Skip to main content
Top
Published in: Journal of Materials Science 12/2017

15-03-2017 | Original Paper

Structural and mechanical properties of free-standing multiwalled carbon nanotube paper prepared by an aqueous mediated process

Authors: Sushant Sharma, Bhanu Pratap Singh, Arun Singh Babal, Satish Teotia, Jeevan Jyoti, S. R. Dhakate

Published in: Journal of Materials Science | Issue 12/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Free-standing carbon nanotube film (bucky paper) is a very important material for various applications, but its commercial production is still limited due to size, cost and properties. In the present work, different methods are used to prepare five different types of bucky papers, namely normal, pure refluxed, oxidized, oxidized refluxed and functionalized by using as-produced multiwalled carbon nanotubes (MWCNTs), refluxed MWCNTs, air-oxidized MWCNTs, oxidized refluxed MWCNTs and HNO3 functionalized MWCNTs, respectively. Morphological, physical and structural changes appeared due to different methods are analysed by scanning electron microscopy, high-resolution transmission electron microscopy, X-ray diffraction spectroscopy and Raman spectroscopy. Changes in the relative characteristic peak ratio (i.e. I G /I D, I G /I D and I G /I G) as a function of MWCNTs quality are determined. It is observed that oxidized refluxed MWCNTs have an average value of I G /I D, I G /I D and I G /I G ratio as 4.12, 7.15 and 1.71, respectively, which is higher as compared to other samples. The mechanical properties of different bucky papers are studied by performing tensile tests. The result showed that tensile strength, Young’s modulus and toughness of oxidized refluxed MWCNTs bucky paper are 3.9 MPa, 440 MPa and 780 Jm−3, respectively, which are higher as compared to as-produced MWCNTs bucky paper. The air oxidation and back-to-back refluxing generates nanoscale irregularities within the hexagonal C-structure of a nanotube wall. This helps in improving intermolecular bonding and packing which resulted into significant improvement in the mechanical properties. These bucky papers prepared by economical ways of air oxidation and refluxing in an alkali-soluble emulsifier assisted aqueous medium are potential candidates for field emission devices, energy storage devices and structural materials.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Güven G, Güven A, Sahin S et al (2016) Power harvesting from human serum in buckypaper-based enzymatic biofuel cell. Front Energy Res 4:1–7CrossRef Güven G, Güven A, Sahin S et al (2016) Power harvesting from human serum in buckypaper-based enzymatic biofuel cell. Front Energy Res 4:1–7CrossRef
2.
go back to reference Cottinet P-J, Souders C, Tsai SY et al (2012) Electromechanical actuation of buckypaper actuator: material properties and performance relationships. Phys Lett A 376:1132–1136CrossRef Cottinet P-J, Souders C, Tsai SY et al (2012) Electromechanical actuation of buckypaper actuator: material properties and performance relationships. Phys Lett A 376:1132–1136CrossRef
3.
go back to reference Elizabeth I, Mathur R, Maheshwari P et al (2015) Development of SnO 2/multiwalled carbon nanotube paper as free standing anode for lithium ion batteries (LIB). Electrochim Acta 176:735–742CrossRef Elizabeth I, Mathur R, Maheshwari P et al (2015) Development of SnO 2/multiwalled carbon nanotube paper as free standing anode for lithium ion batteries (LIB). Electrochim Acta 176:735–742CrossRef
4.
go back to reference Karar N, Singh B, Elizabeth I (2015) Analysis of multi-wall carbon nanotube based porous Li battery electrodes’ using TOF-SIMS ion imaging. Appl Surf Sci 349:644–649CrossRef Karar N, Singh B, Elizabeth I (2015) Analysis of multi-wall carbon nanotube based porous Li battery electrodes’ using TOF-SIMS ion imaging. Appl Surf Sci 349:644–649CrossRef
5.
go back to reference Ng S, Wang J, Guo Z et al (2005) Single wall carbon nanotube paper as anode for lithium-ion battery. Electrochim Acta 51:23–28CrossRef Ng S, Wang J, Guo Z et al (2005) Single wall carbon nanotube paper as anode for lithium-ion battery. Electrochim Acta 51:23–28CrossRef
6.
go back to reference Papa H, Gaillard M, Gonzalez L et al (2014) Fabrication of functionalized carbon nanotube buckypaper electrodes for application in glucose biosensors. Biosensors 4:449CrossRef Papa H, Gaillard M, Gonzalez L et al (2014) Fabrication of functionalized carbon nanotube buckypaper electrodes for application in glucose biosensors. Biosensors 4:449CrossRef
7.
