Skip to main content
Top
Published in: Journal of Materials Science 12/2017

16-03-2017 | Original Paper

Improving the filler dispersion and performance of silicone rubber/multi-walled carbon nanotube composites by noncovalent functionalization of polymethylphenylsiloxane

Authors: Lu Bai, Yulian Bai, Junping Zheng

Published in: Journal of Materials Science | Issue 12/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this work, multi-walled carbon nanotubes (CNTs) were noncovalently functionalized with different amount of polymethylphenylsiloxane (PMPS) successfully, and then the products named as PMPS-1/CNTs, PMPS-2/CNTs and PMPS-3/CNTs, respectively, were introduced into silicone rubber (SR) to prepare a series of SR-based composites. Subsequent characterizations were used to analyze the noncovalent functionalization in addition to the thermal oxidative stability and mechanical properties of SR-based composites. The results showed that PMPS was wrapped on CNTs via physical absorption. PMPS/CNTs had good dispersibility in ethanol, and the solutions could remain stable without any visible precipitation even for 6 months. The physical absorption was thought to mainly result from π–π stacking, CH–π interactions and the van der Waals force between PMPS and the sp2 hybridized network of CNTs. Both the thermal oxidative stability and mechanical properties of PMPS/CNTs/SR composites before and after thermal oxidative aging could be improved by noncovalent functionalization of PMPS. For example, compared with CNTs/SR, the tensile strength before and after thermal oxidative aging of PMPS-2/CNTs/SR could be improved by 13 and 62%, respectively. Moreover, it was found that only the appropriate amount of PMPS can maximize the enhancement of noncovalent functionalization.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Yue L, Pircheraghi G, Monemian SA, Manas-Zloczower I (2014) Epoxy composites with carbon nanotubes and graphene nanoplatelets—dispersion and synergy effects. Carbon 78:268–278CrossRef Yue L, Pircheraghi G, Monemian SA, Manas-Zloczower I (2014) Epoxy composites with carbon nanotubes and graphene nanoplatelets—dispersion and synergy effects. Carbon 78:268–278CrossRef
2.
go back to reference Spitalsky Z, Tasis D, Papagelis K, Galiotis C (2010) Carbon nanotube-polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35:357–401CrossRef Spitalsky Z, Tasis D, Papagelis K, Galiotis C (2010) Carbon nanotube-polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35:357–401CrossRef
3.
go back to reference Yang Y, Qiu S, Cui W, Zhao Q, Cheng X, Li RKY, Mai YW (2009) A facile method to fabricate silica-coated carbon nanotubes and silica nanotubes from carbon nanotubes templates. J Mater Sci 44:4539–4545. doi:10.1007/s10853-009-3687-1 CrossRef Yang Y, Qiu S, Cui W, Zhao Q, Cheng X, Li RKY, Mai YW (2009) A facile method to fabricate silica-coated carbon nanotubes and silica nanotubes from carbon nanotubes templates. J Mater Sci 44:4539–4545. doi:10.​1007/​s10853-009-3687-1 CrossRef
4.
go back to reference Cheng HKF, Pan Y, Sahoo NG, Chong K, Li L, Chan SH (2012) Improvement in properties of multiwalled carbon nanotube/polypropylene nanocomposites through homogeneous dispersion with the aid of surfactants. J Appl Polym Sci 124:1117–1127CrossRef Cheng HKF, Pan Y, Sahoo NG, Chong K, Li L, Chan SH (2012) Improvement in properties of multiwalled carbon nanotube/polypropylene nanocomposites through homogeneous dispersion with the aid of surfactants. J Appl Polym Sci 124:1117–1127CrossRef
5.
go back to reference Chen Y, Zhang B, Gao Z, Chen C, Zhao S, Qin Y (2015) Functionalization of multiwalled carbon nanotubes with uniform polyurea coatings by molecular layer deposition. Carbon 82:470–478CrossRef Chen Y, Zhang B, Gao Z, Chen C, Zhao S, Qin Y (2015) Functionalization of multiwalled carbon nanotubes with uniform polyurea coatings by molecular layer deposition. Carbon 82:470–478CrossRef
6.
