatorial regolith temperature profile based on measurements of Diviner on Lunar Reconnaissance Orbiter. Sci China Earth Sci 57:2232–2241CrossRef Ran Z, Wang Z (2014) Simulations of lunar equatorial regolith temperature profile based on measurements of Diviner on Lunar Reconnaissance Orbiter. Sci China Earth Sci 57:2232–2241CrossRef
60.
go back to reference Kletetschka G, Wasilewski PJ (2002) Grain size limit for SD hematite. Phys Earth Planet Inter 129:173–179CrossRef Kletetschka G, Wasilewski PJ (2002) Grain size limit for SD hematite. Phys Earth Planet Inter 129:173–179CrossRef
61.
go back to reference Morin FJ (1950) Magnetic susceptibility of α fe 2 o 3 and α fe 2 o 3 with added titanium. Phys Rev 78:819–820CrossRef Morin FJ (1950) Magnetic susceptibility of α fe 2 o 3 and α fe 2 o 3 with added titanium. Phys Rev 78:819–820CrossRef
62.
go back to reference Fateri M, Pitikaris S, Sperl M (2019) Investigation on wetting and melting behavior of lunar regolith simulant for additive manufacturing application. Microgravity Sci Technol 31:161–167CrossRef Fateri M, Pitikaris S, Sperl M (2019) Investigation on wetting and melting behavior of lunar regolith simulant for additive manufacturing application. Microgravity Sci Technol 31:161–167CrossRef
63.
go back to reference Ma C, Rossman GR (2009) Grossmanite, CaTi3+ AlSiO6, a new pyroxene from the Allende meteorite. Am Miner 94:1491–1494CrossRef Ma C, Rossman GR (2009) Grossmanite, CaTi3+ AlSiO6, a new pyroxene from the Allende meteorite. Am Miner 94:1491–1494CrossRef
64.
go back to reference Bromiley GD, Shiryaev AA (2006) Neutron irradiation and post-irradiation annealing of rutile (TiO 2–x): effect on hydrogen incorporation and optical absorption. Phys Chem Miner 33:426–434CrossRef Bromiley GD, Shiryaev AA (2006) Neutron irradiation and post-irradiation annealing of rutile (TiO 2–x): effect on hydrogen incorporation and optical absorption. Phys Chem Miner 33:426–434CrossRef
Metadata
Title
In-situ resource utilisation manufacturing of optically transparent glass from lunar regolith simulant
Authors
Juergen Schleppi
Geoffrey Bromiley
Nic Odling
Nick S. Bennett
Publication date
20-04-2021
Publisher
Springer US
Published in
Journal of Materials Science / Issue 21/2021
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-021-06059-x

Other articles of this Issue 21/2021

Journal of Materials Science 21/2021 Go to the issue

Premium Partners