Skip to main content
Top
Published in: Rare Metals 9/2020

23-06-2020

In situ sol–gel synthesis of Ti2Nb10O29/C nanoparticles with enhanced pseudocapacitive contribution for a high-rate lithium-ion battery

Authors: Guang-Yin Liu, Yi-Yang Zhao, Yu-Feng Tang, Xiao-Di Liu, Miao Liu, Peng-Jiang Wu

Published in: Rare Metals | Issue 9/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Ti2Nb10O29/C nanoparticles with a carbon content of 13 wt% and a mean size of 50 nm were fabricated through a convenient and effective in situ sol–gel process. The small grain size and carbon modification can improve the pseudocapacitive effect of the Ti2Nb10O29/C nanoparticles, leading to excellent rate capacity, especially at high current rate. Specifically, the discharge capacity of the Ti2Nb10O29/C electrode is 258.3, 236.0, 216.6, 184.5 and 161.5 mAh·g−1 at different current densities of 1C, 5C, 10C, 20C and 30C. Nevertheless, the discharge capacity of the Ti2Nb10O29 electrode is 244.9 mAh·g−1 at 1C, which is rapidly reduced to 89.7 mAh·g−1 at 30C. In addition, the small size and carbon layer of the Ti2Nb10O29/C nanoparticles can supply abundant active sites for Li+ storage as well as enhance the electronic conductivity and Li+ diffusion, endowing these nanoparticles with a high discharge capacity and excellent cycle performance.

Graphic abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
[1]
go back to reference Yan Z, Yang QW, Wang Q, Ma J. Nitrogen doped porous carbon as excellent dual anodes for Li- and Na-ion batteries. Chin Chem Lett. 2020;31(2):583. Yan Z, Yang QW, Wang Q, Ma J. Nitrogen doped porous carbon as excellent dual anodes for Li- and Na-ion batteries. Chin Chem Lett. 2020;31(2):583.
[2]
go back to reference Wang X, Meng Q, Wang Y, Liang H, Bai Z, Wang K, Lou X, Cai B, Yang L. TiO2 hierarchical hollow microspheres with different size for application as anodes in high-performance lithium storage. Appl Energy. 2016;175:488. Wang X, Meng Q, Wang Y, Liang H, Bai Z, Wang K, Lou X, Cai B, Yang L. TiO2 hierarchical hollow microspheres with different size for application as anodes in high-performance lithium storage. Appl Energy. 2016;175:488.
[3]
go back to reference Peled E, Golodnitsky D, Ardel G. Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes. J Electrochem Soc. 1997;144(8):L208. Peled E, Golodnitsky D, Ardel G. Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes. J Electrochem Soc. 1997;144(8):L208.
[4]
go back to reference Hu L, Luo L, Tang L, Lin C, Li R, Chen Y. Ti2Nb2xO4+5x anode materials for lithium-ion batteries: a comprehensive review. J Mater Chem A. 2018;6(21):9799. Hu L, Luo L, Tang L, Lin C, Li R, Chen Y. Ti2Nb2xO4+5x anode materials for lithium-ion batteries: a comprehensive review. J Mater Chem A. 2018;6(21):9799.
[5]
go back to reference Aravindan V, Sundaramurthy J, Jain A, Kumar PS, Ling WC, Ramakrishna S, Srinivasan MP, Madhavi S. Unveiling TiNb2O7 as an insertion anode for lithium ion capacitors with high energy and power density. Chem Sus Chem. 2014;7(7):1858. Aravindan V, Sundaramurthy J, Jain A, Kumar PS, Ling WC, Ramakrishna S, Srinivasan MP, Madhavi S. Unveiling TiNb2O7 as an insertion anode for lithium ion capacitors with high energy and power density. Chem Sus Chem. 2014;7(7):1858.
