Skip to main content
Top
Published in: Journal of Materials Science 12/2017

02-03-2017 | Original Paper

Corrosion-resistant engineering superhydrophobic and superoleophilic bulk materials with oil–water separation property

Authors: Enqun Wang, Huaiyuan Wang, Yue Hu, Zhanjian Liu, Yanji Zhu

Published in: Journal of Materials Science | Issue 12/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A corrosion-resistant superhydrophobic and superoleophilic modified poly(vinylidene fluoride)-based bulk material with oil–water separation ability is fabricated through a facile method of molding and sintering process. Fluorinated ethylene propylene was added as the one of the cross-linking agents. Nanometer silica (SiO2) and carbon nanotubes (CNTs) were added into the bulk material to construct the necessary reticulate papillae structures for superhydrophobic surface. NH4HCO3 was added as a pore-forming reagent in order to realize porous structure and oil–water separation. The bulk material can be designed to different appearances, such as cuboids, cylinder and sealing rings. The resulting bulk material shows excellent superhydrophobic and superoleophilic with a water contact angle of 164° and oil contact angle of almost 0°. As the SiO2 and CNTs filled the entire bulk material, any section of the bulk material shows excellent superhydrophobicity. The thermal resistance of the bulk material was improved due to the introduction of nanoparticles. The corrosion resistance of the superhydrophobic bulk material was investigated in an aqueous NaCl solution (3.5%). The results show that the prepared composite bulk material is effective in corrosion resistance, primarily due to the barrier effect of Cassie–Baxter model of superhydrophobic surface. It is believed that this bulk material would be an engineering material for large-scale application.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Xue Z, Cao Y, Liu N et al (2014) Special wettable materials for oil/water separation. J Mater Chem A 2(8):2445–2460CrossRef Xue Z, Cao Y, Liu N et al (2014) Special wettable materials for oil/water separation. J Mater Chem A 2(8):2445–2460CrossRef
2.
go back to reference Wang B, Liang W, Guo Z et al (2015) Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: a new strategy beyond nature. Chem Soc Rev 44(1):336–361CrossRef Wang B, Liang W, Guo Z et al (2015) Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: a new strategy beyond nature. Chem Soc Rev 44(1):336–361CrossRef
3.
go back to reference Chu Z, Feng Y, Seeger S (2015) Oil/water separation with selective superantiwetting/superwetting surface materials. Angew Chem Int Ed 54(8):2328–2338CrossRef Chu Z, Feng Y, Seeger S (2015) Oil/water separation with selective superantiwetting/superwetting surface materials. Angew Chem Int Ed 54(8):2328–2338CrossRef
4.
go back to reference Wang H, Wang E, Liu Z et al (2015) A novel carbon nanotubes reinforced superhydrophobic and superoleophilic polyurethane sponge for selective oil–water separation through a chemical fabrication. J Mater Chem A 3(1):266–273CrossRef Wang H, Wang E, Liu Z et al (2015) A novel carbon nanotubes reinforced superhydrophobic and superoleophilic polyurethane sponge for selective oil–water separation through a chemical fabrication. J Mater Chem A 3(1):266–273CrossRef
5.
go back to reference Ge J, Ye YD, Yao HB et al (2014) Pumping through porous hydrophobic/oleophilic materials: an alternative technology for oil spill remediation. Angew Chem 126(14):3686–3690CrossRef Ge J, Ye YD, Yao HB et al (2014) Pumping through porous hydrophobic/oleophilic materials: an alternative technology for oil spill remediation. Angew Chem 126(14):3686–3690CrossRef
6.