go back to reference Giubileo F, Di Bartolomeo A, Sarno M et al (2012) Field emission properties of as-grown multiwalled carbon nanotube films. Carbon 50:163–169CrossRef Giubileo F, Di Bartolomeo A, Sarno M et al (2012) Field emission properties of as-grown multiwalled carbon nanotube films. Carbon 50:163–169CrossRef
8.
go back to reference Chen Y, Miao H, Zhang M et al (2009) Analysis of a laser post-process on a buckypaper field emitter for high and uniform electron emission. Nanotechnology 20:325302CrossRef Chen Y, Miao H, Zhang M et al (2009) Analysis of a laser post-process on a buckypaper field emitter for high and uniform electron emission. Nanotechnology 20:325302CrossRef
9.
go back to reference Jia X, Chen Z, Suwarnasarn A et al (2012) High-performance flexible lithium-ion electrodes based on robust network architecture. Energy Environ Sci 5:6845–6849CrossRef Jia X, Chen Z, Suwarnasarn A et al (2012) High-performance flexible lithium-ion electrodes based on robust network architecture. Energy Environ Sci 5:6845–6849CrossRef
10.
go back to reference Li C, Thostenson ET, Chou T-W (2008) Sensors and actuators based on carbon nanotubes and their composites: a review. Compos Sci Technol 68:1227–1249CrossRef Li C, Thostenson ET, Chou T-W (2008) Sensors and actuators based on carbon nanotubes and their composites: a review. Compos Sci Technol 68:1227–1249CrossRef
11.
go back to reference Zhang D, Ryu K, Liu X et al (2006) Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes. Nano Lett 6:1880–1886CrossRef Zhang D, Ryu K, Liu X et al (2006) Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes. Nano Lett 6:1880–1886CrossRef
12.
go back to reference Chaudhary A, Kumari S, Kumar R et al (2016) Lightweight and easily foldable MCMB-MWCNTs composite paper with exceptional electromagnetic interference shielding. ACS Appl Mater Interfaces 8:10600–10608CrossRef Chaudhary A, Kumari S, Kumar R et al (2016) Lightweight and easily foldable MCMB-MWCNTs composite paper with exceptional electromagnetic interference shielding. ACS Appl Mater Interfaces 8:10600–10608CrossRef
13.
go back to reference Singh B, Choudhary V, Saini P et al (2013) Enhanced microwave shielding and mechanical properties of high loading MWCNT—epoxy composites. Journal Nanopart Res 15:1–12 Singh B, Choudhary V, Saini P et al (2013) Enhanced microwave shielding and mechanical properties of high loading MWCNT—epoxy composites. Journal Nanopart Res 15:1–12
14.
go back to reference Teotia S, Singh BP, Elizabeth I et al (2014) Multifunctional, robust, light-weight, free-standing MWCNT/phenolic composite paper as anodes for lithium ion batteries and EMI shielding material. RSC Adv 4:33168–33174CrossRef Teotia S, Singh BP, Elizabeth I et al (2014) Multifunctional, robust, light-weight, free-standing MWCNT/phenolic composite paper as anodes for lithium ion batteries and EMI shielding material. RSC Adv 4:33168–33174CrossRef
15.
go back to reference Muramatsu H, Hayashi T, Kim Y et al (2005) Pore structure and oxidation stability of double-walled carbon nanotube-derived bucky paper. Chem Phys Lett 414:444–448CrossRef Muramatsu H, Hayashi T, Kim Y et al (2005) Pore structure and oxidation stability of double-walled carbon nanotube-derived bucky paper. Chem Phys Lett 414:444–448CrossRef
16.
go back to reference Roy S, Jain V, Bajpai R et al (2012) Formation of carbon nanotube bucky paper and feasibility study for filtration at the nano and molecular scale. J Phys Chem C 116:19025–19031CrossRef Roy S, Jain V, Bajpai R et al (2012) Formation of carbon nanotube bucky paper and feasibility study for filtration at the nano and molecular scale. J Phys Chem C 116:19025–19031CrossRef
17.
go back to reference Suppiger D, Busato S, Ermanni P (2008) Characterization of single-walled carbon nanotube mats and their performance as electromechanical actuators. Carbon 46:1085–1090CrossRef Suppiger D, Busato S, Ermanni P (2008) Characterization of single-walled carbon nanotube mats and their performance as electromechanical actuators. Carbon 46:1085–1090CrossRef
18.
go back to reference Zhang X, Sreekumar T, Liu T et al (2004) Properties and structure of nitric acid oxidized single wall carbon nanotube films. J Phys Chem B 108:16435–16440CrossRef Zhang X, Sreekumar T, Liu T et al (2004) Properties and structure of nitric acid oxidized single wall carbon nanotube films. J Phys Chem B 108:16435–16440CrossRef
19.
