Skip to main content
Top
Published in: Journal of Materials Science 12/2017

02-03-2017 | Original Paper

Vacancy-mediated ferromagnetism in Co-implanted ZnO studied using a slow positron beam

Authors: D. D. Wang, B. Zhao, N. Qi, Z. Q. Chen, A. Kawasuso

Published in: Journal of Materials Science | Issue 12/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Co\(^+\) ions with multiple energies from 50 to 380 keV were implanted into ZnO single crystals up to a total dose of \(1.25\times 10^{17}\,\hbox {cm}^2\). The implanted samples were annealed in open air for 30 min between 200 and 1100 \(^{\circ }\)C. All the samples before and after implantation and annealing were characterized by X-ray diffraction (XRD), Raman scattering and positron annihilation measurements. XRD and Raman scattering measurements indicate that Co implantation induces severe lattice damage, and after annealing the damage recovers gradually. No Co clusters or Co-related second phase was observed in the implanted samples. Doppler broadening of positron annihilation radiation measurements using a slow positron beam reveals a large number of vacancy clusters introduced by Co implantation. After annealing up to 1000 \(^{\circ }\)C, almost all the defects induced by implantation are removed. The implanted samples show clear ferromagnetism measured at 5 K. It shows very slight decrease after annealing at 700 \(^{\circ }\)C and becomes much weaker after annealing at 1000 \(^{\circ }\)C. The origin of ferromagnetism is most probably due to substitution of Co\(^+\) ions at Zn lattice sites. However, it is apparent that the decrease in magnetization after annealing is consistent with the vacancy recovery process, indicating that the ferromagnetism in Co-implanted ZnO is mediated by defects such as Zn vacancy (V\(_{Zn}\)) or vacancy clusters. First principles calculations also support that Zn-related monovacancies and vacancy clusters can enhance the ferromagnetism in Co-doped ZnO.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
2.
go back to reference Punnoose A, Reddy KM, Hays J, Thurber A (2006) Magnetic gas sensing using a dilute magnetic semiconductor. Appl Phys Lett 89:112509CrossRef Punnoose A, Reddy KM, Hays J, Thurber A (2006) Magnetic gas sensing using a dilute magnetic semiconductor. Appl Phys Lett 89:112509CrossRef
3.
go back to reference Dietl T, Ohno H, Matsukura F, Cibert J, Ferrand D (2000) Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287:1019–1022CrossRef Dietl T, Ohno H, Matsukura F, Cibert J, Ferrand D (2000) Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287:1019–1022CrossRef
4.
go back to reference Pearton SJ, Abernathy CR, Overberg ME, Thaler GT, Norton DP, Theodoropoulou N, Hebard AF, Park YD, Ren F, Kim J (2003) Wide band gap ferromagnetic semiconductors and oxides. J Appl Phys 93:1–13CrossRef Pearton SJ, Abernathy CR, Overberg ME, Thaler GT, Norton DP, Theodoropoulou N, Hebard AF, Park YD, Ren F, Kim J (2003) Wide band gap ferromagnetic semiconductors and oxides. J Appl Phys 93:1–13CrossRef
5.
go back to reference Alaria J, Bieber H, Colis S, Schmerber G, Dinia A (2006) Absence of ferromagnetism in Al-doped Zn0.9Co0.10O diluted magnetic semiconductors. Appl Phys Lett 88:112503CrossRef Alaria J, Bieber H, Colis S, Schmerber G, Dinia A (2006) Absence of ferromagnetism in Al-doped Zn0.9Co0.10O diluted magnetic semiconductors. Appl Phys Lett 88:112503CrossRef
6.
go back to reference Theodoropoulou N, Hebard AF, Overberg ME, Abernathy CR, Pearton SJ, Chu SNG, Wilson RG (2001) Magnetic and structural properties of Mn-implanted GaN. Appl Phys Lett 78:3475–3477CrossRef Theodoropoulou N, Hebard AF, Overberg ME, Abernathy CR, Pearton SJ, Chu SNG, Wilson RG (2001) Magnetic and structural properties of Mn-implanted GaN. Appl Phys Lett 78:3475–3477CrossRef
7.
go back to reference Majid A, Sharif R, Husnain G, Ali A (2009) Annealing effects on the structural optical and magnetic properties of Mn implanted GaN. J Phys D Appl Phys 42:135401–135409CrossRef Majid A, Sharif R, Husnain G, Ali A (2009) Annealing effects on the structural optical and magnetic properties of Mn implanted GaN. J Phys D Appl Phys 42:135401–135409CrossRef
8.
