Skip to main content
Top
Published in: Journal of Materials Science 12/2017

02-03-2017 | Original Paper

In2S3 nanoparticles dispersed on g-C3N4 nanosheets: role of heterojunctions in photoinduced charge transfer and photoelectrochemical and photocatalytic performance

Authors: Sanjay B. Kokane, R. Sasikala, D. M. Phase, S. D. Sartale

Published in: Journal of Materials Science | Issue 12/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Fast recombination of photogenerated charge carriers is a major problem in the photoelectrochemical and photocatalytic processes. In this work, we report significantly improved PEC performance of a nanocomposite consists of In2S3 nanoparticles dispersed on g-C3N4 nanosheets synthesized by a simple and facile wet chemical route. The results of high-resolution TEM study show that the obtained In2S3 nanoparticles of size 10–20 nm exist in cubic phase and are uniformly dispersed on the surface of g-C3N4 nanosheets. The In2S3/g-C3N4 nanocomposite with 25 weight percentage of In2S3 exhibits 8.5 times higher photocurrent density than the single-phase g-C3N4 under visible light illumination. The enhanced photocurrent density exhibited by the In2S3/g-C3N4 nanocomposite is attributed to the efficient separation of photogenerated charge carriers. The charge transfer mechanism in In2S3/g-C3N4 heterojunction was studied by a series of experiments, such as electrochemical impedance spectroscopy, photoelectrochemical measurement and photoluminescence emission spectroscopy. The intimate interface promotes the charge transfer and inhibits the recombination rate of photogenerated electron–hole pairs, which significantly improves the photoelectrochemical performance. A detailed charge transfer mechanism is discussed based on the Mott–Schottky plot study. This heterojunction material is found to be an efficient photocatalyst for the degradation of both cationic rhodamine B dye and anionic methyl orange dye as the lifetime of photogenerated charge carriers is higher in the composite than in single-phase In2S3 and g-C3N4. A strong correlation between the photoelectrochemical and the photocatalytic performances is observed in this composite.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
2.
go back to reference Kohtani S, Kudo A, Sakata T (1993) Spectral sensitization of a TiO2 semiconductor electrode by CdS microcrystals and its photoelectrochemical properties. Chem Phys Lett 206:166–170CrossRef Kohtani S, Kudo A, Sakata T (1993) Spectral sensitization of a TiO2 semiconductor electrode by CdS microcrystals and its photoelectrochemical properties. Chem Phys Lett 206:166–170CrossRef
3.
go back to reference Wang G, Wang H, Ling Y, Tang Y, Yang X, Fitzmorris RC, Wang C, Zhang JZ, Li Y (2011) Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett 11:3026–3033CrossRef Wang G, Wang H, Ling Y, Tang Y, Yang X, Fitzmorris RC, Wang C, Zhang JZ, Li Y (2011) Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett 11:3026–3033CrossRef
4.
go back to reference Hisatomi T, Kubota J, Domen K (2014) Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem Soc Rev 43:7520–7535CrossRef Hisatomi T, Kubota J, Domen K (2014) Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem Soc Rev 43:7520–7535CrossRef
5.
go back to reference Osterloh FE (2013) Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem Soc Rev 42:2294–2320CrossRef Osterloh FE (2013) Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem Soc Rev 42:2294–2320CrossRef
6.
go back to reference Lin Y, Yuan G, Liu R, Zhou S, Sheehan SW, Wang D (2011) Semiconductor nanostructure-based photoelectrochemical water splitting: a brief review. Chem Phys Lett 507:209–215CrossRef Lin Y, Yuan G, Liu R, Zhou S, Sheehan SW, Wang D (2011) Semiconductor nanostructure-based photoelectrochemical water splitting: a brief review. Chem Phys Lett 507:209–215CrossRef
7.
go back to reference Ng YH, Iwase A, Kudo A, Amal R (2010) Reducing graphene oxide on a visible-light BiVO4 photocatalyst for an enhanced photoelectrochemical water splitting. J Phys Chem Lett 1:2607–2612CrossRef Ng YH, Iwase A, Kudo A, Amal R (2010) Reducing graphene oxide on a visible-light BiVO4 photocatalyst for an enhanced photoelectrochemical water splitting. J Phys Chem Lett 1:2607–2612CrossRef
8.
go back to reference Abe R (2010) Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation. J Photochem Photobiol C 11:179–209CrossRef Abe R (2010) Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation. J Photochem Photobiol C 11:179–209CrossRef
9.