go back to reference Chen H, Chen M, Di J et al (2012) Architecting three-dimensional networks in carbon nanotube buckypapers for thermal interface materials. J Phys Chem C 116:3903–3909CrossRef Chen H, Chen M, Di J et al (2012) Architecting three-dimensional networks in carbon nanotube buckypapers for thermal interface materials. J Phys Chem C 116:3903–3909CrossRef
20.
go back to reference Inoue Y, Suzuki Y, Minami Y et al (2011) Anisotropic carbon nanotube papers fabricated from multiwalled carbon nanotube webs. Carbon 49:2437–2443CrossRef Inoue Y, Suzuki Y, Minami Y et al (2011) Anisotropic carbon nanotube papers fabricated from multiwalled carbon nanotube webs. Carbon 49:2437–2443CrossRef
21.
go back to reference Zhang L, Zhang G, Liu C et al (2012) High-density carbon nanotube buckypapers with superior transport and mechanical properties. Nano Lett 12:4848–4852CrossRef Zhang L, Zhang G, Liu C et al (2012) High-density carbon nanotube buckypapers with superior transport and mechanical properties. Nano Lett 12:4848–4852CrossRef
22.
go back to reference Ventura DN, Stone RA, Chen K-S et al (2010) Assembly of cross-linked multi-walled carbon nanotube mats. Carbon 48:987–994CrossRef Ventura DN, Stone RA, Chen K-S et al (2010) Assembly of cross-linked multi-walled carbon nanotube mats. Carbon 48:987–994CrossRef
23.
go back to reference Sreekumar T, Liu T, Kumar S et al (2003) Single-wall carbon nanotube films. Chem Mater 15:175–178CrossRef Sreekumar T, Liu T, Kumar S et al (2003) Single-wall carbon nanotube films. Chem Mater 15:175–178CrossRef
24.
go back to reference Coleman JN, Blau WJ, Dalton AB et al (2003) Improving the mechanical properties of single-walled carbon nanotube sheets by intercalation of polymeric adhesives. Appl Phys Lett 82:1682–1684CrossRef Coleman JN, Blau WJ, Dalton AB et al (2003) Improving the mechanical properties of single-walled carbon nanotube sheets by intercalation of polymeric adhesives. Appl Phys Lett 82:1682–1684CrossRef
25.
go back to reference Che J, Chen P, Chan-Park MB (2013) High-strength carbon nanotube buckypaper composites as applied to free-standing electrodes for supercapacitors. J Mater Chem A 1:4057–4066CrossRef Che J, Chen P, Chan-Park MB (2013) High-strength carbon nanotube buckypaper composites as applied to free-standing electrodes for supercapacitors. J Mater Chem A 1:4057–4066CrossRef
26.
go back to reference Walters D, Casavant M, Qin X et al (2001) In-plane-aligned membranes of carbon nanotubes. Chem Phys Lett 338:14–20CrossRef Walters D, Casavant M, Qin X et al (2001) In-plane-aligned membranes of carbon nanotubes. Chem Phys Lett 338:14–20CrossRef
27.
go back to reference Skakalova V, Dettlaff-Weglikowska U, Roth S (2004) Gamma-irradiated and functionalized single wall nanotubes. Diam Relat Mater 13:296–298CrossRef Skakalova V, Dettlaff-Weglikowska U, Roth S (2004) Gamma-irradiated and functionalized single wall nanotubes. Diam Relat Mater 13:296–298CrossRef
28.
go back to reference Ali A, Iskandar F, Abdullah M (2011) Analysis of mechanical properties of single‐wall carbon nanotube by using finite element method. In: The 4th nanoscience and nanotechnology symposium (NNS2011): an international symposium. AIP Publishing, pp. 200–204 Ali A, Iskandar F, Abdullah M (2011) Analysis of mechanical properties of single‐wall carbon nanotube by using finite element method. In: The 4th nanoscience and nanotechnology symposium (NNS2011): an international symposium. AIP Publishing, pp. 200–204
29.
go back to reference Berhan L, Yi Y, Sastry A et al (2004) Mechanical properties of nanotube sheets: alterations in joint morphology and achievable moduli in manufacturable materials. J Appl Phys 95:4335–4345CrossRef Berhan L, Yi Y, Sastry A et al (2004) Mechanical properties of nanotube sheets: alterations in joint morphology and achievable moduli in manufacturable materials. J Appl Phys 95:4335–4345CrossRef
30.