go back to reference Koysuren O, Karaman M, Ozyurt D (2013) Effect of noncovalent chemical modification on the electrical conductivity and tensile properties of poly(methyl methacrylate)/carbon nanotube composites. J Appl Polym Sci 127:4557–4563CrossRef Koysuren O, Karaman M, Ozyurt D (2013) Effect of noncovalent chemical modification on the electrical conductivity and tensile properties of poly(methyl methacrylate)/carbon nanotube composites. J Appl Polym Sci 127:4557–4563CrossRef
7.
go back to reference Bilalis P, Katsigiannopoulos D, Avgeropoulos A, Sakellariou G (2014) Non-covalent functionalization of carbon nanotubes with polymers. RSC Adv 4:2911–2934CrossRef Bilalis P, Katsigiannopoulos D, Avgeropoulos A, Sakellariou G (2014) Non-covalent functionalization of carbon nanotubes with polymers. RSC Adv 4:2911–2934CrossRef
8.
go back to reference Tunckol M, Fantini S, Malbosc F, Durand J, Serp P (2013) Effect of the synthetic strategy on the noncovalent functionalization of multi-walled carbon nanotubes with polymerized ionic liquids. Carbon 57:209–216CrossRef Tunckol M, Fantini S, Malbosc F, Durand J, Serp P (2013) Effect of the synthetic strategy on the noncovalent functionalization of multi-walled carbon nanotubes with polymerized ionic liquids. Carbon 57:209–216CrossRef
9.
go back to reference Zhang W, Chen M, Gong X, Diao G (2013) Universal water-soluble cyclodextrin polymer–carbon nanomaterials with supramolecular recognition. Carbon 61:154–163CrossRef Zhang W, Chen M, Gong X, Diao G (2013) Universal water-soluble cyclodextrin polymer–carbon nanomaterials with supramolecular recognition. Carbon 61:154–163CrossRef
10.
go back to reference Son M, Choi H, Liu L, Celik E, Park H, Choi H (2015) Efficacy of carbon nanotube positioning in the polyethersulfone support layer on the performance of thin-film composite membrane for desalination. Chem Eng J 266:376–384CrossRef Son M, Choi H, Liu L, Celik E, Park H, Choi H (2015) Efficacy of carbon nanotube positioning in the polyethersulfone support layer on the performance of thin-film composite membrane for desalination. Chem Eng J 266:376–384CrossRef
11.
go back to reference Baskaran D, Mays JW, Bratcher MS (2005) Noncovalent and nonspecific molecular interactions of polymers with multiwalled carbon nanotubes. Chem Mater 17:3389–3397CrossRef Baskaran D, Mays JW, Bratcher MS (2005) Noncovalent and nonspecific molecular interactions of polymers with multiwalled carbon nanotubes. Chem Mater 17:3389–3397CrossRef
12.
go back to reference Karousis N, Tagmatarchis N, Tasis D (2010) Current progress on the chemical modification of carbon nanotubes. Chem Rev 110:5366–5397CrossRef Karousis N, Tagmatarchis N, Tasis D (2010) Current progress on the chemical modification of carbon nanotubes. Chem Rev 110:5366–5397CrossRef
13.
go back to reference Morishita T, Matsushita M, Katagiri Y, Fukumori K (2010) Noncovalent functionalization of carbon nanotubes with maleimide polymers applicable to high-melting polymer-based composites. Carbon 48:2308–2316CrossRef Morishita T, Matsushita M, Katagiri Y, Fukumori K (2010) Noncovalent functionalization of carbon nanotubes with maleimide polymers applicable to high-melting polymer-based composites. Carbon 48:2308–2316CrossRef
14.