go back to reference Sharma VK, Varma GD (2009) Effect of Al and Sb doping on the magnetic properties of ZnMnO and ZnCoO. J Appl Phys 105:07C510CrossRef Sharma VK, Varma GD (2009) Effect of Al and Sb doping on the magnetic properties of ZnMnO and ZnCoO. J Appl Phys 105:07C510CrossRef
9.
go back to reference Ueda K, Tabata H, Kawai T (2001) Magnetic and electric properties of transition-metal-doped ZnO films. Appl Phys Lett 79:988–990CrossRef Ueda K, Tabata H, Kawai T (2001) Magnetic and electric properties of transition-metal-doped ZnO films. Appl Phys Lett 79:988–990CrossRef
10.
go back to reference Schwartz DA, Gamelin DR (2004) Reversible 300 K ferromagnetic ordering in a diluted magnetic semiconductor. Adv Mater 16:2115–2119CrossRef Schwartz DA, Gamelin DR (2004) Reversible 300 K ferromagnetic ordering in a diluted magnetic semiconductor. Adv Mater 16:2115–2119CrossRef
11.
go back to reference Wang Q, Sun Q, Chen G, Kawazoe Y, Jena P (2008) Vacancy-induced magnetism in ZnO thin films and nanowires. Phys Rev B Condens Matter 77:205411CrossRef Wang Q, Sun Q, Chen G, Kawazoe Y, Jena P (2008) Vacancy-induced magnetism in ZnO thin films and nanowires. Phys Rev B Condens Matter 77:205411CrossRef
12.
go back to reference Zuo X, Yoon SD, Yang A, Duan WH, Vittoria C, Harris VG (2009) Ferromagnetism in pure wurtzite zinc oxide. J Appl Phys 105:07C508CrossRef Zuo X, Yoon SD, Yang A, Duan WH, Vittoria C, Harris VG (2009) Ferromagnetism in pure wurtzite zinc oxide. J Appl Phys 105:07C508CrossRef
13.
go back to reference Gao D, Zhang Z, Fu J, Xu Y, Qi J, Xue D (2009) Room temperature ferromagnetism of pure ZnO nanoparticles. J Appl Phys 105:113928CrossRef Gao D, Zhang Z, Fu J, Xu Y, Qi J, Xue D (2009) Room temperature ferromagnetism of pure ZnO nanoparticles. J Appl Phys 105:113928CrossRef
14.
go back to reference Liu W, Li W, Hu Z, Tang Z, Tang X (2011) Effect of oxygen defects on ferromagnetic of undoped ZnO. J Appl Phys 110:123911CrossRef Liu W, Li W, Hu Z, Tang Z, Tang X (2011) Effect of oxygen defects on ferromagnetic of undoped ZnO. J Appl Phys 110:123911CrossRef
15.
go back to reference Zhan P, Xie Z, Li Z, Wang W, Zhang Z, Li Z, Cheng G, Zhang P, Wang B, Cao X (2013) Origin of the defects-induced ferromagnetism in un-doped ZnO single crystals. Appl Phys Lett 102:071914CrossRef Zhan P, Xie Z, Li Z, Wang W, Zhang Z, Li Z, Cheng G, Zhang P, Wang B, Cao X (2013) Origin of the defects-induced ferromagnetism in un-doped ZnO single crystals. Appl Phys Lett 102:071914CrossRef
16.
go back to reference Hsu HS, Huang JCA, Huang YH, Liao YF (2006) Evidence of oxygen vacancy enhanced room-temperature ferromagnetism in Co-doped ZnO. Appl Phys Lett 88:242507CrossRef Hsu HS, Huang JCA, Huang YH, Liao YF (2006) Evidence of oxygen vacancy enhanced room-temperature ferromagnetism in Co-doped ZnO. Appl Phys Lett 88:242507CrossRef
17.
go back to reference Yan WS, Sun Z, Liu Q, Li Z, Pan Z, Wang J, Wei S, Wang D, Zhou Y, Zhang X (2007) Zn vacancy induced room-temperature ferromagnetism in Mn-doped ZnO. Appl Phys Lett 91:062113CrossRef Yan WS, Sun Z, Liu Q, Li Z, Pan Z, Wang J, Wei S, Wang D, Zhou Y, Zhang X (2007) Zn vacancy induced room-temperature ferromagnetism in Mn-doped ZnO. Appl Phys Lett 91:062113CrossRef
18.
