Skip to main content
Top
Published in: Journal of Materials Science 12/2017

16-03-2017 | Original Paper

Needleless electrospinning using sprocket wheel disk spinneret

Authors: Usman Ali, Haitao Niu, Sarmad Aslam, Abdul Jabbar, Abdul Waqar Rajput, Tong Lin

Published in: Journal of Materials Science | Issue 12/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Needleless electrospinning is expected to produce nanofibers with a large productivity. In this study, a sprocket wheel disk was used as spinneret to electrospin nanofibers. The sprocket disk shows reliable electrospinning process. In comparison with the conventional disk spinneret, which has no sprocket on the edge, the sprocket wheel produced more uniform nanofibers with smaller fiber diameter. The electric field analysis results indicated that the sprocket wheel generates higher intensity of electric field.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Sahay R, Parveen H, Baji A, Ganesh VA, Ranganath AS (2017) Fabrication of PVDF hierarchical fibrillar structures using electrospinning for dry-adhesive applications. J Mater Sci 52:2435–2441. doi:10.1007/s10853-016-0537-9 CrossRef Sahay R, Parveen H, Baji A, Ganesh VA, Ranganath AS (2017) Fabrication of PVDF hierarchical fibrillar structures using electrospinning for dry-adhesive applications. J Mater Sci 52:2435–2441. doi:10.​1007/​s10853-016-0537-9 CrossRef
2.
go back to reference Cai Y, Gevelber M (2017) Analysis of bending region physics in determining electrospun fiber diameter: effect of relative humidity on evaporation and force balance. J Mater Sci 52:2605–2627. doi:10.1007/s10853-016-0553-9 CrossRef Cai Y, Gevelber M (2017) Analysis of bending region physics in determining electrospun fiber diameter: effect of relative humidity on evaporation and force balance. J Mater Sci 52:2605–2627. doi:10.​1007/​s10853-016-0553-9 CrossRef
3.
go back to reference Sanfelice RC, Mercante LA, Pavinatto A, Tomazio NB, Mendonça CR, Ribeiro SJL et al (2017) Hybrid composite material based on polythiophene derivative nanofibers modified with gold nanoparticles for optoelectronics applications. J Mater Sci 52:1919–1929. doi:10.1007/s10853-016-0481-8 CrossRef Sanfelice RC, Mercante LA, Pavinatto A, Tomazio NB, Mendonça CR, Ribeiro SJL et al (2017) Hybrid composite material based on polythiophene derivative nanofibers modified with gold nanoparticles for optoelectronics applications. J Mater Sci 52:1919–1929. doi:10.​1007/​s10853-016-0481-8 CrossRef
4.
go back to reference Panthi G, Park S-J, Kim T-W, Chung H-J, Hong S-T, Park M et al (2015) Electrospun composite nanofibers of polyacrylonitrile and Ag2CO3 nanoparticles for visible light photocatalysis and antibacterial applications. J Mater Sci 50:4477–4485. doi:10.1007/s10853-015-8995-z CrossRef Panthi G, Park S-J, Kim T-W, Chung H-J, Hong S-T, Park M et al (2015) Electrospun composite nanofibers of polyacrylonitrile and Ag2CO3 nanoparticles for visible light photocatalysis and antibacterial applications. J Mater Sci 50:4477–4485. doi:10.​1007/​s10853-015-8995-z CrossRef
8.
go back to reference Jing X, Jin E, Mi H-Y, Li W-J, Peng X-F, Turng L-S (2015) Hierarchically decorated electrospun poly(ε-caprolactone)/nanohydroxyapatite composite nanofibers for bone tissue engineering. J Mater Sci 50:4174–4186. doi:10.1007/s10853-015-8933-0 CrossRef Jing X, Jin E, Mi H-Y, Li W-J, Peng X-F, Turng L-S (2015) Hierarchically decorated electrospun poly(ε-caprolactone)/nanohydroxyapatite composite nanofibers for bone tissue engineering. J Mater Sci 50:4174–4186. doi:10.​1007/​s10853-015-8933-0 CrossRef
9.