go back to reference Sakthivel S, Janczarek M, Kisch H (2004) Visible light activity and photoelectrochemical properties of nitrogen-doped TiO2. J Phys Chem B 108:19384–19387CrossRef Sakthivel S, Janczarek M, Kisch H (2004) Visible light activity and photoelectrochemical properties of nitrogen-doped TiO2. J Phys Chem B 108:19384–19387CrossRef
10.
go back to reference Lyth SM, Nabae Y, Moriya S, Kuroki S, Kakimoto M, Ozaki J, Miyata S (2009) Carbon nitride as a nonprecious catalyst for electrochemical oxygen reduction. J Phys Chem C 113:20148–20151CrossRef Lyth SM, Nabae Y, Moriya S, Kuroki S, Kakimoto M, Ozaki J, Miyata S (2009) Carbon nitride as a nonprecious catalyst for electrochemical oxygen reduction. J Phys Chem C 113:20148–20151CrossRef
11.
go back to reference Cao S, Yu J (2014) g-C3N4-based photocatalysts for hydrogen generation. J Phys Chem Lett 5:2101–2107CrossRef Cao S, Yu J (2014) g-C3N4-based photocatalysts for hydrogen generation. J Phys Chem Lett 5:2101–2107CrossRef
12.
go back to reference Liu J, Liu Y, Liu N, Han Y, Zhang X, Huang H, Lifshitz Y, Lee ST, Zhong J, Kang Z (2015) Water splitting. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 347:970–974CrossRef Liu J, Liu Y, Liu N, Han Y, Zhang X, Huang H, Lifshitz Y, Lee ST, Zhong J, Kang Z (2015) Water splitting. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 347:970–974CrossRef
13.
go back to reference Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti M (2009) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8:76–80CrossRef Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti M (2009) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8:76–80CrossRef
14.
go back to reference Zhao Z, Sun Y, Dong F (2015) Graphitic carbon nitride based nanocomposites: a review. Nanoscale 7:15–37CrossRef Zhao Z, Sun Y, Dong F (2015) Graphitic carbon nitride based nanocomposites: a review. Nanoscale 7:15–37CrossRef
15.
go back to reference Zheng Y, Jiao Y, Chen J, Liu J, Liang J, Du A, Zhang W, Zhu Z, Smith SC, Jaroniec M, Lu GQ, Qiao SZ (2011) Nanoporous graphitic-C3N4@carbon metal-free electrocatalysts for highly efficient oxygen reduction. J Am Chem Soc 133:20116–20119CrossRef Zheng Y, Jiao Y, Chen J, Liu J, Liang J, Du A, Zhang W, Zhu Z, Smith SC, Jaroniec M, Lu GQ, Qiao SZ (2011) Nanoporous graphitic-C3N4@carbon metal-free electrocatalysts for highly efficient oxygen reduction. J Am Chem Soc 133:20116–20119CrossRef
16.
go back to reference Zheng Y, Liu J, Liang J, Jaroniec M, Qiao SZ (2012) Graphitic carbon nitride materials: controllable synthesis and applications in fuel cells and photocatalysis. Energy Environ Sci 5:6717–6731CrossRef Zheng Y, Liu J, Liang J, Jaroniec M, Qiao SZ (2012) Graphitic carbon nitride materials: controllable synthesis and applications in fuel cells and photocatalysis. Energy Environ Sci 5:6717–6731CrossRef
17.
go back to reference Jiang W, Luo W, Wang J, Zhang M, Zhu Y (2016) Enhancement of catalytic activity and oxidative ability for graphitic carbon nitride. J Photochem Photobiol C 28:87–115CrossRef Jiang W, Luo W, Wang J, Zhang M, Zhu Y (2016) Enhancement of catalytic activity and oxidative ability for graphitic carbon nitride. J Photochem Photobiol C 28:87–115CrossRef
18.
go back to reference Hu B, Cai F, Chen T, Fan M, Song C, Yan X, Shi W (2015) Hydrothermal synthesis g-C3N4/nano-InVO4 nanocomposites and enhanced photocatalytic activity for hydrogen production under visible light irradiation. ACS Appl Mater Interfaces 7:18247–18256CrossRef Hu B, Cai F, Chen T, Fan M, Song C, Yan X, Shi W (2015) Hydrothermal synthesis g-C3N4/nano-InVO4 nanocomposites and enhanced photocatalytic activity for hydrogen production under visible light irradiation. ACS Appl Mater Interfaces 7:18247–18256CrossRef
19.