go back to reference Li B, Li L, Wu L et al (2014) Durable superhydrophobic/superoleophilic polyurethane sponges inspired by mussel and lotus leaf for the selective removal of organic pollutants from water. ChemPlusChem 79(6):850–856CrossRef Li B, Li L, Wu L et al (2014) Durable superhydrophobic/superoleophilic polyurethane sponges inspired by mussel and lotus leaf for the selective removal of organic pollutants from water. ChemPlusChem 79(6):850–856CrossRef
7.
go back to reference Zhang X, Li Z, Liu K et al (2013) Bioinspired multifunctional foam with self-cleaning and oil/water separation. Adv Funct Mater 23(22):2881–2886CrossRef Zhang X, Li Z, Liu K et al (2013) Bioinspired multifunctional foam with self-cleaning and oil/water separation. Adv Funct Mater 23(22):2881–2886CrossRef
8.
go back to reference Zhu Q, Chu Y, Wang Z et al (2013) Robust superhydrophobic polyurethane sponge as a highly reusable oil-absorption material. J Mater Chem A 1(17):5386–5393CrossRef Zhu Q, Chu Y, Wang Z et al (2013) Robust superhydrophobic polyurethane sponge as a highly reusable oil-absorption material. J Mater Chem A 1(17):5386–5393CrossRef
9.
go back to reference Choi SJ, Kwon TH, Im H et al (2011) A polydimethylsiloxane (PDMS) sponge for the selective absorption of oil from water. ACS Appl Mater Interfaces 3(12):4552–4556CrossRef Choi SJ, Kwon TH, Im H et al (2011) A polydimethylsiloxane (PDMS) sponge for the selective absorption of oil from water. ACS Appl Mater Interfaces 3(12):4552–4556CrossRef
10.
go back to reference Wang E, Wang H, Liu Z et al (2015) One-step fabrication of a nickel foam-based superhydrophobic and superoleophilic box for continuous oil–water separation. J Mater Sci 50(13):4707–4716. doi:10.1007/s10853-015-9021-1 CrossRef Wang E, Wang H, Liu Z et al (2015) One-step fabrication of a nickel foam-based superhydrophobic and superoleophilic box for continuous oil–water separation. J Mater Sci 50(13):4707–4716. doi:10.​1007/​s10853-015-9021-1 CrossRef
11.
go back to reference Feng L, Zhang Z, Mai Z et al (2004) A super-hydrophobic and super-oleophilic coating mesh film for the separation of oil and water. Angew Chem Int Ed 43(15):2012–2014CrossRef Feng L, Zhang Z, Mai Z et al (2004) A super-hydrophobic and super-oleophilic coating mesh film for the separation of oil and water. Angew Chem Int Ed 43(15):2012–2014CrossRef
12.
go back to reference Lee CH, Johnson N, Drelich J et al (2011) The performance of superhydrophobic and superoleophilic carbon nanotube meshes in water–oil filtration. Carbon 49(2):669–676CrossRef Lee CH, Johnson N, Drelich J et al (2011) The performance of superhydrophobic and superoleophilic carbon nanotube meshes in water–oil filtration. Carbon 49(2):669–676CrossRef
13.
go back to reference Crick CR, Gibbins JA, Parkin IP (2013) Superhydrophobic polymer-coated copper-mesh; membranes for highly efficient oil–water separation. J Mater Chem A 1(19):5943–5948CrossRef Crick CR, Gibbins JA, Parkin IP (2013) Superhydrophobic polymer-coated copper-mesh; membranes for highly efficient oil–water separation. J Mater Chem A 1(19):5943–5948CrossRef
14.
go back to reference Wang B, Li J, Wang G et al (2013) Methodology for robust superhydrophobic fabrics and sponges from in situ growth of transition metal/metal oxide nanocrystals with thiol modification and their applications in oil/water separation. ACS Appl Mater Interfaces 5(5):1827–1839CrossRef Wang B, Li J, Wang G et al (2013) Methodology for robust superhydrophobic fabrics and sponges from in situ growth of transition metal/metal oxide nanocrystals with thiol modification and their applications in oil/water separation. ACS Appl Mater Interfaces 5(5):1827–1839CrossRef
15.