[6]
go back to reference Lin C, Yu S, Zhao H, Wu S, Wang G, Yu L, Li Y, Zhu JJ, Li J, Lin S. Defective Ti2Nb10O27.1: an advanced anode material for lithium-ion batteries. Sci Rep. 2015;5:17836. Lin C, Yu S, Zhao H, Wu S, Wang G, Yu L, Li Y, Zhu JJ, Li J, Lin S. Defective Ti2Nb10O27.1: an advanced anode material for lithium-ion batteries. Sci Rep. 2015;5:17836.
[8]
go back to reference Li J, Yang JY, Wang JT, Lu SG. A scalable synthesis of silicon nanoparticles as high-performance anode material for lithium-ion batteries. Rare Met. 2019;36(3):199. Li J, Yang JY, Wang JT, Lu SG. A scalable synthesis of silicon nanoparticles as high-performance anode material for lithium-ion batteries. Rare Met. 2019;36(3):199.
[9]
go back to reference Li J, Liu WW, Zhou HM, Liu ZZ, Chen BR, Sun WJ. Anode material NbO for Li-ion battery and its electrochemical properties. Rare Met. 2018;37(2):118. Li J, Liu WW, Zhou HM, Liu ZZ, Chen BR, Sun WJ. Anode material NbO for Li-ion battery and its electrochemical properties. Rare Met. 2018;37(2):118.
[10]
go back to reference Lou S, Cheng X, Gao J, Li Q, Wang L, Cao Y, Ma Y, Zuo P, Gao Y, Du C, Huo H, Yin G. Pseudocapacitive Li+ intercalation in porous Ti2Nb10O29 nanospheres enables ultra-fast lithium storage. Energy Storage Mater. 2018;11:57. Lou S, Cheng X, Gao J, Li Q, Wang L, Cao Y, Ma Y, Zuo P, Gao Y, Du C, Huo H, Yin G. Pseudocapacitive Li+ intercalation in porous Ti2Nb10O29 nanospheres enables ultra-fast lithium storage. Energy Storage Mater. 2018;11:57.
[11]
go back to reference Tong Z, Xu H, Liu G, Zhao J, Li Y. Pseudocapacitive effect and Li+ diffusion coefficient in three-dimensionally ordered macroporous vanadium oxide for energy storage. Electrochem Commun. 2016;69:46. Tong Z, Xu H, Liu G, Zhao J, Li Y. Pseudocapacitive effect and Li+ diffusion coefficient in three-dimensionally ordered macroporous vanadium oxide for energy storage. Electrochem Commun. 2016;69:46.
[12]
go back to reference Li Y, Zheng Y, Yao J, Xiao J, Yang J, Xiao S. Facile synthesis of nanocrystalline-assembled nest-like NiO hollow microspheres with superior lithium storage performance. RSC Adv. 2017;7(50):31287. Li Y, Zheng Y, Yao J, Xiao J, Yang J, Xiao S. Facile synthesis of nanocrystalline-assembled nest-like NiO hollow microspheres with superior lithium storage performance. RSC Adv. 2017;7(50):31287.
[13]
go back to reference Wang HE, Zhao X, Xin K, Li Y, Chen L, Yang X, Zhang W, Su BL, Cao G. Superior pseudocapacitive lithium-ion storage in porous vanadium oxides@C heterostructure composite. ACS Appl Mater Inter. 2017;9(50):43665. Wang HE, Zhao X, Xin K, Li Y, Chen L, Yang X, Zhang W, Su BL, Cao G. Superior pseudocapacitive lithium-ion storage in porous vanadium oxides@C heterostructure composite. ACS Appl Mater Inter. 2017;9(50):43665.
[14]
go back to reference Lübke M, Shin J, Marchand P, Brett D, Shearing P, Liu Z, Darr JA. Highly pseudocapacitive Nb-doped TiO2 high power anodes for lithium-ion batteries. J Mater Chem A. 2015;3:22908. Lübke M, Shin J, Marchand P, Brett D, Shearing P, Liu Z, Darr JA. Highly pseudocapacitive Nb-doped TiO2 high power anodes for lithium-ion batteries. J Mater Chem A. 2015;3:22908.