go back to reference Hou Y, Wen Z, Cui S, Guo X, Chen J (2013) Constructing 2D porous graphitic C3N4 nanosheets/nitrogen-doped graphene/layered MoS2 ternary nanojunction with enhanced photoelectrochemical activity. Adv Mater 25:6291–6297CrossRef Hou Y, Wen Z, Cui S, Guo X, Chen J (2013) Constructing 2D porous graphitic C3N4 nanosheets/nitrogen-doped graphene/layered MoS2 ternary nanojunction with enhanced photoelectrochemical activity. Adv Mater 25:6291–6297CrossRef
20.
go back to reference Bell NJ, Ng YH, Du A, Coster H, Smith SC, Amal R (2011) Understanding the enhancement in photoelectrochemical properties of photocatalytically prepared TiO2-reduced graphene oxide composite. J Phys Chem C 115:6004–6009CrossRef Bell NJ, Ng YH, Du A, Coster H, Smith SC, Amal R (2011) Understanding the enhancement in photoelectrochemical properties of photocatalytically prepared TiO2-reduced graphene oxide composite. J Phys Chem C 115:6004–6009CrossRef
21.
go back to reference Su J, Guo L, Bao N, Grimes CA (2011) Nanostructured WO3/BiVO4 heterojunction films for efficient photoelectrochemical water splitting. Nano Lett 11:1928–1933CrossRef Su J, Guo L, Bao N, Grimes CA (2011) Nanostructured WO3/BiVO4 heterojunction films for efficient photoelectrochemical water splitting. Nano Lett 11:1928–1933CrossRef
22.
go back to reference Wang Y, Wang Q, Zhan X, Wang F, Safdar M, He J (2013) Visible light driven type II heterostructures and their enhanced photocatalysis properties: a review. Nanoscale 5:8326–8339CrossRef Wang Y, Wang Q, Zhan X, Wang F, Safdar M, He J (2013) Visible light driven type II heterostructures and their enhanced photocatalysis properties: a review. Nanoscale 5:8326–8339CrossRef
24.
go back to reference Jiang D, Wang T, Xu Q, Li D, Meng S, Chen M (2017) Perovskite oxide ultrathin nanosheets/gC3N4 2D–2D heterojunction photocatalysts with significantly enhanced photocatalytic activity towards the photodegradation of tetracycline. Appl Catal B 201:617–628CrossRef Jiang D, Wang T, Xu Q, Li D, Meng S, Chen M (2017) Perovskite oxide ultrathin nanosheets/gC3N4 2D–2D heterojunction photocatalysts with significantly enhanced photocatalytic activity towards the photodegradation of tetracycline. Appl Catal B 201:617–628CrossRef
25.
go back to reference Zhang Z, Jiang D, Li D, He M, Chen M (2016) Construction of SnNb2O6 nanosheet/gC3N4 nanosheet two-dimensional heterostructures with improved photocatalytic activity: synergistic effect and mechanism insight. Appl Catal B 183:113–123CrossRef Zhang Z, Jiang D, Li D, He M, Chen M (2016) Construction of SnNb2O6 nanosheet/gC3N4 nanosheet two-dimensional heterostructures with improved photocatalytic activity: synergistic effect and mechanism insight. Appl Catal B 183:113–123CrossRef
26.
go back to reference Fu X, Wang X, Chen Z, Zhang Z, Li Z, Leung DYC, Wu L, Fu X (2010) Photocatalytic performance of tetragonal and cubic β-In2S3 for the water splitting under visible light irradiation. Appl Catal B 95:393–399CrossRef Fu X, Wang X, Chen Z, Zhang Z, Li Z, Leung DYC, Wu L, Fu X (2010) Photocatalytic performance of tetragonal and cubic β-In2S3 for the water splitting under visible light irradiation. Appl Catal B 95:393–399CrossRef
27.
go back to reference He Y, Li D, Xiao G, Chen W, Chen Y, Sun M, Huang H, Fu X (2009) A new application of nanocrystal In2S3 in efficient degradation of organic pollutants under visible light irradiation. J Phys Chem C 113:5254–5262CrossRef He Y, Li D, Xiao G, Chen W, Chen Y, Sun M, Huang H, Fu X (2009) A new application of nanocrystal In2S3 in efficient degradation of organic pollutants under visible light irradiation. J Phys Chem C 113:5254–5262CrossRef
28.