go back to reference Zahedi P, Rezaeian I, Jafari SH (2013) In vitro and in vivo evaluations of phenytoin sodium-loaded electrospun PVA, PCL, and their hybrid nanofibrous mats for use as active wound dressings. J Mater Sci 48:3147–3159. doi:10.1007/s10853-012-7092-9 CrossRef Zahedi P, Rezaeian I, Jafari SH (2013) In vitro and in vivo evaluations of phenytoin sodium-loaded electrospun PVA, PCL, and their hybrid nanofibrous mats for use as active wound dressings. J Mater Sci 48:3147–3159. doi:10.​1007/​s10853-012-7092-9 CrossRef
10.
go back to reference Ramakrishna S, Jose R, Archana PS, Nair AS, Balamurugan R, Venugopal J et al (2010) Science and engineering of electrospun nanofibers for advances in clean energy, water filtration, and regenerative medicine. J Mater Sci 45:6283–6312. doi:10.1007/s10853-010-4509-1 CrossRef Ramakrishna S, Jose R, Archana PS, Nair AS, Balamurugan R, Venugopal J et al (2010) Science and engineering of electrospun nanofibers for advances in clean energy, water filtration, and regenerative medicine. J Mater Sci 45:6283–6312. doi:10.​1007/​s10853-010-4509-1 CrossRef
12.
go back to reference Fang J, Niu H, Wang H, Wang X, Lin T (2013) Enhanced mechanical energy harvesting using needleless electrospun poly(vinylidene fluoride) nanofibre webs. Energy Environ Sci 6:2196–2202CrossRef Fang J, Niu H, Wang H, Wang X, Lin T (2013) Enhanced mechanical energy harvesting using needleless electrospun poly(vinylidene fluoride) nanofibre webs. Energy Environ Sci 6:2196–2202CrossRef
13.
go back to reference Peng S, Li L, Lee JKY, Tian L, Srinivasan M, Adams S et al (2016) Electrospun carbon nanofibers and their hybrid composites as advanced materials for energy conversion and storage. Nano Energy 22:361–395CrossRef Peng S, Li L, Lee JKY, Tian L, Srinivasan M, Adams S et al (2016) Electrospun carbon nanofibers and their hybrid composites as advanced materials for energy conversion and storage. Nano Energy 22:361–395CrossRef
14.
go back to reference Zhang B, Kang F, Tarascon J-M, Kim J-K (2016) Recent advances in electrospun carbon nanofibers and their application in electrochemical energy storage. Progress Mater Sci 76:319–380CrossRef Zhang B, Kang F, Tarascon J-M, Kim J-K (2016) Recent advances in electrospun carbon nanofibers and their application in electrochemical energy storage. Progress Mater Sci 76:319–380CrossRef
15.
go back to reference Wang J, Yang G, Wang L, Yan W (2016) Fabrication of one-dimensional CdFe2O4 yolk/shell flat nanotubes as a high-performance anode for lithium-ion batteries. J Mater Sci, pp 1–13, doi: 10.1007/s10853-016-0672-3 Wang J, Yang G, Wang L, Yan W (2016) Fabrication of one-dimensional CdFe2O4 yolk/shell flat nanotubes as a high-performance anode for lithium-ion batteries. J Mater Sci, pp 1–13, doi: 10.​1007/​s10853-016-0672-3
16.
go back to reference Qin X, Subianto S (2017) 17 - Electrospun nanofibers for filtration applications A2 - Afshari, Mehdi. In: Electrospun nanofibers, ed, Woodhead Publishing, p 449–466 Qin X, Subianto S (2017) 17 - Electrospun nanofibers for filtration applications A2 - Afshari, Mehdi. In: Electrospun nanofibers, ed, Woodhead Publishing, p 449–466
17.
go back to reference Ortenzi MA, Basilissi L, Farina H, Di Silvestro G, Piergiovanni L, Mascheroni E (2015) Evaluation of crystallinity and gas barrier properties of films obtained from PLA nanocomposites synthesized via “in situ” polymerization of l-lactide with silane-modified nanosilica and montmorillonite. Eur Polym J 66:478–491CrossRef Ortenzi MA, Basilissi L, Farina H, Di Silvestro G, Piergiovanni L, Mascheroni E (2015) Evaluation of crystallinity and gas barrier properties of films obtained from PLA nanocomposites synthesized via “in situ” polymerization of l-lactide with silane-modified nanosilica and montmorillonite. Eur Polym J 66:478–491CrossRef