[15]
go back to reference Liu X, Liu M, Hu Y, Hu M, Duan X, Liu G, Ma J. Mesoporous Ti2Nb10O29 microspheres constructed by interconnected nanoparticles as high performance anode material for lithium ion batteries. Ceram Int. 2019;45(3):3574. Liu X, Liu M, Hu Y, Hu M, Duan X, Liu G, Ma J. Mesoporous Ti2Nb10O29 microspheres constructed by interconnected nanoparticles as high performance anode material for lithium ion batteries. Ceram Int. 2019;45(3):3574.
[16]
go back to reference Liu G, Jin B, Bao K, Liu Y, Xie H, Hu M, Zhang R, Jiang Q. Facile fabrication of porous Ti2Nb10O29 microspheres for high-rate lithium storage applications. Int J Hydrog Energy. 2017;42(36):22965. Liu G, Jin B, Bao K, Liu Y, Xie H, Hu M, Zhang R, Jiang Q. Facile fabrication of porous Ti2Nb10O29 microspheres for high-rate lithium storage applications. Int J Hydrog Energy. 2017;42(36):22965.
[17]
go back to reference Fu Q, Hou J, Lu R, Lin C, Ma Y, Li J, Chen Y. Electrospun Ti2Nb10O29 hollow nanofibers as high-performance anode materials for lithium-ion batteries. Mater Lett. 2018;214:60. Fu Q, Hou J, Lu R, Lin C, Ma Y, Li J, Chen Y. Electrospun Ti2Nb10O29 hollow nanofibers as high-performance anode materials for lithium-ion batteries. Mater Lett. 2018;214:60.
[18]
go back to reference Cong DP, Kim J, Tran VT, Kim SJ, Jeong SY, Choi JH, Cho CR. Electrochemical behavior of interconnected Ti2Nb10O29 nanoparticles for high-power Li-ion battery anodes. Electrochim Acta. 2017;236:451. Cong DP, Kim J, Tran VT, Kim SJ, Jeong SY, Choi JH, Cho CR. Electrochemical behavior of interconnected Ti2Nb10O29 nanoparticles for high-power Li-ion battery anodes. Electrochim Acta. 2017;236:451.
[19]
go back to reference Sun Y, Liu X, Huang F, Li S, Shen Y, Xie A. Spinach juice-derived porous Fe2O3/carbon nanorods as superior anodes for lithium-ion batteries. Mater Res Bull. 2017;95:321. Sun Y, Liu X, Huang F, Li S, Shen Y, Xie A. Spinach juice-derived porous Fe2O3/carbon nanorods as superior anodes for lithium-ion batteries. Mater Res Bull. 2017;95:321.
[20]
go back to reference Li H, Zhou H. Enhancing the performances of Li-ion batteries by carbon-coating: present and future. Chem Commun. 2012;48(9):1201. Li H, Zhou H. Enhancing the performances of Li-ion batteries by carbon-coating: present and future. Chem Commun. 2012;48(9):1201.
[21]
go back to reference Sun J, Teng D, Liu Y, Chi C, Yu Y, Lan J, Yang X. Enhanced lithium storage capability of a dual-phase Li4Ti5O12-TiO2-carbon nanofiber anode with interfacial pseudocapacitive effect. RSC Adv. 2014;4:48632. Sun J, Teng D, Liu Y, Chi C, Yu Y, Lan J, Yang X. Enhanced lithium storage capability of a dual-phase Li4Ti5O12-TiO2-carbon nanofiber anode with interfacial pseudocapacitive effect. RSC Adv. 2014;4:48632.