go back to reference Li Y, Kröger M (2012) A theoretical evaluation of the effects of carbon nanotube entanglement and bundling on the structural and mechanical properties of buckypaper. Carbon 50:1793–1806CrossRef Li Y, Kröger M (2012) A theoretical evaluation of the effects of carbon nanotube entanglement and bundling on the structural and mechanical properties of buckypaper. Carbon 50:1793–1806CrossRef
31.
go back to reference Guadagno L, De Vivo B, Di Bartolomeo A et al (2011) Effect of functionalization on the thermo-mechanical and electrical behavior of multi-wall carbon nanotube/epoxy composites. Carbon 49:1919–1930CrossRef Guadagno L, De Vivo B, Di Bartolomeo A et al (2011) Effect of functionalization on the thermo-mechanical and electrical behavior of multi-wall carbon nanotube/epoxy composites. Carbon 49:1919–1930CrossRef
32.
go back to reference Ma PC, Kim J-K, Tang BZ (2007) Effects of silane functionalization on the properties of carbon nanotube/epoxy nanocomposites. Compos Sci Technol 67:2965–2972CrossRef Ma PC, Kim J-K, Tang BZ (2007) Effects of silane functionalization on the properties of carbon nanotube/epoxy nanocomposites. Compos Sci Technol 67:2965–2972CrossRef
33.
go back to reference Mathur R, Chatterjee S, Singh B (2008) Growth of carbon nanotubes on carbon fibre substrates to produce hybrid/phenolic composites with improved mechanical properties. Compos Sci Technol 68:1608–1615CrossRef Mathur R, Chatterjee S, Singh B (2008) Growth of carbon nanotubes on carbon fibre substrates to produce hybrid/phenolic composites with improved mechanical properties. Compos Sci Technol 68:1608–1615CrossRef
34.
go back to reference Singh B, Saini K, Choudhary V et al (2014) Effect of length of carbon nanotubes on electromagnetic interference shielding and mechanical properties of their reinforced epoxy composites. J Nanopart Res 16:1–11CrossRef Singh B, Saini K, Choudhary V et al (2014) Effect of length of carbon nanotubes on electromagnetic interference shielding and mechanical properties of their reinforced epoxy composites. J Nanopart Res 16:1–11CrossRef
35.
go back to reference Okpalugo T, Papakonstantinou P, Murphy H et al (2005) Oxidative functionalization of carbon nanotubes in atmospheric pressure filamentary dielectric barrier discharge (APDBD). Carbon 43:2951–2959CrossRef Okpalugo T, Papakonstantinou P, Murphy H et al (2005) Oxidative functionalization of carbon nanotubes in atmospheric pressure filamentary dielectric barrier discharge (APDBD). Carbon 43:2951–2959CrossRef
36.
go back to reference Peng Y, Liu H (2006) Effects of oxidation by hydrogen peroxide on the structures of multiwalled carbon nanotubes. Ind Eng Chem Res 45:6483–6488CrossRef Peng Y, Liu H (2006) Effects of oxidation by hydrogen peroxide on the structures of multiwalled carbon nanotubes. Ind Eng Chem Res 45:6483–6488CrossRef
37.
go back to reference Reznik D, Olk C, Neumann D et al (1995) X-ray powder diffraction from carbon nanotubes and nanoparticles. Phys Rev B 52:116CrossRef Reznik D, Olk C, Neumann D et al (1995) X-ray powder diffraction from carbon nanotubes and nanoparticles. Phys Rev B 52:116CrossRef
38.
go back to reference Childres I, Jauregui LA, Park W et al (2013) Raman spectroscopy of graphene and related materials. In: Jang JI (ed) New developments in photon and materials research. Nova Science Publishers, Hauppaauge, NY, p 1–20 Childres I, Jauregui LA, Park W et al (2013) Raman spectroscopy of graphene and related materials. In: Jang JI (ed) New developments in photon and materials research. Nova Science Publishers, Hauppaauge, NY, p 1–20
39.
go back to reference Gupta R, Singh BP, Singh VN et al (2014) Origin of radial breathing mode in multiwall carbon nanotubes synthesized by catalytic chemical vapor deposition. Carbon 66:724–726CrossRef Gupta R, Singh BP, Singh VN et al (2014) Origin of radial breathing mode in multiwall carbon nanotubes synthesized by catalytic chemical vapor deposition. Carbon 66:724–726CrossRef
40.