go back to reference Liu EZ, Jiang JZ (2010) O-vacancy-mediated spin-spin interaction in Co-doped ZnO: first-principles total-energy calculations. J Appl Phys 107:023909CrossRef Liu EZ, Jiang JZ (2010) O-vacancy-mediated spin-spin interaction in Co-doped ZnO: first-principles total-energy calculations. J Appl Phys 107:023909CrossRef
19.
go back to reference Yan WS, Jiang QH, Sun ZH, Yao T, Hu FC, Wei SQ (2010) Determination of the role of O vacancy in Co:ZnO magnetic film. J Appl Phys 108:013901CrossRef Yan WS, Jiang QH, Sun ZH, Yao T, Hu FC, Wei SQ (2010) Determination of the role of O vacancy in Co:ZnO magnetic film. J Appl Phys 108:013901CrossRef
20.
go back to reference Gu H, Zhang W, Xu Y, Yan M (2012) Effect of oxygen deficiency on room temperature ferromagnetism in Co doped ZnO. Appl Phys Lett 100:202401CrossRef Gu H, Zhang W, Xu Y, Yan M (2012) Effect of oxygen deficiency on room temperature ferromagnetism in Co doped ZnO. Appl Phys Lett 100:202401CrossRef
21.
go back to reference Liu WJ, Tang XD, Tang Z (2013) Effect of oxygen defects on ferromagnetism of Mn doped ZnO. J Appl Phys 114:123911CrossRef Liu WJ, Tang XD, Tang Z (2013) Effect of oxygen defects on ferromagnetism of Mn doped ZnO. J Appl Phys 114:123911CrossRef
22.
go back to reference Ren HT, Xiang G, Gu G, Zhang X (2014) Enhancement of ferromagnetism of ZnO: Co nanocrystals by post-annealing treatment: the role of oxygen interstitials and zinc vacancies. Mater Lett 122:256–260CrossRef Ren HT, Xiang G, Gu G, Zhang X (2014) Enhancement of ferromagnetism of ZnO: Co nanocrystals by post-annealing treatment: the role of oxygen interstitials and zinc vacancies. Mater Lett 122:256–260CrossRef
23.
go back to reference Simimol A, Anappara AA, Greulich-Weber S, Chowdhury P, Barshilia HC (2015) Enhanced room temperature ferromagnetism in electrodeposited Co-doped ZnO nanostructured thin films by controlling the oxygen vacancy defects. J Appl Phys 117:214310CrossRef Simimol A, Anappara AA, Greulich-Weber S, Chowdhury P, Barshilia HC (2015) Enhanced room temperature ferromagnetism in electrodeposited Co-doped ZnO nanostructured thin films by controlling the oxygen vacancy defects. J Appl Phys 117:214310CrossRef
24.
go back to reference Shao Q, Wang C, Zapien JA, Leung CW, Ruotolo A (2015) Ferromagnetism in Ti-doped ZnO thin films. J Appl Phys 117:17B908CrossRef Shao Q, Wang C, Zapien JA, Leung CW, Ruotolo A (2015) Ferromagnetism in Ti-doped ZnO thin films. J Appl Phys 117:17B908CrossRef
25.
go back to reference Li XL, Wang ZL, Qin XF, Wu HS, Xu XH, Gehring GA (2008) Enhancement of magnetic moment of Co-doped ZnO films by postannealing in vacuum. J Appl Phys 103:023911CrossRef Li XL, Wang ZL, Qin XF, Wu HS, Xu XH, Gehring GA (2008) Enhancement of magnetic moment of Co-doped ZnO films by postannealing in vacuum. J Appl Phys 103:023911CrossRef
26.
go back to reference Lee HJ, Jeong SY, Cho CR, Park CH (2002) Study of diluted magnetic semiconductor: Co-doped ZnO. Appl Phys Lett 81:4020–4022CrossRef Lee HJ, Jeong SY, Cho CR, Park CH (2002) Study of diluted magnetic semiconductor: Co-doped ZnO. Appl Phys Lett 81:4020–4022CrossRef
27.
go back to reference Rode K, Anane A, Mattana R, Contour JP, Durand O, Lebourgeois R (2003) Magnetic semiconductors based on cobalt substituted ZnO. J Appl Phys 93:7676–7678CrossRef Rode K, Anane A, Mattana R, Contour JP, Durand O, Lebourgeois R (2003) Magnetic semiconductors based on cobalt substituted ZnO. J Appl Phys 93:7676–7678CrossRef
28.