go back to reference Liu G, Jiao X, Qin Z, Chen D (2011) Solvothermal preparation and visible photocatalytic activity of polycrystalline β-In2S3 nanotubes. CrystEngComm 13:182–187CrossRef Liu G, Jiao X, Qin Z, Chen D (2011) Solvothermal preparation and visible photocatalytic activity of polycrystalline β-In2S3 nanotubes. CrystEngComm 13:182–187CrossRef
29.
go back to reference Jayakrishnan R, Sebastian T, John TT, Kartha CS, Vijayakumar KP (2007) Photoconductivity in sprayed β-In2S3 thin films under sub-band-gap excitation of 1.96 eV. J Appl Phys 102:043109CrossRef Jayakrishnan R, Sebastian T, John TT, Kartha CS, Vijayakumar KP (2007) Photoconductivity in sprayed β-In2S3 thin films under sub-band-gap excitation of 1.96 eV. J Appl Phys 102:043109CrossRef
30.
go back to reference Chaudhari N, Mandal L, Game O, Warule S, Phase D, Jadkar S, Ogale S (2015) Dramatic enhancement in photoresponse of beta-In2S3 through suppression of dark conductivity by synthetic control of defect-induced carrier compensation. ACS Appl Mater Interfaces 7:17671–17681CrossRef Chaudhari N, Mandal L, Game O, Warule S, Phase D, Jadkar S, Ogale S (2015) Dramatic enhancement in photoresponse of beta-In2S3 through suppression of dark conductivity by synthetic control of defect-induced carrier compensation. ACS Appl Mater Interfaces 7:17671–17681CrossRef
31.
go back to reference Chen B, Chang S, Li D, Chen L, Wang Y, Chen T, Zou B, Zhong H, Rogach AL (2015) Template synthesis of CuInS2 nanocrystals from In2S3 nanoplates and their application as counter electrodes in dye-sensitized solar cells. Chem Mater 27:5949–5956CrossRef Chen B, Chang S, Li D, Chen L, Wang Y, Chen T, Zou B, Zhong H, Rogach AL (2015) Template synthesis of CuInS2 nanocrystals from In2S3 nanoplates and their application as counter electrodes in dye-sensitized solar cells. Chem Mater 27:5949–5956CrossRef
32.
go back to reference Wang X, Blechert S, Antonietti M (2012) Polymeric graphitic carbon nitride for heterogeneous photocatalysis. ACS Catal 2:1596–1606CrossRef Wang X, Blechert S, Antonietti M (2012) Polymeric graphitic carbon nitride for heterogeneous photocatalysis. ACS Catal 2:1596–1606CrossRef
33.
go back to reference Xing C, Wu Z, Jiang D, Chen M (2014) Hydrothermal synthesis of In2S3/g-C3N4 heterojunctions with enhanced photocatalytic activity. J Colloid Interface Sci 433:9–15CrossRef Xing C, Wu Z, Jiang D, Chen M (2014) Hydrothermal synthesis of In2S3/g-C3N4 heterojunctions with enhanced photocatalytic activity. J Colloid Interface Sci 433:9–15CrossRef
34.
go back to reference Yan SC, Li ZS, Zou ZG (2010) Photodegradation of rhodamine B and methyl orange over boron-doped g-C3N4 under visible light irradiation. Langmuir 26:3894–3901CrossRef Yan SC, Li ZS, Zou ZG (2010) Photodegradation of rhodamine B and methyl orange over boron-doped g-C3N4 under visible light irradiation. Langmuir 26:3894–3901CrossRef
35.
go back to reference Liu Z (2000) Soap-free emulsion copolymerisation of styrene with cationic monomer: effect of ethanol as a cosolvent. Polymer 41:7023–7031CrossRef Liu Z (2000) Soap-free emulsion copolymerisation of styrene with cationic monomer: effect of ethanol as a cosolvent. Polymer 41:7023–7031CrossRef
36.
go back to reference Ghosh SK, Deguchi S, Mukai SA, Tsujii K (2007) Supercritical ethanol a fascinating dispersion medium for silica nanoparticles. J Phys Chem B 111:8169–8174CrossRef Ghosh SK, Deguchi S, Mukai SA, Tsujii K (2007) Supercritical ethanol a fascinating dispersion medium for silica nanoparticles. J Phys Chem B 111:8169–8174CrossRef
37.