18.
go back to reference Neppalli R, Causin V, Benetti EM, Ray SS, Esposito A, Wanjale S et al (2014) Polystyrene/TiO2 composite electrospun fibers as fillers for poly(butylene succinate-co-adipate): structure, morphology and properties. Eur Polym J 50:78–86CrossRef Neppalli R, Causin V, Benetti EM, Ray SS, Esposito A, Wanjale S et al (2014) Polystyrene/TiO2 composite electrospun fibers as fillers for poly(butylene succinate-co-adipate): structure, morphology and properties. Eur Polym J 50:78–86CrossRef
19.
go back to reference Wang L, Ryan AJ (2011) Introduction to electrospinning. In: Bosworth LA, Downes S (eds) Electrospinning for tissue regeneration. Woodhead Publishing, Oxford, pp 3–33CrossRef Wang L, Ryan AJ (2011) Introduction to electrospinning. In: Bosworth LA, Downes S (eds) Electrospinning for tissue regeneration. Woodhead Publishing, Oxford, pp 3–33CrossRef
20.
go back to reference Wang S, Yang Y, Zhang Y, Fei X, Zhou C, Zhang Y et al (2014) Fabrication of large-scale superhydrophobic composite films with enhanced tensile properties by multi-nozzle conveyor belt electrospinning. J Appl Polym Sci 131:39735. doi:10.1002/app.39735 Wang S, Yang Y, Zhang Y, Fei X, Zhou C, Zhang Y et al (2014) Fabrication of large-scale superhydrophobic composite films with enhanced tensile properties by multi-nozzle conveyor belt electrospinning. J Appl Polym Sci 131:39735. doi:10.​1002/​app.​39735
21.
go back to reference Angammana CJ, Jayaram SH (2011) The effects of electric field on the multijet electrospinning process and fiber morphology. Ind Appl IEEE Trans 47:1028–1035CrossRef Angammana CJ, Jayaram SH (2011) The effects of electric field on the multijet electrospinning process and fiber morphology. Ind Appl IEEE Trans 47:1028–1035CrossRef
22.
go back to reference Kumar A, Wei M, Barry C, Chen J, Mead J (2010) Controlling fiber repulsion in multijet electrospinning for higher throughput. Macromol Mater Eng 295:701–708CrossRef Kumar A, Wei M, Barry C, Chen J, Mead J (2010) Controlling fiber repulsion in multijet electrospinning for higher throughput. Macromol Mater Eng 295:701–708CrossRef
23.
go back to reference Liu Y, He JH (2007) Bubble electrospinning for mass production of nanofibers. In: International journal of nonlinear sciences and numerical simulation 8, ed, p 393 Liu Y, He JH (2007) Bubble electrospinning for mass production of nanofibers. In: International journal of nonlinear sciences and numerical simulation 8, ed, p 393
24.
go back to reference Niu H, Lin T (2012) Fiber generators in needleless electrospinning. J Nanomater 2012:1–13 Niu H, Lin T (2012) Fiber generators in needleless electrospinning. J Nanomater 2012:1–13
25.
26.
go back to reference Yalcinkaya B, Callioglu FC, Yener F (2014) Measurement and analysis of jet current and jet life in roller electrospinning of polyurethane. Text Res J 84:1720–1728CrossRef Yalcinkaya B, Callioglu FC, Yener F (2014) Measurement and analysis of jet current and jet life in roller electrospinning of polyurethane. Text Res J 84:1720–1728CrossRef
27.
28.
go back to reference Lu B, Wang Y, Liu Y, Duan H, Zhou J, Zhang Z et al (2010) Superhigh-throughput needleless electrospinning using a rotary cone as spinneret. Small 6:1612–1616CrossRef Lu B, Wang Y, Liu Y, Duan H, Zhou J, Zhang Z et al (2010) Superhigh-throughput needleless electrospinning using a rotary cone as spinneret. Small 6:1612–1616CrossRef
29.