[22]
go back to reference Liu G, Jin B, Zhang R, Bao K, Xie H, Guo J, Wei M, Jiang Q. Synthesis of Ti2Nb10O29/C composite as an anode material for lithium-ion batteries. Int J Hydrog Energy. 2016;41(33):14807. Liu G, Jin B, Zhang R, Bao K, Xie H, Guo J, Wei M, Jiang Q. Synthesis of Ti2Nb10O29/C composite as an anode material for lithium-ion batteries. Int J Hydrog Energy. 2016;41(33):14807.
[23]
go back to reference Wan G, Yang L, Shi S, Tang Y, Xu X, Wang G. Ti2Nb10O29 microspheres coated with ultrathin N-doped carbon layers by atomic layer deposition for enhanced lithium storage. Chem Commun. 2019;55(4):517. Wan G, Yang L, Shi S, Tang Y, Xu X, Wang G. Ti2Nb10O29 microspheres coated with ultrathin N-doped carbon layers by atomic layer deposition for enhanced lithium storage. Chem Commun. 2019;55(4):517.
[24]
go back to reference Liu X, Wang H, Zhang S, Liu G, Xie H, Ma J. Design of well-defined porous Ti2Nb10O29/C microspheres assembled from nanoparticles as anode materials for high-rate lithium ion batteries. Electrochim Acta. 2018;292:759. Liu X, Wang H, Zhang S, Liu G, Xie H, Ma J. Design of well-defined porous Ti2Nb10O29/C microspheres assembled from nanoparticles as anode materials for high-rate lithium ion batteries. Electrochim Acta. 2018;292:759.
[25]
go back to reference Huang SZ, Zhang Q, Yu W, Yang XY, Wang C, Li Y, Su BL. Grain boundaries enriched hierarchically mesoporous MnO/carbon microspheres for superior lithium ion battery anode. Electrochim Acta. 2016;222:561. Huang SZ, Zhang Q, Yu W, Yang XY, Wang C, Li Y, Su BL. Grain boundaries enriched hierarchically mesoporous MnO/carbon microspheres for superior lithium ion battery anode. Electrochim Acta. 2016;222:561.
[26]
go back to reference Ferrari AC, Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B. 2000;61(20):14095. Ferrari AC, Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B. 2000;61(20):14095.
[27]
go back to reference Ma C, Zhang W, He YS, Gong Q, Che H, Ma ZF. Carbon coated SnO2 nanoparticles anchored on CNT as a superior anode material for lithium-ion batteries. Nanoscale. 2016;8:4121. Ma C, Zhang W, He YS, Gong Q, Che H, Ma ZF. Carbon coated SnO2 nanoparticles anchored on CNT as a superior anode material for lithium-ion batteries. Nanoscale. 2016;8:4121.
[28]
go back to reference Yao L, Hou X, Hu S, Wang J, Li M, Su C, Tade MO, Shao Z, Liu X. Green synthesis of mesoporous ZnFe2O4/C composite microspheres as superior anode materials for lithium-ion batteries. J Power Source. 2014;258:305. Yao L, Hou X, Hu S, Wang J, Li M, Su C, Tade MO, Shao Z, Liu X. Green synthesis of mesoporous ZnFe2O4/C composite microspheres as superior anode materials for lithium-ion batteries. J Power Source. 2014;258:305.
[29]
go back to reference Wang YX, Yang J, Chou SL, Liu HK, Zhang WX, Zhao D, Dou SX. Uniform yolk-shell iron sulfide-carbon nanospheres for superior sodium-iron sulfide batteries. Nature Commun. 2015;6:8689. Wang YX, Yang J, Chou SL, Liu HK, Zhang WX, Zhao D, Dou SX. Uniform yolk-shell iron sulfide-carbon nanospheres for superior sodium-iron sulfide batteries. Nature Commun. 2015;6:8689.