go back to reference Park S, Huh JO, Kim NG, Kang SM, Lee KB, Hong SP, Choi IS (2008) Photophysical properties of noncovalently functionalized multi-walled carbon nanotubes with poly-para-hydroxystyrene. Carbon 46:714–716CrossRef Park S, Huh JO, Kim NG, Kang SM, Lee KB, Hong SP, Choi IS (2008) Photophysical properties of noncovalently functionalized multi-walled carbon nanotubes with poly-para-hydroxystyrene. Carbon 46:714–716CrossRef
15.
go back to reference Van den Brande N, Koning C, Geerlings P, Van Lier G, Van Assche G, Van Mele B (2011) Partially miscible polystyrene/polymethylphenylsiloxane blends for nanocomposites. J Therm Anal Calorim 105:775–781CrossRef Van den Brande N, Koning C, Geerlings P, Van Lier G, Van Assche G, Van Mele B (2011) Partially miscible polystyrene/polymethylphenylsiloxane blends for nanocomposites. J Therm Anal Calorim 105:775–781CrossRef
16.
go back to reference Diao S, Jin K, Yang Z, Lu H, Feng S, Zhang C (2011) The effect of phenyl modified fumed silica on radiation resistance of silicone rubber. Mater Chem Phys 129:202–208CrossRef Diao S, Jin K, Yang Z, Lu H, Feng S, Zhang C (2011) The effect of phenyl modified fumed silica on radiation resistance of silicone rubber. Mater Chem Phys 129:202–208CrossRef
17.
go back to reference Kukovecz A, Kramberger C, Georgakilas V, Prato M, Kuzmany H (2002) A detailed Raman study on thin single-wall carbon nanotubes prepared by the HiPCO process. Eur Phys J B 28:223–230CrossRef Kukovecz A, Kramberger C, Georgakilas V, Prato M, Kuzmany H (2002) A detailed Raman study on thin single-wall carbon nanotubes prepared by the HiPCO process. Eur Phys J B 28:223–230CrossRef
18.
go back to reference Liang S, Li G, Tian R (2016) Multi-walled carbon nanotubes functionalized with a ultrahigh fraction of carboxyl and hydroxyl groups by ultrasound-assisted oxidation. J Mater Sci 51:3513–3524. doi:10.1007/s10853-015-9671-z CrossRef Liang S, Li G, Tian R (2016) Multi-walled carbon nanotubes functionalized with a ultrahigh fraction of carboxyl and hydroxyl groups by ultrasound-assisted oxidation. J Mater Sci 51:3513–3524. doi:10.​1007/​s10853-015-9671-z CrossRef
19.
go back to reference Chang CM, Liu YL (2010) Functionalization of multi-walled carbon nanotubes with non-reactive polymers through an ozone-mediated process for the preparation of a wide range of high performance polymer/carbon nanotube composites. Carbon 48:1289–1297CrossRef Chang CM, Liu YL (2010) Functionalization of multi-walled carbon nanotubes with non-reactive polymers through an ozone-mediated process for the preparation of a wide range of high performance polymer/carbon nanotube composites. Carbon 48:1289–1297CrossRef
20.
go back to reference Bahr JL, Tour JM (2001) Highly functionalized carbon nanotubes using in situ generated diazonium compounds. Chem Mater 13:3823–3824CrossRef Bahr JL, Tour JM (2001) Highly functionalized carbon nanotubes using in situ generated diazonium compounds. Chem Mater 13:3823–3824CrossRef
21.
go back to reference Dyke CA, Tour JM (2003) Unbundled and highly functionalized carbon nanotubes from aqueous reactions. Nano Lett 3:1215–1218CrossRef Dyke CA, Tour JM (2003) Unbundled and highly functionalized carbon nanotubes from aqueous reactions. Nano Lett 3:1215–1218CrossRef
22.
go back to reference Hu C, Liao H, Li F, Xiang J, Li W, Duo S, Li M (2008) Noncovalent functionalization of multi-walled carbon nanotubes with siloxane polyether copolymer. Mater Lett 62:2585–2588CrossRef Hu C, Liao H, Li F, Xiang J, Li W, Duo S, Li M (2008) Noncovalent functionalization of multi-walled carbon nanotubes with siloxane polyether copolymer. Mater Lett 62:2585–2588CrossRef
23.