go back to reference Ong WJ, Tan LL, Chai SP, Yong ST (2015) Heterojunction engineering of graphitic carbon nitride (g-C3N4) via Pt loading with improved daylight-induced photocatalytic reduction of carbon dioxide to methane. Dalton Trans 44:1249–1257CrossRef Ong WJ, Tan LL, Chai SP, Yong ST (2015) Heterojunction engineering of graphitic carbon nitride (g-C3N4) via Pt loading with improved daylight-induced photocatalytic reduction of carbon dioxide to methane. Dalton Trans 44:1249–1257CrossRef
38.
go back to reference Dai H, Gao X, Liu E, Yang Y, Hou W, Kang L, Fan J, Hu X (2013) Synthesis and characterization of graphitic carbon nitride sub-microspheres using microwave method under mild condition. Diam Relat Mater 38:109–117CrossRef Dai H, Gao X, Liu E, Yang Y, Hou W, Kang L, Fan J, Hu X (2013) Synthesis and characterization of graphitic carbon nitride sub-microspheres using microwave method under mild condition. Diam Relat Mater 38:109–117CrossRef
39.
go back to reference Ge L, Zuo F, Liu J, Ma Q, Wang C, Sun D, Bartels L, Feng P (2012) Synthesis and efficient visible light photocatalytic hydrogen evolution of polymeric g-C3N4 coupled with CdS quantum dots. J Phys Chem C 116:13708–13714CrossRef Ge L, Zuo F, Liu J, Ma Q, Wang C, Sun D, Bartels L, Feng P (2012) Synthesis and efficient visible light photocatalytic hydrogen evolution of polymeric g-C3N4 coupled with CdS quantum dots. J Phys Chem C 116:13708–13714CrossRef
40.
go back to reference Liu Q, Zhang J (2013) Graphene supported Co-g-C3N4 as a novel metal-macrocyclic electrocatalyst for the oxygen reduction reaction in fuel cells. Langmuir 29:3821–3828CrossRef Liu Q, Zhang J (2013) Graphene supported Co-g-C3N4 as a novel metal-macrocyclic electrocatalyst for the oxygen reduction reaction in fuel cells. Langmuir 29:3821–3828CrossRef
41.
go back to reference Rengaraj S, Venkataraj S, Tai CW, Kim Y, Repo E, Sillanpaa M (2011) Self-assembled mesoporous hierarchical-like In2S3 hollow microspheres composed of nanofibers and nanosheets and their photocatalytic activity. Langmuir 27:5534–5541CrossRef Rengaraj S, Venkataraj S, Tai CW, Kim Y, Repo E, Sillanpaa M (2011) Self-assembled mesoporous hierarchical-like In2S3 hollow microspheres composed of nanofibers and nanosheets and their photocatalytic activity. Langmuir 27:5534–5541CrossRef
42.
go back to reference Ohtani B (2010) Photocatalysis A to Z—what we know and what we do not know in a scientific sense. J Photochem Photobiol C 11:157–178CrossRef Ohtani B (2010) Photocatalysis A to Z—what we know and what we do not know in a scientific sense. J Photochem Photobiol C 11:157–178CrossRef
43.
go back to reference Tkalich AK, Demin VN, Zlomanov VP (1995) Oxidation States of In in Pb(1−x)In(x)Te. J Solid State Chem 116:33–36CrossRef Tkalich AK, Demin VN, Zlomanov VP (1995) Oxidation States of In in Pb(1−x)In(x)Te. J Solid State Chem 116:33–36CrossRef
44.
go back to reference Fantauzzi M, Elsener B, Atzei D, Rigoldi A, Rossi A (2015) Exploiting XPS for the identification of sulfides and polysulfides. RSC Adv 5:75953–75963CrossRef Fantauzzi M, Elsener B, Atzei D, Rigoldi A, Rossi A (2015) Exploiting XPS for the identification of sulfides and polysulfides. RSC Adv 5:75953–75963CrossRef
45.
go back to reference Bayón R, Maffiotte C, Herrero J (1999) Chemical bath deposition of indium hydroxy sulphide thin films: process and XPS characterization. Thin Solid Films 353:100–107CrossRef Bayón R, Maffiotte C, Herrero J (1999) Chemical bath deposition of indium hydroxy sulphide thin films: process and XPS characterization. Thin Solid Films 353:100–107CrossRef
46.