[30]
go back to reference Liu G, Liu X, Wang L, Ma J, Xie H, Ji X, Guo J, Zhang R. Hierarchical Li4Ti5O12-TiO2 microspheres assembled from nanoflakes with exposed Li4Ti5O12 (011) and anatase TiO2 (001) facets for high-performance lithium-ion batteries. Electrochim Acta. 2016;222:1103. Liu G, Liu X, Wang L, Ma J, Xie H, Ji X, Guo J, Zhang R. Hierarchical Li4Ti5O12-TiO2 microspheres assembled from nanoflakes with exposed Li4Ti5O12 (011) and anatase TiO2 (001) facets for high-performance lithium-ion batteries. Electrochim Acta. 2016;222:1103.
[31]
go back to reference Liu H, Zhang Z, Hu L, Gao N, Sang L, Liao M, Ma R, Xu F, Fang X. New UV-A photodetector based on individual potassium niobate nanowires with high performance. Adv Opt Mater. 2014;2(8):771. Liu H, Zhang Z, Hu L, Gao N, Sang L, Liao M, Ma R, Xu F, Fang X. New UV-A photodetector based on individual potassium niobate nanowires with high performance. Adv Opt Mater. 2014;2(8):771.
[32]
go back to reference Tan BJ, Klabunde KJ, Sherwood PMA. Layered cobalt-manganese particles on alumina and silica. J Am Chem Soc. 1991;113(3):855. Tan BJ, Klabunde KJ, Sherwood PMA. Layered cobalt-manganese particles on alumina and silica. J Am Chem Soc. 1991;113(3):855.
[33]
go back to reference Hou BH, Wang YY, Guo JZ, Ning QL, Xi XT, Pang WL, Cao AM, Wang X, Zhang JP, Wu XL. Pseudocapacitance-boosted ultrafast Na storage in a pie-like FeS@C nanohybrid as an advanced anode material for sodium-ion full batteries. Nanoscale. 2018;10:9218. Hou BH, Wang YY, Guo JZ, Ning QL, Xi XT, Pang WL, Cao AM, Wang X, Zhang JP, Wu XL. Pseudocapacitance-boosted ultrafast Na storage in a pie-like FeS@C nanohybrid as an advanced anode material for sodium-ion full batteries. Nanoscale. 2018;10:9218.
[34]
go back to reference Chen Y, Xia H, Lu L, Xue J. Synthesis of porous hollow Fe3O4 beads and their applications in lithium ion batteries. J Mater Chem. 2012;22(11):5006. Chen Y, Xia H, Lu L, Xue J. Synthesis of porous hollow Fe3O4 beads and their applications in lithium ion batteries. J Mater Chem. 2012;22(11):5006.
[35]
go back to reference Roh HK, Kim HK, Kim MS, Kim DH, Chung KY, Roh KC, Kim KB. In-situ synthesis of chemically bonded NaTi2(PO4)3/rGO 2D nanocomposite for high-rate sodium-ion batteries. Nano Res. 2016;6:1844. Roh HK, Kim HK, Kim MS, Kim DH, Chung KY, Roh KC, Kim KB. In-situ synthesis of chemically bonded NaTi2(PO4)3/rGO 2D nanocomposite for high-rate sodium-ion batteries. Nano Res. 2016;6:1844.
[36]
go back to reference Kaowphong S, Chumha N, Nimmanpipug P, Kittiwachana S. Nanosized GdVO4 powders synthesized by sol-gel method using different carboxylic acids. Rare Met. 2018;37(7):561. Kaowphong S, Chumha N, Nimmanpipug P, Kittiwachana S. Nanosized GdVO4 powders synthesized by sol-gel method using different carboxylic acids. Rare Met. 2018;37(7):561.
[37]
go back to reference Jiang ZY, Zhu KR, Lin ZQ, Jin SW, Li G. Structure and Raman scattering of Mg-doped ZnO nanoparticles prepared by sol-gel method. Rare Met. 2018;37(10):881. Jiang ZY, Zhu KR, Lin ZQ, Jin SW, Li G. Structure and Raman scattering of Mg-doped ZnO nanoparticles prepared by sol-gel method. Rare Met. 2018;37(10):881.