go back to reference Lawes G, Risbud AS, Ramire AP, Seshadri R (2005) Absence of ferromagnetism in Co and Mn substituted polycrystalline ZnO. Phys Rev B 71:045201CrossRef Lawes G, Risbud AS, Ramire AP, Seshadri R (2005) Absence of ferromagnetism in Co and Mn substituted polycrystalline ZnO. Phys Rev B 71:045201CrossRef
29.
go back to reference Zhang Z, Chen Q, Lee HD, Xue YY, Sun YY, Chen H, Chen F, Chu WK (2006) Absence of ferromagnetism in Co-doped ZnO prepared by thermal diffusion of Co atoms. J Appl Phys 100:043909CrossRef Zhang Z, Chen Q, Lee HD, Xue YY, Sun YY, Chen H, Chen F, Chu WK (2006) Absence of ferromagnetism in Co-doped ZnO prepared by thermal diffusion of Co atoms. J Appl Phys 100:043909CrossRef
30.
go back to reference Yin S, Xu MX, Yang L, Liu JF, Rosner H, Hahn H, Gleiter H, Schild D, Doyle S, Liu T, Hu TD, Takayama-Muromachi E, Jiang JZ (2006) Absence of ferromagnetism in bulk polycrystalline Zn0.9Co0.1O. Phys Rev B 73:224408CrossRef Yin S, Xu MX, Yang L, Liu JF, Rosner H, Hahn H, Gleiter H, Schild D, Doyle S, Liu T, Hu TD, Takayama-Muromachi E, Jiang JZ (2006) Absence of ferromagnetism in bulk polycrystalline Zn0.9Co0.1O. Phys Rev B 73:224408CrossRef
31.
go back to reference de Carvalho HB, de Godoy MPF, Paes RWD, Mir M, Ortiz de Zevallos A, Iikawa F, Brasil MJSP, Chitta VA, Ferraz WB, Boselli MA, Sabioni ACS (2010) Absence of ferromagnetic order in high quality bulk Co-doped ZnO samples. J Appl Phys 108:033914CrossRef de Carvalho HB, de Godoy MPF, Paes RWD, Mir M, Ortiz de Zevallos A, Iikawa F, Brasil MJSP, Chitta VA, Ferraz WB, Boselli MA, Sabioni ACS (2010) Absence of ferromagnetic order in high quality bulk Co-doped ZnO samples. J Appl Phys 108:033914CrossRef
32.
go back to reference Norton DP, Overberg ME, Pearton SJ, Pruessner K, Budai JD, Boatner LA, Chisholm MF, Lee JS, Khim ZG, Park YD (2003) Ferromagnetism in cobalt-implanted ZnO. Appl Phys Lett 83:5488–5490CrossRef Norton DP, Overberg ME, Pearton SJ, Pruessner K, Budai JD, Boatner LA, Chisholm MF, Lee JS, Khim ZG, Park YD (2003) Ferromagnetism in cobalt-implanted ZnO. Appl Phys Lett 83:5488–5490CrossRef
33.
go back to reference Potzger K, Zhou S, Reuther H, Mucklich A, Eichhorn F, Schell N, Skorupa W, Helm M, Fassbender J, Herrmannsdorfer T (2006) Fe implanted ferromagnetic ZnO. Appl Phys Lett 88:052508CrossRef Potzger K, Zhou S, Reuther H, Mucklich A, Eichhorn F, Schell N, Skorupa W, Helm M, Fassbender J, Herrmannsdorfer T (2006) Fe implanted ferromagnetic ZnO. Appl Phys Lett 88:052508CrossRef
34.
go back to reference Wu P, Saraf G, Lu Y, Hill DH, Gateau R, Wielunski L, Bartynski RA, Arena DA, Dvorak J, Moodenbaugh A (2006) Ferromagnetism in Fe-implanted a-plane ZnO films. Appl Phys Lett 89:012508CrossRef Wu P, Saraf G, Lu Y, Hill DH, Gateau R, Wielunski L, Bartynski RA, Arena DA, Dvorak J, Moodenbaugh A (2006) Ferromagnetism in Fe-implanted a-plane ZnO films. Appl Phys Lett 89:012508CrossRef
35.
go back to reference Zhou SQ, Potzger K, Borany JV, Grotzschel R, Skorupa W, Helm M, Fassbender J (2008) Crystallographically oriented Co and Ni nanocrystals inside ZnO formed by ion implantation and postannealing. Phys Rev B 77:035209CrossRef Zhou SQ, Potzger K, Borany JV, Grotzschel R, Skorupa W, Helm M, Fassbender J (2008) Crystallographically oriented Co and Ni nanocrystals inside ZnO formed by ion implantation and postannealing. Phys Rev B 77:035209CrossRef
36.