go back to reference Dileo RA, Landi BJ, Raffaelle RP (2007) Purity assessment of multiwalled carbon nanotubes by Raman spectroscopy. J Appl Phys 101:064307CrossRef Dileo RA, Landi BJ, Raffaelle RP (2007) Purity assessment of multiwalled carbon nanotubes by Raman spectroscopy. J Appl Phys 101:064307CrossRef
41.
go back to reference Dresselhaus MS, Dresselhaus G, Saito R et al (2005) Raman spectroscopy of carbon nanotubes. Phys Rep 409:47–99CrossRef Dresselhaus MS, Dresselhaus G, Saito R et al (2005) Raman spectroscopy of carbon nanotubes. Phys Rep 409:47–99CrossRef
42.
go back to reference Lucchese MM, Stavale F, Ferreira EM et al (2010) Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon 48:1592–1597CrossRef Lucchese MM, Stavale F, Ferreira EM et al (2010) Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon 48:1592–1597CrossRef
43.
go back to reference Cançado LG, Jorio A, Ferreira EM et al (2011) Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett 11:3190–3196CrossRef Cançado LG, Jorio A, Ferreira EM et al (2011) Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett 11:3190–3196CrossRef
44.
go back to reference Cancado L, Takai K, Enoki T et al (2006) General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy. Appl Phys Lett 88:163106CrossRef Cancado L, Takai K, Enoki T et al (2006) General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy. Appl Phys Lett 88:163106CrossRef
45.
go back to reference Dresselhaus MS, Jorio A, Hofmann M et al (2010) Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett 10:751–758CrossRef Dresselhaus MS, Jorio A, Hofmann M et al (2010) Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett 10:751–758CrossRef
46.
go back to reference Stubrov Y, Nikolenko A, Gubanov V et al (2016) Manifestation of structure of electron bands in double-resonant Raman spectra of single-walled carbon nanotubes. Nanoscale Res Lett 11:1–5CrossRef Stubrov Y, Nikolenko A, Gubanov V et al (2016) Manifestation of structure of electron bands in double-resonant Raman spectra of single-walled carbon nanotubes. Nanoscale Res Lett 11:1–5CrossRef
47.
go back to reference Rosca ID, Watari F, Uo M et al (2005) Oxidation of multiwalled carbon nanotubes by nitric acid. Carbon 43:3124–3131CrossRef Rosca ID, Watari F, Uo M et al (2005) Oxidation of multiwalled carbon nanotubes by nitric acid. Carbon 43:3124–3131CrossRef
48.
go back to reference Yao N, Lordi V, Ma S et al (1998) Structure and oxidation patterns of carbon nanotubes. J Mater Res 13:2432–2437CrossRef Yao N, Lordi V, Ma S et al (1998) Structure and oxidation patterns of carbon nanotubes. J Mater Res 13:2432–2437CrossRef
49.
go back to reference Balasubramanian K, Burghard M (2005) Chemically functionalized carbon nanotubes. Small 1:180–192CrossRef Balasubramanian K, Burghard M (2005) Chemically functionalized carbon nanotubes. Small 1:180–192CrossRef
50.
go back to reference Hu C-C, Su J-H, Wen T-C (2007) Modification of multi-walled carbon nanotubes for electric double-layer capacitors: tube opening and surface functionalization. J Phys Chem Solids 68:2353–2362CrossRef Hu C-C, Su J-H, Wen T-C (2007) Modification of multi-walled carbon nanotubes for electric double-layer capacitors: tube opening and surface functionalization. J Phys Chem Solids 68:2353–2362CrossRef
51.
go back to reference Fernandes RM, Abreu B, Claro B et al (2015) Dispersing carbon nanotubes with ionic surfactants under controlled conditions: comparisons and insight. Langmuir 31:10955–10965CrossRef Fernandes RM, Abreu B, Claro B et al (2015) Dispersing carbon nanotubes with ionic surfactants under controlled conditions: comparisons and insight. Langmuir 31:10955–10965CrossRef
52.
go back to reference Nissan AH, Batten G (1997) The link between the molecular and structural theories of paper elasticity. Tappi J 80:153–158 Nissan AH, Batten G (1997) The link between the molecular and structural theories of paper elasticity. Tappi J 80:153–158
Metadata
Title
Structural and mechanical properties of free-standing multiwalled carbon nanotube paper prepared by an aqueous mediated process
Authors
Sushant Sharma
Bhanu Pratap Singh
Arun Singh Babal
Satish Teotia
Jeevan Jyoti
S. R. Dhakate
Publication date
15-03-2017
Publisher
Springer US
Published in
Journal of Materials Science / Issue 12/2017
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-0983-z

Other articles of this Issue 12/2017

Journal of Materials Science 12/2017 Go to the issue

Premium Partners