go back to reference Li K, Zeng X, Li H et al (2014) Facile fabrication of superhydrophobic filtration fabric with honeycomb structures for the separation of water and oil. Mater Lett 120:255–258CrossRef Li K, Zeng X, Li H et al (2014) Facile fabrication of superhydrophobic filtration fabric with honeycomb structures for the separation of water and oil. Mater Lett 120:255–258CrossRef
16.
go back to reference Zhu X, Zhang Z, Ge B et al (2014) A versatile approach to produce superhydrophobic materials used for oil–water separation. J Colloid Interface Sci 432:105–108CrossRef Zhu X, Zhang Z, Ge B et al (2014) A versatile approach to produce superhydrophobic materials used for oil–water separation. J Colloid Interface Sci 432:105–108CrossRef
17.
go back to reference Zhang J, Seeger S (2011) Polyester materials with superwetting silicone nanofilaments for oil/water separation and selective oil absorption. Adv Funct Mater 21(24):4699–4704CrossRef Zhang J, Seeger S (2011) Polyester materials with superwetting silicone nanofilaments for oil/water separation and selective oil absorption. Adv Funct Mater 21(24):4699–4704CrossRef
18.
go back to reference Stachowiak G, Batchelor AW (2013) Engineering tribology. Butterworth-Heinemann, Oxford Stachowiak G, Batchelor AW (2013) Engineering tribology. Butterworth-Heinemann, Oxford
19.
go back to reference Zang Z, Nakamura A, Temmyo J (2013) Single cuprous oxide films synthesized by radical oxidation at low temperature for PV application. Opt Express 21(9):11448–11456CrossRef Zang Z, Nakamura A, Temmyo J (2013) Single cuprous oxide films synthesized by radical oxidation at low temperature for PV application. Opt Express 21(9):11448–11456CrossRef
20.
go back to reference Zhu X, Zhang Z, Ren G et al (2012) A novel superhydrophobic bulk material. J Mater Chem 22(38):20146–20148CrossRef Zhu X, Zhang Z, Ren G et al (2012) A novel superhydrophobic bulk material. J Mater Chem 22(38):20146–20148CrossRef
21.
go back to reference Ge B, Zhang Z, Zhu X et al (2013) A magnetically superhydrophobic bulk material for oil removal. Colloids Surf A 429:129–133CrossRef Ge B, Zhang Z, Zhu X et al (2013) A magnetically superhydrophobic bulk material for oil removal. Colloids Surf A 429:129–133CrossRef
22.
go back to reference Zhang X, Guo Y, Chen H et al (2014) A novel damage-tolerant superhydrophobic and superoleophilic material. J Mater Chem A 2(24):9002–9006CrossRef Zhang X, Guo Y, Chen H et al (2014) A novel damage-tolerant superhydrophobic and superoleophilic material. J Mater Chem A 2(24):9002–9006CrossRef
23.
go back to reference Peng QY, Cong PH, Liu XJ et al (2009) The preparation of PVDF/clay nanocomposites and the investigation of their tribological properties. Wear 266(7):713–720CrossRef Peng QY, Cong PH, Liu XJ et al (2009) The preparation of PVDF/clay nanocomposites and the investigation of their tribological properties. Wear 266(7):713–720CrossRef
24.
go back to reference Thangavel E, Ramasundaram S, Pitchaimuthu S et al (2014) Structural and tribological characteristics of poly (vinylidene fluoride)/functionalized graphene oxide nanocomposite thin films. Compos Sci Technol 90:187–192CrossRef Thangavel E, Ramasundaram S, Pitchaimuthu S et al (2014) Structural and tribological characteristics of poly (vinylidene fluoride)/functionalized graphene oxide nanocomposite thin films. Compos Sci Technol 90:187–192CrossRef
25.
go back to reference Liang S, Kang Y, Tiraferri A et al (2013) Highly hydrophilic polyvinylidene fluoride (PVDF) ultrafiltration membranes via postfabrication grafting of surface-tailored silica nanoparticles. ACS Appl Mater Interfaces 5(14):6694–6703CrossRef Liang S, Kang Y, Tiraferri A et al (2013) Highly hydrophilic polyvinylidene fluoride (PVDF) ultrafiltration membranes via postfabrication grafting of surface-tailored silica nanoparticles. ACS Appl Mater Interfaces 5(14):6694–6703CrossRef