[38]
go back to reference Zhu X, Pei L, Zhu R, Yu J, Tang R, Wei F. Preparation and characterization of Sn/La co-doped TiO2 nanomaterials and their phase transformation and photocatalytic activity. Sci Rep. 2018;8:12387. Zhu X, Pei L, Zhu R, Yu J, Tang R, Wei F. Preparation and characterization of Sn/La co-doped TiO2 nanomaterials and their phase transformation and photocatalytic activity. Sci Rep. 2018;8:12387.
[39]
go back to reference Ouzzine M, Maciá-Agulló JA, Lillo-Ródenas MA, Quijada C, Linares-Solano A. Synthesis of high surface area TiO2 nanoparticles by mild acid treatment with HCl or HI for photocatalytic propene oxidation. Appl Catal B-Environ. 2014;154–155:285. Ouzzine M, Maciá-Agulló JA, Lillo-Ródenas MA, Quijada C, Linares-Solano A. Synthesis of high surface area TiO2 nanoparticles by mild acid treatment with HCl or HI for photocatalytic propene oxidation. Appl Catal B-Environ. 2014;154–155:285.
[40]
go back to reference Jiang C, Ichihara M, Honma I, Zhou H. Effect of particle dispersion on high rate performance of nano-sized Li4Ti5O12 anode. Electrochim Acta. 2007;52(23):6470. Jiang C, Ichihara M, Honma I, Zhou H. Effect of particle dispersion on high rate performance of nano-sized Li4Ti5O12 anode. Electrochim Acta. 2007;52(23):6470.
[41]
go back to reference Viet AL, Reddy MV, Jose R, Chowdari BVR, Ramakrishna S. Nanostructured Nb2O5 polymorphs by electrospinning for rechargeable lithium batteries. J Phys Chem C. 2010;114(1):664. Viet AL, Reddy MV, Jose R, Chowdari BVR, Ramakrishna S. Nanostructured Nb2O5 polymorphs by electrospinning for rechargeable lithium batteries. J Phys Chem C. 2010;114(1):664.
[42]
go back to reference Deng S, Luo Z, Liu Y, Lou X, Lin C, Yang C, Zhao H, Zheng P, Sun Z, Li J, Wang N, Wu H. Ti2Nb10O29-x mesoporous microspheres as promising anode materials for high-performance lithium-ion batteries. J Power Sources. 2017;362:250. Deng S, Luo Z, Liu Y, Lou X, Lin C, Yang C, Zhao H, Zheng P, Sun Z, Li J, Wang N, Wu H. Ti2Nb10O29-x mesoporous microspheres as promising anode materials for high-performance lithium-ion batteries. J Power Sources. 2017;362:250.
[43]
go back to reference Xiao C, He P, Ren J, Yue M, Huang Y, He X. Walnut-structure Si-G/C materials with high coulombic efficiency for long-life lithium ion batteries. RSC Adv. 2018;8:27580. Xiao C, He P, Ren J, Yue M, Huang Y, He X. Walnut-structure Si-G/C materials with high coulombic efficiency for long-life lithium ion batteries. RSC Adv. 2018;8:27580.
[44]
go back to reference Jung BY, Lim HS, Sun YK, Suh KD. Synthesis of Fe3O4/C composite microspheres for a high performance lithium-ion battery anode. J Power Sources. 2013;244:177. Jung BY, Lim HS, Sun YK, Suh KD. Synthesis of Fe3O4/C composite microspheres for a high performance lithium-ion battery anode. J Power Sources. 2013;244:177.
[45]
go back to reference Li X, Jiang YZ, Li XK, Jiang HX, Liu JL, Feng J, Lin SB, Guan X. Electrochemical properties of LiFePO4/C composite cathode with different carbon sources. Rare Met. 2018;37(9):743. Li X, Jiang YZ, Li XK, Jiang HX, Liu JL, Feng J, Lin SB, Guan X. Electrochemical properties of LiFePO4/C composite cathode with different carbon sources. Rare Met. 2018;37(9):743.