go back to reference Sinani VA, Gheith MK, Yaroslavov AA, Sun K, Mamedov AA, Kotov NA (2005) Aqueous dispersions of single-wall and multiwall carbon nanotubes with designed amphiphilic polycations. J Am Chem Soc 127:3463–3472CrossRef Sinani VA, Gheith MK, Yaroslavov AA, Sun K, Mamedov AA, Kotov NA (2005) Aqueous dispersions of single-wall and multiwall carbon nanotubes with designed amphiphilic polycations. J Am Chem Soc 127:3463–3472CrossRef
24.
go back to reference Hunter CA, Sanders JKM (1990) The nature of pi–pi interactions. J Am Chem Soc 112:5525–5534CrossRef Hunter CA, Sanders JKM (1990) The nature of pi–pi interactions. J Am Chem Soc 112:5525–5534CrossRef
25.
go back to reference Sinnokrot MO, Valeev EF, Sherrill CD (2002) Estimates of the ab initio limit for π–π interactions: the benzene dimer. J Am Chem Soc 124:10887–10893CrossRef Sinnokrot MO, Valeev EF, Sherrill CD (2002) Estimates of the ab initio limit for π–π interactions: the benzene dimer. J Am Chem Soc 124:10887–10893CrossRef
26.
go back to reference Zhang Z, Zhang J, Chen P, Zhang B, He J, Hu GH (2006) Enhanced interactions between multi-walled carbon nanotubes and polystyrene induced by melt mixing. Carbon 44:692–698CrossRef Zhang Z, Zhang J, Chen P, Zhang B, He J, Hu GH (2006) Enhanced interactions between multi-walled carbon nanotubes and polystyrene induced by melt mixing. Carbon 44:692–698CrossRef
27.
go back to reference Liao K, Li S (2001) Interfacial characteristics of a carbon nanotube–polystyrene composite system. Appl Phys Lett 79:4225–4227CrossRef Liao K, Li S (2001) Interfacial characteristics of a carbon nanotube–polystyrene composite system. Appl Phys Lett 79:4225–4227CrossRef
28.
go back to reference Rouse JH (2005) Polymer-assisted dispersion of single-walled carbon nanotubes in alcohols and applicability toward carbon nanotube/sol−gel composite formation. Langmuir 21:1055–1061CrossRef Rouse JH (2005) Polymer-assisted dispersion of single-walled carbon nanotubes in alcohols and applicability toward carbon nanotube/sol−gel composite formation. Langmuir 21:1055–1061CrossRef
29.
go back to reference Yuan WZ, Tang L, Zhao H, Jin JK, Sun JZ, Qin A, Chen E (2009) Direct polymerization of highly polar acetylene derivatives and facile fabrication of nanoparticle-decorated carbon nanotubes. Macromolecules 42:52–61CrossRef Yuan WZ, Tang L, Zhao H, Jin JK, Sun JZ, Qin A, Chen E (2009) Direct polymerization of highly polar acetylene derivatives and facile fabrication of nanoparticle-decorated carbon nanotubes. Macromolecules 42:52–61CrossRef
30.
go back to reference Sundararajan K, Sankaran K, Viswanathan KS, Kulkarni AD, Gadre SR (2002) H–π complexes of acetylene–ethylene: a matrix isolation and computational study. J Phys Chem A 106:1504–1510CrossRef Sundararajan K, Sankaran K, Viswanathan KS, Kulkarni AD, Gadre SR (2002) H–π complexes of acetylene–ethylene: a matrix isolation and computational study. J Phys Chem A 106:1504–1510CrossRef
31.