26.
go back to reference Shi Y, Xiao X (2016) Facile spray-coating for fabrication of superhydrophobic SiO2/PVDF nanocomposite coating on paper surface. J Dispers Sci Technol 37(5):640–645CrossRef Shi Y, Xiao X (2016) Facile spray-coating for fabrication of superhydrophobic SiO2/PVDF nanocomposite coating on paper surface. J Dispers Sci Technol 37(5):640–645CrossRef
27.
go back to reference Sahoo BN, Balasubramanian K (2015) A nanocellular PVDF–graphite water-repellent composite coating. RSC Adv 5(9):6743–6751CrossRef Sahoo BN, Balasubramanian K (2015) A nanocellular PVDF–graphite water-repellent composite coating. RSC Adv 5(9):6743–6751CrossRef
28.
go back to reference Wang H, Liu Z, Wang E et al (2015) A robust superhydrophobic PVDF composite coating with wear/corrosion-resistance properties. Appl Surf Sci 332:518–524CrossRef Wang H, Liu Z, Wang E et al (2015) A robust superhydrophobic PVDF composite coating with wear/corrosion-resistance properties. Appl Surf Sci 332:518–524CrossRef
29.
go back to reference Wang H, Gao D, Meng Y et al (2015) Corrosion-resistance, robust and wear-durable highly amphiphobic polymer based composite coating via a simple spraying approach. Prog Org Coat 82:74–80CrossRef Wang H, Gao D, Meng Y et al (2015) Corrosion-resistance, robust and wear-durable highly amphiphobic polymer based composite coating via a simple spraying approach. Prog Org Coat 82:74–80CrossRef
30.
go back to reference Ross G, Watts J, Hill M, Morrissey P (2000) Surface modification of poly(vinylidenefluoride) by alkaline treatment. 1. The degradation mechanism. Polymer 41:1685–1696CrossRef Ross G, Watts J, Hill M, Morrissey P (2000) Surface modification of poly(vinylidenefluoride) by alkaline treatment. 1. The degradation mechanism. Polymer 41:1685–1696CrossRef
31.
go back to reference Accardo A, Shalabaeva V, Cola ED et al (2015) Superhydrophobic surfaces boost fibril self-assembly of amyloid β peptides. Acs Appl Mater Interfaces 7(37):20875–20884CrossRef Accardo A, Shalabaeva V, Cola ED et al (2015) Superhydrophobic surfaces boost fibril self-assembly of amyloid β peptides. Acs Appl Mater Interfaces 7(37):20875–20884CrossRef
32.
go back to reference Accardo A, Trevisiol E, Cerf A et al (2016) Versatile multicharacterization platform involving tailored superhydrophobic SU-8 micropillars for the investigation of breast cancer estrogen receptor isoforms. J Vac Sci Technol B 34:06K201CrossRef Accardo A, Trevisiol E, Cerf A et al (2016) Versatile multicharacterization platform involving tailored superhydrophobic SU-8 micropillars for the investigation of breast cancer estrogen receptor isoforms. J Vac Sci Technol B 34:06K201CrossRef
33.
go back to reference Zhang G, Schlarb AK, Tria S et al (2008) Tensile and tribological behaviors of PEEK/nano-SiO2 composites compounded using a ball milling technique. Compos Sci Technol 68(15):3073–3080CrossRef Zhang G, Schlarb AK, Tria S et al (2008) Tensile and tribological behaviors of PEEK/nano-SiO2 composites compounded using a ball milling technique. Compos Sci Technol 68(15):3073–3080CrossRef
Metadata
Title
Corrosion-resistant engineering superhydrophobic and superoleophilic bulk materials with oil–water separation property
Authors
Enqun Wang
Huaiyuan Wang
Yue Hu
Zhanjian Liu
Yanji Zhu
Publication date
02-03-2017
Publisher
Springer US
Published in
Journal of Materials Science / Issue 12/2017
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-0948-2

Other articles of this Issue 12/2017

Journal of Materials Science 12/2017 Go to the issue

Premium Partners