[46]
go back to reference Jiao X, Hao Q, Xia X, Yao D, Ouyang Y, Lei W. Boosting long-cycle-life energy storage with holey graphene supported TiNb2O7 network nanostructure for lithium ion hybrid supercapacitors. J Power Sources. 2018;403:66. Jiao X, Hao Q, Xia X, Yao D, Ouyang Y, Lei W. Boosting long-cycle-life energy storage with holey graphene supported TiNb2O7 network nanostructure for lithium ion hybrid supercapacitors. J Power Sources. 2018;403:66.
[47]
go back to reference Jo C, Kim Y, Hwang J, Shim J, Chun J, Lee J. Block copolymer directed ordered mesostructured TiNb2O7 multimetallic oxide constructed of nanocrystals as high power Li-ion battery anodes. Chem Mater. 2014;26(11):3508. Jo C, Kim Y, Hwang J, Shim J, Chun J, Lee J. Block copolymer directed ordered mesostructured TiNb2O7 multimetallic oxide constructed of nanocrystals as high power Li-ion battery anodes. Chem Mater. 2014;26(11):3508.
[48]
go back to reference Sun YG, Sun TQ, Lin XJ, Tao XS, Zhang D, Zeng C, Cao AM, Wan LJ. Facile synthesis of hollow Ti2Nb10O29 microspheres for high-rate anode of Li-ion batteries. Sci China Chem. 2018;61(6):670. Sun YG, Sun TQ, Lin XJ, Tao XS, Zhang D, Zeng C, Cao AM, Wan LJ. Facile synthesis of hollow Ti2Nb10O29 microspheres for high-rate anode of Li-ion batteries. Sci China Chem. 2018;61(6):670.
[49]
go back to reference Zhang Z, Li Q, Li Z, Ma J, Li C, Yin L, Gao X. Partially reducing reaction tailored mesoporous 3D carbon coated NiCo-NiCoO2/carbon xerogel hybrids as anode materials for lithium ion battery with enhanced electrochemical performance. Electrochim Acta. 2016;203:117. Zhang Z, Li Q, Li Z, Ma J, Li C, Yin L, Gao X. Partially reducing reaction tailored mesoporous 3D carbon coated NiCo-NiCoO2/carbon xerogel hybrids as anode materials for lithium ion battery with enhanced electrochemical performance. Electrochim Acta. 2016;203:117.
[50]
go back to reference Madram AR, Daneshtalab R, Sovizi MR. Effect of Na+ and K+ co-doping on the structure and electrochemical behaviors of LiFePO4/C cathode material for lithium-ion batteries. RSC Adv. 2016;6:101477. Madram AR, Daneshtalab R, Sovizi MR. Effect of Na+ and K+ co-doping on the structure and electrochemical behaviors of LiFePO4/C cathode material for lithium-ion batteries. RSC Adv. 2016;6:101477.
[51]
go back to reference Wang GJ, Qu QT, Wang B, Shi Y, Tian S, Wu YP, Holze R. Electrochemical intercalation of lithium ions into LiV3O8 in an aqueous electrolyte. J Power Sources. 2009;189:503. Wang GJ, Qu QT, Wang B, Shi Y, Tian S, Wu YP, Holze R. Electrochemical intercalation of lithium ions into LiV3O8 in an aqueous electrolyte. J Power Sources. 2009;189:503.
[52]
go back to reference Mao W, Liu K, Guo G, Liu G, Bao K, Guo J, Hu M, Wang W, Li B. Preparation and electrochemical performance of Ti2Nb10O29/Ag composite as anode materials for lithium ion batteries. Electrochim Acta. 2017;253:396. Mao W, Liu K, Guo G, Liu G, Bao K, Guo J, Hu M, Wang W, Li B. Preparation and electrochemical performance of Ti2Nb10O29/Ag composite as anode materials for lithium ion batteries. Electrochim Acta. 2017;253:396.