go back to reference Schumm M, Koerdel M, Muller S, Ronning C, Dynowska E, Golacki Z, Szuszkiewicz W, Geurts J (2009) Secondary phase segregation in heavily transition metal implanted ZnO. J Appl Phys 105:083525CrossRef Schumm M, Koerdel M, Muller S, Ronning C, Dynowska E, Golacki Z, Szuszkiewicz W, Geurts J (2009) Secondary phase segregation in heavily transition metal implanted ZnO. J Appl Phys 105:083525CrossRef
37.
go back to reference Wikberg JM, Knut R, Audren A, Ottosson M, Linnarsson MK, Karis O, Hallen A, Svedlindh P (2011) Annealing effects on structural and magnetic properties of Co implanted ZnO single crystals. J Appl Phys 109:083918CrossRef Wikberg JM, Knut R, Audren A, Ottosson M, Linnarsson MK, Karis O, Hallen A, Svedlindh P (2011) Annealing effects on structural and magnetic properties of Co implanted ZnO single crystals. J Appl Phys 109:083918CrossRef
38.
go back to reference Srivastava P, Ghosh S, Joshi B, Satyarthi P (2012) Probing origin of room temperature ferromagnetism in Ni ion implanted ZnO films with x-ray absorption spectroscopy. J Appl Phys 111:013715CrossRef Srivastava P, Ghosh S, Joshi B, Satyarthi P (2012) Probing origin of room temperature ferromagnetism in Ni ion implanted ZnO films with x-ray absorption spectroscopy. J Appl Phys 111:013715CrossRef
39.
go back to reference Chen ZQ, Wang SJ, Maekawa M, Kawasuso A, Naramoto H, Yuan XL, Sekiguchi T (2007) Thermal evolution of defects in as-grown and electron-irradiated ZnO studied by positron annihilation. Phys Rev B 75:245206CrossRef Chen ZQ, Wang SJ, Maekawa M, Kawasuso A, Naramoto H, Yuan XL, Sekiguchi T (2007) Thermal evolution of defects in as-grown and electron-irradiated ZnO studied by positron annihilation. Phys Rev B 75:245206CrossRef
40.
go back to reference Chen ZQ, Kawasuso A, Xu Y, Naramoto H, Yuan XL, Sekiguchi T, Suzuki R, Ohdaira T (2005) Microvoid formation in hydrogen-implanted ZnO probed by a slow positron beam. Phys Rev B 71:115213CrossRef Chen ZQ, Kawasuso A, Xu Y, Naramoto H, Yuan XL, Sekiguchi T, Suzuki R, Ohdaira T (2005) Microvoid formation in hydrogen-implanted ZnO probed by a slow positron beam. Phys Rev B 71:115213CrossRef
41.
go back to reference Chen ZQ, Maekawa M, Yamamoto S, Kawasuso A, Yuan XL, Sekiguchi T, Suzuki R, Ohdaira T (2004) Evolution of voids in Al-implanted ZnO probed by a slow positron beam. Phys Rev B 69:035210CrossRef Chen ZQ, Maekawa M, Yamamoto S, Kawasuso A, Yuan XL, Sekiguchi T, Suzuki R, Ohdaira T (2004) Evolution of voids in Al-implanted ZnO probed by a slow positron beam. Phys Rev B 69:035210CrossRef
42.
go back to reference Tuomisto F, Ranki V, Saarinen K, Look DC (2003) Evidence of the Zn vacancy acting as the dominant acceptor in n-type ZnO. Phys Rev Lett 91:205502CrossRef Tuomisto F, Ranki V, Saarinen K, Look DC (2003) Evidence of the Zn vacancy acting as the dominant acceptor in n-type ZnO. Phys Rev Lett 91:205502CrossRef
43.
go back to reference Biersack JP, Haggmark LG (1980) A Monte Carlo computer program for the transport of energetic ions in amorphous targets. Nucl Instrum Methods 174(1–2):257–269CrossRef Biersack JP, Haggmark LG (1980) A Monte Carlo computer program for the transport of energetic ions in amorphous targets. Nucl Instrum Methods 174(1–2):257–269CrossRef
44.