go back to reference Li Y, Zhang H, Liu P, Wang D, Li Y, Zhao H (2013) Cross-linked g-C3N4/rGO nanocomposites with tunable band structure and enhanced visible light photocatalytic activity. Small 9:3336–3344 Li Y, Zhang H, Liu P, Wang D, Li Y, Zhao H (2013) Cross-linked g-C3N4/rGO nanocomposites with tunable band structure and enhanced visible light photocatalytic activity. Small 9:3336–3344
47.
go back to reference Yao Y, Wu G, Lu F, Wang S, Hu Y, Zhang J, Huang W, Wei F (2016) Enhanced photo-Fenton-like process over Z-scheme CoFe2O4/g-C3N4 heterostructures under natural indoor light. Environ Sci Pollut Res 23:21833–21845CrossRef Yao Y, Wu G, Lu F, Wang S, Hu Y, Zhang J, Huang W, Wei F (2016) Enhanced photo-Fenton-like process over Z-scheme CoFe2O4/g-C3N4 heterostructures under natural indoor light. Environ Sci Pollut Res 23:21833–21845CrossRef
48.
go back to reference Lucena R, Fresno F, Conesa JC (2012) Spectral response and stability of In2S3 as visible light-active photocatalyst. Catal Commun 20:1–5CrossRef Lucena R, Fresno F, Conesa JC (2012) Spectral response and stability of In2S3 as visible light-active photocatalyst. Catal Commun 20:1–5CrossRef
49.
go back to reference Kim HN, Kim TW, Kim IY, Hwang SJ (2011) Cocatalyst-free photocatalysts for efficient visible-light-induced H2 production: porous assemblies of CdS quantum dots and layered titanate nanosheets. Adv Funct Mater 21:3111–3118CrossRef Kim HN, Kim TW, Kim IY, Hwang SJ (2011) Cocatalyst-free photocatalysts for efficient visible-light-induced H2 production: porous assemblies of CdS quantum dots and layered titanate nanosheets. Adv Funct Mater 21:3111–3118CrossRef
50.
go back to reference Kisch H, Weiß H (2002) Tuning photoelectrochemical and photocatalytic properties through electronic semiconductor–support interaction. Adv Funct Mater 12:483–488CrossRef Kisch H, Weiß H (2002) Tuning photoelectrochemical and photocatalytic properties through electronic semiconductor–support interaction. Adv Funct Mater 12:483–488CrossRef
51.
go back to reference Xu QC, Wellia DV, Ng YH, Amal R, Tan TTY (2011) Synthesis of porous and visible-light absorbing Bi2WO6/TiO2 heterojunction films with improved photoelectrochemical and photocatalytic performances. J Phys Chem C 115:7419–7428CrossRef Xu QC, Wellia DV, Ng YH, Amal R, Tan TTY (2011) Synthesis of porous and visible-light absorbing Bi2WO6/TiO2 heterojunction films with improved photoelectrochemical and photocatalytic performances. J Phys Chem C 115:7419–7428CrossRef
52.
go back to reference Wang J, Zhang WD (2012) Modification of TiO2 nanorod arrays by graphite-like C3N4 with high visible light photoelectrochemical activity. Electrochim Acta 71:10–16CrossRef Wang J, Zhang WD (2012) Modification of TiO2 nanorod arrays by graphite-like C3N4 with high visible light photoelectrochemical activity. Electrochim Acta 71:10–16CrossRef
53.
go back to reference Sasikala R, Shirole A, Sudarsan V, Sakuntala T, Sudakar C, Naik R, Bharadwaj SR (2009) Highly dispersed phase of SnO2 on TiO2 nanoparticles synthesized by polyol-mediated route: photocatalytic activity for hydrogen generation. Int J Hydrog Energy 34:3621–3630CrossRef Sasikala R, Shirole A, Sudarsan V, Sakuntala T, Sudakar C, Naik R, Bharadwaj SR (2009) Highly dispersed phase of SnO2 on TiO2 nanoparticles synthesized by polyol-mediated route: photocatalytic activity for hydrogen generation. Int J Hydrog Energy 34:3621–3630CrossRef
54.