go back to reference Naito M, Nobusawa K, Onouchi H, Nakamura M, Yasui KI, Ikeda A, Fujiki M (2008) Stiffness- and conformation-dependent polymer wrapping onto single-walled carbon nanotubes. J Am Chem Soc 130:16697–16703CrossRef Naito M, Nobusawa K, Onouchi H, Nakamura M, Yasui KI, Ikeda A, Fujiki M (2008) Stiffness- and conformation-dependent polymer wrapping onto single-walled carbon nanotubes. J Am Chem Soc 130:16697–16703CrossRef
32.
go back to reference Beigbeder A, Linares M, Devalckenaere M, Degée P, Claes M, Beljonne D, Dubois P (2008) CH–π interactions as the driving force for silicone-based nanocomposites with exceptional properties. Adv Mater 20:1003–1007CrossRef Beigbeder A, Linares M, Devalckenaere M, Degée P, Claes M, Beljonne D, Dubois P (2008) CH–π interactions as the driving force for silicone-based nanocomposites with exceptional properties. Adv Mater 20:1003–1007CrossRef
33.
go back to reference Verdejo R, Barroso-Bujans F, Rodriguez-Perez MA, de Saja JA, Arroyo M, Lopez-Manchado MA (2008) Carbon nanotubes provide self-extinguishing grade to silicone-based foams. J Mater Chem 18:3933CrossRef Verdejo R, Barroso-Bujans F, Rodriguez-Perez MA, de Saja JA, Arroyo M, Lopez-Manchado MA (2008) Carbon nanotubes provide self-extinguishing grade to silicone-based foams. J Mater Chem 18:3933CrossRef
34.
go back to reference Zhang H, Xu L, Yang F, Geng L (2010) The synthesis of polyacrylonitrile/carbon nanotube microspheres by aqueous deposition polymerization under ultrasonication. Carbon 48:688–695CrossRef Zhang H, Xu L, Yang F, Geng L (2010) The synthesis of polyacrylonitrile/carbon nanotube microspheres by aqueous deposition polymerization under ultrasonication. Carbon 48:688–695CrossRef
35.
go back to reference McNally T, Pötschke P, Halley P, Murphy M, Martin D, Bell SE, Quinn JP (2005) Polyethylene multiwalled carbon nanotube composites. Polymer 46:8222–8232CrossRef McNally T, Pötschke P, Halley P, Murphy M, Martin D, Bell SE, Quinn JP (2005) Polyethylene multiwalled carbon nanotube composites. Polymer 46:8222–8232CrossRef
36.
go back to reference Petrie K, Kontopoulou M, Docoslis A (2016) Noncovalent compatibilization of polypropylene/MWCNT composites using an amino-pyridine grafted polypropylene matrix. Polym Compos 37:2794–2802CrossRef Petrie K, Kontopoulou M, Docoslis A (2016) Noncovalent compatibilization of polypropylene/MWCNT composites using an amino-pyridine grafted polypropylene matrix. Polym Compos 37:2794–2802CrossRef
37.
go back to reference Logakis E, Pollatos E, Pandis C, Peoglos V, Zuburtikudis I, Delides CG, Pissis P (2010) Structure–property relationships in isotactic polypropylene/multi-walled carbon nanotubes nanocomposites. Compos Sci Technol 70:328–335CrossRef Logakis E, Pollatos E, Pandis C, Peoglos V, Zuburtikudis I, Delides CG, Pissis P (2010) Structure–property relationships in isotactic polypropylene/multi-walled carbon nanotubes nanocomposites. Compos Sci Technol 70:328–335CrossRef
38.
go back to reference Yang J, Xu T, Lu A et al (2009) Preparation and properties of poly (p-phenylene sulfide)/multiwall carbon nanotube composites obtained by melt compounding. Compos Sci Technol 69:147–153CrossRef Yang J, Xu T, Lu A et al (2009) Preparation and properties of poly (p-phenylene sulfide)/multiwall carbon nanotube composites obtained by melt compounding. Compos Sci Technol 69:147–153CrossRef
39.