go back to reference Wang XB, Song C, Geng KW, Zeng F, Pan F (2006) Luminescence and Raman scattering properties of Ag-doped ZnO films. J Phys D Appl Phys 39:4992–4996CrossRef Wang XB, Song C, Geng KW, Zeng F, Pan F (2006) Luminescence and Raman scattering properties of Ag-doped ZnO films. J Phys D Appl Phys 39:4992–4996CrossRef
45.
go back to reference Mandal SK, Das AK, Nath TK, Karmakar D (2006) Temperature dependence of solubility limits of transition metals (Co, Mn, Fe, and Ni) in ZnO nanoparticles. Appl Phys Lett 89:144105CrossRef Mandal SK, Das AK, Nath TK, Karmakar D (2006) Temperature dependence of solubility limits of transition metals (Co, Mn, Fe, and Ni) in ZnO nanoparticles. Appl Phys Lett 89:144105CrossRef
46.
go back to reference Park JH, Min GK, Jang HM, Ryu S, Kim YM (2004) Co-metal clustering as the origin of ferromagnetism in Co-doped ZnO thin films. Appl Phys Lett 84:1338–1340CrossRef Park JH, Min GK, Jang HM, Ryu S, Kim YM (2004) Co-metal clustering as the origin of ferromagnetism in Co-doped ZnO thin films. Appl Phys Lett 84:1338–1340CrossRef
47.
go back to reference Damen TC, Porto SPS, Tell B (1966) Raman effect in zinc oxide. Phys Rev 142:570–574CrossRef Damen TC, Porto SPS, Tell B (1966) Raman effect in zinc oxide. Phys Rev 142:570–574CrossRef
48.
go back to reference Chen ZQ, Kawasuso A, Xu Y, Naramoto H (2005) Production and recovery of defects in phosphorus-implanted ZnO. J Appl Phys 97:013528CrossRef Chen ZQ, Kawasuso A, Xu Y, Naramoto H (2005) Production and recovery of defects in phosphorus-implanted ZnO. J Appl Phys 97:013528CrossRef
49.
go back to reference Zeng JN, Low JK, Ren ZM, Liew T, Lu YF (2002) Effect of deposition conditions on optical and electrical properties of ZnO films prepared by pulsed laser deposition. Appl Surf Sci 197–198:362–367CrossRef Zeng JN, Low JK, Ren ZM, Liew T, Lu YF (2002) Effect of deposition conditions on optical and electrical properties of ZnO films prepared by pulsed laser deposition. Appl Surf Sci 197–198:362–367CrossRef
50.
go back to reference Jeong S-H, Kim J-K, Lee B-T (2003) Effects of growth conditions on the emission properties of ZnO films prepared on Si (100) by rf magnetron sputtering. J Phys D Appl Phys 36:2017CrossRef Jeong S-H, Kim J-K, Lee B-T (2003) Effects of growth conditions on the emission properties of ZnO films prepared on Si (100) by rf magnetron sputtering. J Phys D Appl Phys 36:2017CrossRef
51.
go back to reference Youn CJ, Jeong TS, Han MS, Kim JH (2004) Optical properties of Zn-terminated ZnO bulk. J Cryst Growth 261:526–532CrossRef Youn CJ, Jeong TS, Han MS, Kim JH (2004) Optical properties of Zn-terminated ZnO bulk. J Cryst Growth 261:526–532CrossRef
52.
go back to reference Zhang T, Song L, Chen Z, Shi E, Chao L, Zhang H (2006) Origin of ferromagnetism of (Co, Al)-codoped ZnO from first-principles calculations. Appl Phys Lett 89:172502CrossRef Zhang T, Song L, Chen Z, Shi E, Chao L, Zhang H (2006) Origin of ferromagnetism of (Co, Al)-codoped ZnO from first-principles calculations. Appl Phys Lett 89:172502CrossRef
53.
go back to reference Hu S, Yan S, Zhao M, Mei L (2006) First-principles LDA+U calculations of the Co-doped ZnO magnetic semiconductor. Phys Rev B 73:245205CrossRef Hu S, Yan S, Zhao M, Mei L (2006) First-principles LDA+U calculations of the Co-doped ZnO magnetic semiconductor. Phys Rev B 73:245205CrossRef
Metadata
Title
Vacancy-mediated ferromagnetism in Co-implanted ZnO studied using a slow positron beam
Authors
D. D. Wang
B. Zhao
N. Qi
Z. Q. Chen
A. Kawasuso
Publication date
02-03-2017
Publisher
Springer US
Published in
Journal of Materials Science / Issue 12/2017
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-0939-3

Other articles of this Issue 12/2017

Journal of Materials Science 12/2017 Go to the issue

Premium Partners