go back to reference Bhattacharyya I, Molaro MC, Braatz RD, Rutledge GC (2016) Free surface electrospinning of aqueous polymer solutions from a wire electrode. Chem Eng J 289:203–211CrossRef Bhattacharyya I, Molaro MC, Braatz RD, Rutledge GC (2016) Free surface electrospinning of aqueous polymer solutions from a wire electrode. Chem Eng J 289:203–211CrossRef
30.
go back to reference Niu H, Lin T, Wang X (2009) Needleless electrospinning. I. A comparison of cylinder and disk nozzles. J Appl Polym Sci 114:3524–3530CrossRef Niu H, Lin T, Wang X (2009) Needleless electrospinning. I. A comparison of cylinder and disk nozzles. J Appl Polym Sci 114:3524–3530CrossRef
31.
go back to reference Jiang G, Zhang S, Qin X (2014) Effect of processing parameters on free surface electrospinning from a stepped pyramid stage. J Ind Text 45(4):483–494CrossRef Jiang G, Zhang S, Qin X (2014) Effect of processing parameters on free surface electrospinning from a stepped pyramid stage. J Ind Text 45(4):483–494CrossRef
32.
go back to reference Jiang G, Qin X (2014) An improved free surface electrospinning for high throughput manufacturing of core–shell nanofibers. Mater Lett 128:259–262CrossRef Jiang G, Qin X (2014) An improved free surface electrospinning for high throughput manufacturing of core–shell nanofibers. Mater Lett 128:259–262CrossRef
33.
go back to reference Wang X, Niu H, Wang X, Lin T (2012) Needleless electrospinning of uniform nanofibers using spiral coil spinnerets. J Nanomater 2012:1–9 Wang X, Niu H, Wang X, Lin T (2012) Needleless electrospinning of uniform nanofibers using spiral coil spinnerets. J Nanomater 2012:1–9
34.
go back to reference Wang X, Wang X, Lin T (2012) Electric field analysis of spinneret design for needleless electrospinning of nanofibers. J Mater Res 27:3013–3019CrossRef Wang X, Wang X, Lin T (2012) Electric field analysis of spinneret design for needleless electrospinning of nanofibers. J Mater Res 27:3013–3019CrossRef
35.
go back to reference Thoppey NM, Bochinski JR, Clarke LI, Gorga RE (2010) Unconfined fluid electrospun into high quality nanofibers from a plate edge. Polymer 51:4928–4936CrossRef Thoppey NM, Bochinski JR, Clarke LI, Gorga RE (2010) Unconfined fluid electrospun into high quality nanofibers from a plate edge. Polymer 51:4928–4936CrossRef
36.
go back to reference Lu W, Ma M, Xu H, Zhang B, Cao X, Guo Y (2015) Gelatin nanofibers prepared by spiral-electrospinning and cross-linked by vapor and liquid-phase glutaraldehyde. Mater Lett 140:1–4CrossRef Lu W, Ma M, Xu H, Zhang B, Cao X, Guo Y (2015) Gelatin nanofibers prepared by spiral-electrospinning and cross-linked by vapor and liquid-phase glutaraldehyde. Mater Lett 140:1–4CrossRef
37.
go back to reference Liu Z, Chen R, He J (2016) Active generation of multiple jets for producing nanofibres with high quality and high throughput. Mater Des 94:496–501 Liu Z, Chen R, He J (2016) Active generation of multiple jets for producing nanofibres with high quality and high throughput. Mater Des 94:496–501
38.
go back to reference Jani H, Toni P, Eero S, Mikko R (2015) Needleless electrospinning with twisted wire spinneret. Nanotechnology 26:025301CrossRef Jani H, Toni P, Eero S, Mikko R (2015) Needleless electrospinning with twisted wire spinneret. Nanotechnology 26:025301CrossRef
Metadata
Title
Needleless electrospinning using sprocket wheel disk spinneret
Authors
Usman Ali
Haitao Niu
Sarmad Aslam
Abdul Jabbar
Abdul Waqar Rajput
Tong Lin
Publication date
16-03-2017
Publisher
Springer US
Published in
Journal of Materials Science / Issue 12/2017
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-0989-6

Other articles of this Issue 12/2017

Journal of Materials Science 12/2017 Go to the issue

Premium Partners