go back to reference Camino G, Lomakin S, Lazzari M (2001) Polydimethylsiloxane thermal degradation Part 1. Kinetic aspects. Polymer 42:2395–2402CrossRef Camino G, Lomakin S, Lazzari M (2001) Polydimethylsiloxane thermal degradation Part 1. Kinetic aspects. Polymer 42:2395–2402CrossRef
40.
go back to reference Chen D, Nie J, Yi S, Wu W, Zhong Y, Liao J, Huang C (2010) Thermal behaviour and mechanical properties of novel RTV silicone rubbers using divinyl-hexa[(trimethoxysilyl)ethyl]-POSS as cross-linker. Polym Degrad Stabil 95:618–626CrossRef Chen D, Nie J, Yi S, Wu W, Zhong Y, Liao J, Huang C (2010) Thermal behaviour and mechanical properties of novel RTV silicone rubbers using divinyl-hexa[(trimethoxysilyl)ethyl]-POSS as cross-linker. Polym Degrad Stabil 95:618–626CrossRef
41.
go back to reference Thomas TH, Kendrick TC (1969) Thermal analysis of polydimethylsiloxanes. I. Thermal degradation in controlled atmospheres. J Polym Sci Part A 2 Polym Phys 7(7):537–549CrossRef Thomas TH, Kendrick TC (1969) Thermal analysis of polydimethylsiloxanes. I. Thermal degradation in controlled atmospheres. J Polym Sci Part A 2 Polym Phys 7(7):537–549CrossRef
42.
go back to reference Katihabwa A, Wang Wencai, Jiang Yi, Zhao X, Lu Y, Zhang L (2011) Multi-walled carbon nanotubes/silicone rubber nanocomposites prepared by high shear mechanical mixing. J Reinf Plast Comp 30:1007–1014CrossRef Katihabwa A, Wang Wencai, Jiang Yi, Zhao X, Lu Y, Zhang L (2011) Multi-walled carbon nanotubes/silicone rubber nanocomposites prepared by high shear mechanical mixing. J Reinf Plast Comp 30:1007–1014CrossRef
43.
go back to reference Sagar S, Iqbal N, Maqsood A, Shahid M, Shah NA, Jamil T, Bassyouni MI (2015) Fabrication and thermal characteristics of functionalized carbon nanotubes impregnated polydimethylsiloxane nanocomposites. J Compos Mater 49:995–1006CrossRef Sagar S, Iqbal N, Maqsood A, Shahid M, Shah NA, Jamil T, Bassyouni MI (2015) Fabrication and thermal characteristics of functionalized carbon nanotubes impregnated polydimethylsiloxane nanocomposites. J Compos Mater 49:995–1006CrossRef
44.
go back to reference Shi X, Jiang B, Wang J, Yang Y (2012) Influence of wall number and surface functionalization of carbon nanotubes on their antioxidant behavior in high density polyethylene. Carbon 50:1005–1013CrossRef Shi X, Jiang B, Wang J, Yang Y (2012) Influence of wall number and surface functionalization of carbon nanotubes on their antioxidant behavior in high density polyethylene. Carbon 50:1005–1013CrossRef
45.
go back to reference Watts PCP, Fearon PK, Hsu WK, Billingham NC, Kroto HW, Walton DRM (2003) Carbon nanotubes as polymer antioxidants. J Mater Chem 13:491–495CrossRef Watts PCP, Fearon PK, Hsu WK, Billingham NC, Kroto HW, Walton DRM (2003) Carbon nanotubes as polymer antioxidants. J Mater Chem 13:491–495CrossRef
46.
Metadata
Title
Improving the filler dispersion and performance of silicone rubber/multi-walled carbon nanotube composites by noncovalent functionalization of polymethylphenylsiloxane
Authors
Lu Bai
Yulian Bai
Junping Zheng
Publication date
16-03-2017
Publisher
Springer US
Published in
Journal of Materials Science / Issue 12/2017
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-0984-y

Other articles of this Issue 12/2017

Journal of Materials Science 12/2017 Go to the issue

Premium Partners