[53]
go back to reference Ashish AG, Arunkumar P, Babu B, Manikandan P, Sarang S, Shaijumon MM. TiNb2O7/Graphene hybrid material as high performance anode for lithium-ion batteries. Electrochim Acta. 2015;176:285. Ashish AG, Arunkumar P, Babu B, Manikandan P, Sarang S, Shaijumon MM. TiNb2O7/Graphene hybrid material as high performance anode for lithium-ion batteries. Electrochim Acta. 2015;176:285.
[54]
go back to reference Zhu K, Wang Q, Kim JH, Pesaran AA, Frank AJ. Pseudocapacitive lithium-ion storage in oriented anatase TiO2 nanotube arrays. J Phys Chem C. 2012;116(22):11895. Zhu K, Wang Q, Kim JH, Pesaran AA, Frank AJ. Pseudocapacitive lithium-ion storage in oriented anatase TiO2 nanotube arrays. J Phys Chem C. 2012;116(22):11895.
[55]
go back to reference Wang J, Polleux J, Lim J, Dunn B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J Phys Chem C. 2007;111(40):14925. Wang J, Polleux J, Lim J, Dunn B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J Phys Chem C. 2007;111(40):14925.
[56]
go back to reference Lindström H, Södergren S, Solbrand A, Rensmo H, Hjelm J, Hagfeldt A, Lindquist SE. Li+ ion insertion in TiO2 (anatase). 2. Voltammetry on nanoporous films. J Phys Chem B. 1997;101(39):7717. Lindström H, Södergren S, Solbrand A, Rensmo H, Hjelm J, Hagfeldt A, Lindquist SE. Li+ ion insertion in TiO2 (anatase). 2. Voltammetry on nanoporous films. J Phys Chem B. 1997;101(39):7717.
[57]
go back to reference Yang C, Zhang Y, Lv F, Lin C, Liu Y, Wang K, Feng J, Wang X, Chen Y, Li J, Guo S. Porous ZrNb24O62 nanowires with pseudocapacitive behavior achieve high performance lithium-ion storage. J Mater Chem A. 2017;5(42):22297. Yang C, Zhang Y, Lv F, Lin C, Liu Y, Wang K, Feng J, Wang X, Chen Y, Li J, Guo S. Porous ZrNb24O62 nanowires with pseudocapacitive behavior achieve high performance lithium-ion storage. J Mater Chem A. 2017;5(42):22297.
[58]
go back to reference Cook JB, Kim HS, Yan Y, Ko JS, Robbennolt S, Dunn B, Tolbert SH. Mesoporous MoS2 as a transition metal dichalcogenide exhibiting pseudocapacitive Li and Na-ion charge storage. Adv Energy Mater. 2016;6(9):1501937. Cook JB, Kim HS, Yan Y, Ko JS, Robbennolt S, Dunn B, Tolbert SH. Mesoporous MoS2 as a transition metal dichalcogenide exhibiting pseudocapacitive Li and Na-ion charge storage. Adv Energy Mater. 2016;6(9):1501937.
Metadata
Title
In situ sol–gel synthesis of Ti2Nb10O29/C nanoparticles with enhanced pseudocapacitive contribution for a high-rate lithium-ion battery
Authors
Guang-Yin Liu
Yi-Yang Zhao
Yu-Feng Tang
Xiao-Di Liu
Miao Liu
Peng-Jiang Wu
Publication date
23-06-2020
Publisher
Nonferrous Metals Society of China
Published in
Rare Metals / Issue 9/2020
Print ISSN: 1001-0521
Electronic ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-020-01462-w

Other articles of this Issue 9/2020

Rare Metals 9/2020 Go to the issue

Premium Partners