go back to reference Fabregat-Santiago F, Garcia-Belmonte G, Mora-Seró I, Bisquert J (2011) Characterization of nanostructured hybrid and organic solar cells by impedance spectroscopy. Phys Chem Chem Phys 13:9083–9118CrossRef Fabregat-Santiago F, Garcia-Belmonte G, Mora-Seró I, Bisquert J (2011) Characterization of nanostructured hybrid and organic solar cells by impedance spectroscopy. Phys Chem Chem Phys 13:9083–9118CrossRef
55.
go back to reference Liu C, Huang H, Du X, Zhang T, Tian N, Guo Y, Zhang Y (2015) In situ co-crystallization for fabrication of g-C3N4/Bi5O7I heterojunction for enhanced visible-light photocatalysis. J Phys Chem C 119:17156–17165CrossRef Liu C, Huang H, Du X, Zhang T, Tian N, Guo Y, Zhang Y (2015) In situ co-crystallization for fabrication of g-C3N4/Bi5O7I heterojunction for enhanced visible-light photocatalysis. J Phys Chem C 119:17156–17165CrossRef
56.
go back to reference Gelderman K, Lee L, Donne SW (2007) Flat-band potential of a semiconductor: using the Mott–Schottky equation. J Chem Educ 84:685–688CrossRef Gelderman K, Lee L, Donne SW (2007) Flat-band potential of a semiconductor: using the Mott–Schottky equation. J Chem Educ 84:685–688CrossRef
57.
go back to reference Jiang W, Luo W, Zong R, Yao W, Li Z, Zhu Y (2016) Polyaniline/carbon nitride nanosheets composite hydrogel: a separation-free and high-efficient photocatalyst with 3D hierarchical structure. Small 12:4370–4378CrossRef Jiang W, Luo W, Zong R, Yao W, Li Z, Zhu Y (2016) Polyaniline/carbon nitride nanosheets composite hydrogel: a separation-free and high-efficient photocatalyst with 3D hierarchical structure. Small 12:4370–4378CrossRef
58.
go back to reference Yan SC, Lv SB, Li ZS, Zou ZG (2010) Organic–inorganic composite photocatalyst of g-C3N4 and TaON with improved visible light photocatalytic activities. Dalton Trans 39:1488–1491CrossRef Yan SC, Lv SB, Li ZS, Zou ZG (2010) Organic–inorganic composite photocatalyst of g-C3N4 and TaON with improved visible light photocatalytic activities. Dalton Trans 39:1488–1491CrossRef
59.
go back to reference Sarkar D, Ghosh CK, Mukherjee S, Chattopadhyay KK (2013) Three dimensional Ag2O/TiO2 type-II (p–n) nanoheterojunctions for superior photocatalytic activity. ACS Appl Mater Interfaces 5:331–337CrossRef Sarkar D, Ghosh CK, Mukherjee S, Chattopadhyay KK (2013) Three dimensional Ag2O/TiO2 type-II (p–n) nanoheterojunctions for superior photocatalytic activity. ACS Appl Mater Interfaces 5:331–337CrossRef
60.
go back to reference Jiang J, Zhang X, Sun P, Zhang L (2011) ZnO/BiOI heterostructures: photoinduced charge-transfer property and enhanced visible-light photocatalytic activity. J Phys Chem C 115:20555–20564CrossRef Jiang J, Zhang X, Sun P, Zhang L (2011) ZnO/BiOI heterostructures: photoinduced charge-transfer property and enhanced visible-light photocatalytic activity. J Phys Chem C 115:20555–20564CrossRef
61.
go back to reference Kokane SB, Sartale SD, Betty CA, Sasikala R (2014) Pd–TiO2–SrIn2O4 heterojunction photocatalyst: enhanced photocatalytic activity for hydrogen generation and degradation of methylene blue. RSC Adv 4:55539–55547CrossRef Kokane SB, Sartale SD, Betty CA, Sasikala R (2014) Pd–TiO2–SrIn2O4 heterojunction photocatalyst: enhanced photocatalytic activity for hydrogen generation and degradation of methylene blue. RSC Adv 4:55539–55547CrossRef
Metadata
Title
In2S3 nanoparticles dispersed on g-C3N4 nanosheets: role of heterojunctions in photoinduced charge transfer and photoelectrochemical and photocatalytic performance
Authors
Sanjay B. Kokane
R. Sasikala
D. M. Phase
S. D. Sartale
Publication date
02-03-2017
Publisher
Springer US
Published in
Journal of Materials Science / Issue 12/2017
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-0940-x

Other articles of this Issue 12/2017

Journal of Materials Science 12/2017 Go to the issue

Premium Partners